
CSC 591
Systems Attacks and Defenses

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

HTML Frames
• Ability to tie multiple separate URLs

together on one page
• Used in the early days to provide a banner

or navigation element

2

frameset
<frameset cols="85%, 15%">

<frame src="frame1.html" name="frame_1">

<frame src="frame2.html" name="frame_2">

<noframes>

Text to be displayed in browsers that do not support frames

</noframes>

</frameset>

3

The Frames
• frame1.html

– I am frame 1
• frame2.html

– I am frame two

4

5

iframes
• Inline frames
• Similar to frames, but does not need a

frameset

<iframe src="frame1.html" name="frame_1" frameBorder="0"></iframe>

<iframe src="frame2.html" name="frame_2" frameBorder="0"></iframe>

6

7

JavaScript Security
• Browsers are downloading and running foreign

(JavaScript) code, sometimes concurrently
• The security of JavaScript code execution is

guaranteed by a sandboxing mechanism
– No access to local files
– No access to (most) network resources
– No incredibly small windows
– No access to the browser's history
– …

• The details of the sandbox depend on the browser

8

Same Origin Policy (SOP)
• Standard security policy for JavaScript across browsers

– Incredibly important to web security
• If you learn only one thing from this class, let it be the Same Origin Policy

• Every frame or tab in a browser's window is associated with a
domain
– A domain is determined by the tuple: <protocol, domain, port> from which

the frame content was downloaded
• Code downloaded in a frame can only access the resources

associated with that domain
• If a frame explicitly includes external code, this code will execute

within the SOP
– On example.com, the following JavaScript code has access to the

<http,example.com, 80> SOP
– <script

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jq
uery.min.js"></script>

9

SOP example

Original URL http://store.company.com/dir/page.html

• Which of the following belong to the SOP?

http://store.company.com/dir2/other.html
http://store.company.com/dir/inner/another.html
https://store.company.com/secure.html
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.html

10

Success
Success
Failure
Failure
Failure

Storing Information
• As we've seen, information can be stored

on the client's browser
– Cookies
– URLs
– Forms
– Browser Extensions or Plugins (Applets,

Flash, Silverlight)
– LocalStorage

11

Tampering with Client-Side
Information

• Nothing prevents us from not tampering
with client-side information
– Tampering, by itself, is not a vulnerability

• The question is: how does the server-side
code respond to our tampering?
– If the server-side code allows our tampering

and that tampering compromises the security
of the application, then there is a vulnerability

12

Hidden Form Fields
• As we saw when studying web applications,

an HTML input element with the type attribute
of hidden will not be shown in the browser

• Many legitimate uses for this behavior
– CAPTCHA
– CSRF protection

• The problem is when the server-side code
blindly trusts the data that is placed in the
hidden form

13

14

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hidden Form E-Commerce</title>

</head>

<body>
<h1>Confirm Checkout</h1>

Laptop - 1 @ $1,000
Moniter - 1 @ $1,500

<p>
Total price: $2,500

</p>
<p>
Credit card: 4532471752161408

</p>

<form action="purchase.php" method="POST">
<input type="submit" value="Purchase!">
<input type="hidden" name="oid" value="5929">
<input type="hidden" name="price" value="2500">
<input type="hidden" name="cur" value="usd">

</form>
</body>

</html> 15

How to approach
• What possible hidden values are there to

test?
• What might they mean?
• What would be malicious versions of those

values?
• How to test the hypothesis?

16

Let's hack it!

17

Hacking
• All that's needed is a browser and a

command-line tool (I use curl)
• Using curl, we can create a request to the

purchase page
– curl -F oid=5929 -F price=2500 -F
cur=usd
http://192.168.84.167/code/purchase.php

– I don't know who you are, go away
• What's the problem?

– Not sending cookies, so must be a session issue

18

Hacking
• First, we need to find our cookie from our browser
• Then, we can use curl to include that cookie using

the -b options
– curl -b
PHPSESSID=n7591kbbse8rug4dfn019skv05 -F
oid=5929 -F price=2500 -F cur=usd
http://192.168.84.167/code/purchase.php

– Purchase successful, your final order total
is 2,500 usd charged to your CC
XXXXXXXXXXXX1408

• Hurray, we were able to make a successful order

19

Hacking
• What happens when we manipulate the values?
• What could oid stand for?

– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05 -F oid=1 -F
price=2500 -F cur=usd
http://192.168.84.167/code/purchase.php

– FAIL, not your order!
• What does price stand for?

– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05 -F oid=5929 -F
price=1 -F cur=usd http://192.168.84.167/code/purchase.php

– FAIL, not the correct price!
• What does cur stand for?

– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05 -F oid=5929 -F
price=2500 -F cur=huf
http://192.168.84.167/code/purchase.php

– Purchase successful, your final order total is 2,500 huf
charged to your CC XXXXXXXXXXXX1408

20

21

Your Security Zen (interrupt)

“Website Glitch Let Me Overstock My Coinbase”

22source: https://krebsonsecurity.com/2018/01/website-glitch-let-me-overstock-my-coinbase/

● You could tell Coinbase to send 0.00475574 in
bitcoin cash instead of bitcoin

● $78 purchase by sending approximately USD
$12 worth of bitcoin cash

● the system refunded the purchase in bitcoin, not
bitcoin cash!

https://krebsonsecurity.com/2018/01/website-glitch-let-me-overstock-my-coinbase/

HTTP Cookies
• As we have seen, cookies are used to

store state on the browser
– Server requests that the client store a bit of

state on the browser
– Cookie can be any arbitrary data

• Just as we saw in the previous example,
we can manipulate cookies via curl or with
browser extension

23

URL Parameters
• The query parameters of a URL could also

be used as information
– Perhaps the price is calculated from a query

parameter
– Why would a developer do this?

• Manipulating the query parameter could
change the price
– If the application accepts the new price

24

Referer Header
• The referer HTTP header is defined in the HTTP 1.0 RFC as

– The Referer request-header field allows the client to specify, for
the server's benefit, the address (URI) of the resource from which
the Request-URI was obtained. This allows a server to generate
lists of back-links to resources for interest, logging, optimized
caching, etc. It also allows obsolete or mistyped links to be traced
for maintenance. The Referer field must not be sent if the
Request-URI was obtained from a source that does not have its
own URI, such as input from the user keyboard.

• The spelling was a typo and was not caught until people
were already using referer

• Sent automatically by the browser when a link is clicked
• Can it be trusted?

– Developers assume that because it is an HTTP header, it is
trustworthy

– What do you think?

25

Referer to Control Access
• The referer header is untrusted and can

be manipulated
• Therefore, using a referer header to

ensure that the user is visiting your
application in the intended order is a
mistake

• Using -H option of curl to set arbitrary
HTTP headers on request

26

HTML Forms Input Restrictions
• Developer can specify HTML5

restrictions/validation on form input
– required attribute
– type=email
– pattern attribute

• Custom validation using JavaScript
– All can be bypassed

27

Definitions
• Authentication

– Who is the user?
– Breaking means impersonating another user

• Authorization
– What is the user allowed to do?

• Admin, regular, guest, …
– Attacking means performing actions that you're not

allowed to do
• Often intertwined

– If you're able to break the authentication to log in as a
different user, then you've also broken authorization

28

Attacking Authentication
• Eavesdropping credentials/authenticators
• Brute-forcing/guessing

credentials/authenticators
• Bypassing authentication

– SQL Injection
– Session fixation

29

Eavesdropping
Credentials and Authenticators

• If the HTTP connection is not protected by
SSL it is possible to eavesdrop the
credentials:
– Username and password sent as part of an HTTP

basic authentication exchange
– Username and password submitted through a

form
– The authenticator included as cookie, URL

parameter, or hidden field in a form
• The "secure" flag on cookies is a good way to

prevent accidental leaking of sensitive
authentication information

30

Brute-forcing
Credentials and Authenticators

• If authenticators have a limited value domain they can
be brute-forced (e.g., 4-digit PIN)
– Note: lockout policies might not be enforced in mobile web

interfaces to accounts
• If authenticators are chosen in a non-random way they

can be easily guessed
– Sequential session IDs
– User-specified passwords
– Example:

http://www.foo.bar/secret.php?id=BGH10110915103939
observed at 15:10 of November 9, 2010

• Long-lived authenticators make these attacks more
likely to succeed

31

Bypassing Authentication
• Form-based authentication may be bypassed using carefully crafted

arguments
• Authentication, in certain case can be bypassed using forceful

browsing
• Weak password recovery procedures can be leveraged to reset a

victim’s password to a known value
• Session fixation forces the user’s session ID to a known value

– For example, by luring the user into clicking on a link such as:
foo

• The ID can be a fixed value or could be obtained by the attacker
through a previous interaction with the vulnerable system

32

