
CSC 591
Systems Attacks and Defences

Symbolic Execution

Alexandros Kapravelos
akaprav@ncsu.edu

Let’s find some bugs

• We have a potentially vulnerable program
• The program has some inputs which can be controlled

by the attacker
• What should we do as developers?

– Add checks (assertions)
– Write tests
– Make sure the checks do not fail

• Is this enough?

Concrete Execution
void foo(int x, int y) {

 int z = 0;

 if (x > y) {

 z = x;

 }

 else {

 z = y;

 }

 if (z < x) {

 assert false;

 }

}

x=0, y=0

False

z = 0

False
// not reached

Concrete Execution
void foo(int x, int y) {

 int z = 0;

 if (x > y) {

 z = x;

 }

 else {

 z = y;

 }

 if (z < x) {

 assert false;

 }

}

x=1, y=0

True
z = 1

False
// not reached

Pros/Cons

• Testing intended functionality
• Testing for known bugs
• Unintended functionality
• Unknown bugs
• Complete coverage

Can we automate this part?

Symbolic Execution
void foo(int x, int y) {

 int z = 0;

 if (x > y) {

 z = x;

 }

 else {

 z = y;

 }

 if (z < x) {

 assert false;

 }

}

x=α, y=β

z = α, α > β

z = β, α <= β

1. α < α -> False
2. β < α, α <= β, False

Feasible and Infeasible Paths

• A path is a particular route in the
control-flow graph of the program

• A feasible path is the path covered for
a particular input

• An infeasible path is the path that no
input can cover

Infeasible Paths

• Dead code => infeasible path
• Infeasible path !=> dead code

• It is normal in a large program to have a large number
of infeasible paths

• This makes automatic testing based on the input to the
program incredibly hard

• α > β Λ α + β <= 10

• α, β are called free variables
• Solution: a set of variable assignments that makes the

constraint satisfiable
• {α =3, β = 2} is a solution
• {α =6, β = 5} is not a solution

• Decision procedure: is the constraint satisfiable?
• Constraint solver: if is satisfiable, find assignments
• Undecidable problem

Constrains

Symbolic Execution

• Execute the program differently, “symbols” as input
• Take all feasible paths
• Program state is different:

– No stack/heap
– Symbolic values for memory locations
– Path condition

• Path condition: input constraints so that a certain path is
feasible

• A solution to a path condition is a test input that covers
the desired path

History of Symbolic Execution

James C. King
Symbolic execution and program testing

Communications of the ACM
(July 1976)

• Computation intensive
– Too many paths
– Program state grows a lot
– Constraint solver is computationally expensive, but we need to

identify the feasible paths

• Powerful computers
• Better constraint solvers

Why are we talking about it now?

Symbolic Execution Tools

• KLEE
– Open source symbolic executor
– Runs on top of LLVM
– Has found lots of problems in open-source software

• SAGE
– Microsoft internal tool
– Symbolic execution to find bugs in file parsers - E.g., JPEG,

DOCX, PPT, etc
– Cluster of n machines continuously running SAGE

Constraint Solver

• Boolean SATisfiability Problem
• Find values that satisfy a boolean formula
• NP-Complete

 (l1 ∨ l2 ∨ x2) ∧ (¬x2 ∨ l3 ∨ x3)

Solver

 SAT UNSAT

SMT Solvers

• Satisfiability modulo theories
• SAT, but with binary variables replaced by predicates

over a suitable set of non-binary variables

3x + 2y - z >= 4

Popular SMT solvers

• Z3 - developed at Microsoft Research
– https://github.com/Z3Prover/z3

• Yices - developed at SRI
– http://yices.csl.sri.com/

• STP - developed by Vijay Ganesh, now @ Waterloo
– http://stp.github.io/

• CVC3 - developed primarily at NYU
– http://www.cs.nyu.edu/acsys/cvc3/

Forking Execution

• What to do when we reach a branching point?
– Follow both paths (condition satisfied and negation)

• State explosion *really* fast (exponential)
– Loops on symbolic variables are problematic

• How can we do this more efficiently?
– Prune paths by following only feasible ones
– Concolic execution: run the program concretely and assist the

execution with symbolic execution by changing the path
conditions

Static analysis

• It will terminate, even if the whole program is taken into
account

• Approximation is the key
– Let’s assume every path is feasible

• False alarms
• Less accurate

Symbolic search

• We have to decide on a strategy
– Depth-first search (DFS)
– Breadth-first search (BFS)

• Potential drawbacks
– No smart choices
– DFS can get easily stuck in one part of the program

• Literally on a loop
– BFS is a better choice

• Harder to implement (think about concolic execution)

Search strategies

• Focus on the paths that matter
– Assertion failures
– Time bound
– Vulnerable functions (like strcmp)

• Improve coverage
– Program execution as a DAG

• Nodes = program states
• Edge(n1, n2) = can transition from n1 to state n2

– Graph exploration algorithm

Randomness

• In the beginning we know
nothing, how do we start?

• Ideas
– Pick next path at random
– Randomly restart search
– Choose randomly among

equal priority paths

• But then how do we
reproduce our analysis?
– Pseudo-randomness
– Record the seed
– Otherwise bugs can

disappear on reruns

Coverage-guided heuristics

• Let’s visit statements that we haven’t seen before
• Approach

– Score of statement = # visits
– Pick the next statement with the lowest score

• Pros
– Errors are often in hard-to-reach parts of the program
– This strategy tries to reach everywhere.

• Cons
– Maybe never be able to get to a statement if proper

precondition not set up

Generational search

• Hybrid of BFS and coverage-guided
– Generation 0: pick one program at random, run to completion
– Generation 1: take paths from gen 0; negate one branch

condition on a path to yield a new path prefix; find a solution for
that prefix; then take the resulting path

– Generation n: similar, but branching off gen n-1
• Also uses a coverage heuristic to pick priority

Path-based search limited

• 2100 possible execution paths
• Hard to find the bug

– (100 75) ≈ 278 paths reach buggy line of code
– Pr(finding bug) = 278 / 2100 = 2-22

Libraries and native code

• Execution of a program is not solely contained on the
program’s code
– Libraries, system calls, assembly code

• We could extend the symbolic execution to those parts
– Pull in the library and symbolically execute it
– If library is complicated, then our program state will grow too

large
– Replace the library with a simpler version (libc -> newlib)

• Model the code of the external dependencies

Concolic Execution

• Dynamic symbolic execution
• Concrete execution of the program with assistance by

symbolic execution

• Instrument the program
– Keep a shadow state with symbolic variables
– Start with a concrete execution that sets an initial path

• Follow one path and use symbolic execution to
determine the next one
– Negate a condition
– Inputs are concrete values

Concretization

• Use symbolic execution as guidance
– But replace symbolic variables with concrete values that satisfy

the path condition
• This way the program is actually executed

– Abstract parts that are not in the code (system calls)
– No symbolic-ness at such calls (we lose information)

• Very useful when conditions get too complex for SMT
solver

Conclusion

• Symbolic execution is very powerful and productive
• Not very practical as programs grow large

– Limited by the power of the constraint solver
– Bound by the infeasible paths number

• Promising research area!

CSC 591
Systems Attacks and Defenses

Fuzzing

Alexandros Kapravelos
akaprav@ncsu.edu

Let’s find some bugs (again)

• We have a potentially vulnerable program
• The program has some inputs which can be controlled

by the attacker

Can we generate automatic tests?

Fuzzing

• A form of vulnerability analysis
• Steps

– Generate random inputs and feed them to the program
– Monitor the application for any kinds of errors

• Simple technique
• Inefficient

– Input usually has a specific format, randomly generated inputs
will be rejected

– Probability of causing a crash is very low

Example

Standard HTML document
• <html></html>

Randomized HTML
• <html>AAAAAAA</html>
• <html><></html>
• <html></html></html>
• <html>html</html>
• <html>/</<>></html>

Types of Fuzzers

• Mutation Based
– mutate existing data samples to create test data

• Generation Based
– define new tests based on models of the input

• Evolutionary
– Generate inputs based on response from program

Mutation Based Fuzzing

• Little or no knowledge of the structure of the inputs is
assumed

• Anomalies are added to existing valid inputs
• Anomalies may be completely random or follow some

heuristics
• Requires little to no setup time
• Dependent on the inputs being modified
• May fail for protocols with checksums, those which

depend on challenge response, etc.

• Example Tools:
– Taof, GPF, ProxyFuzz,
– Peach Fuzzer, etc.

Fuzzing a pdf viewer

• Google for .pdf files (about 1,640,000,000 results)
• Crawl pages and build a pdf dataset
• Create a fuzzing tool that:

– Picks a PDF file
– Mutates the file
– Renders the PDF in the viewer
– Check if it crashes

Mutation Based Fuzzing

• East to setup and automate
• Little to no protocol knowledge required

• Limited to the initial dataset
• May fail on protocols with checksums, or other

challenges

Generation-Based Fuzzing

• Generate random inputs with the input specification in
mind (RFC, documentation, etc.)

• Add anomalies to each possible spot
• Knowledge of the protocol prunes inputs that would

have been rejected by the application

Word (.doc) Binary File Format

https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.14).aspx (576 pages)

Generation-Based Fuzzing

• Completeness
• Can deal with complex input, like checksums

• Input generator is labor intensive for complex protocols
• There has to be a specification

Evolutionary Fuzzing

• Attempts to generate inputs based on the response of
the program

• Autodafe
– Fuzzing by weighting attacks with markers
– Open source

• Evolutionary Fuzzing System (EFS)
– Generates test cases based on code coverage metrics

Challenges

• Mutation based
– Enormous amount of generated inputs
– Can run forever

• Generation based
– Less inputs (we have more knowledge)
– Is it enough?

Code Coverage

• A metric of how well your code was tested
• Percent of code that was executed during analysis
• Profiling tools

– gcov

• Code coverage types:
– Line coverage

• which lines of source code have been executed
– Branch coverage

• which branches have been taken
– Path coverage

• which paths were taken

Fuzzing Chrome

• AddressSanitizer
• ClusterFuzz
• SyzyASAN
• ThreadSanitizer
• libFuzzer
• more...

Chrome’s fuzzing infrastructure

• Automatically grab the most current Chrome LKGR
(Last Known Good Revision)

• Hammer away at it to the tune of multi-million test cases
a day

• Thousands of Chrome instances
• Hundreds of virtual machines

AddressSanitizer

• Compiler which performs instrumentation
• Run-time library that replaces malloc(), free(), etc
• custom malloc() allocates more bytes than requested

and “poisons” the redzones around the region returned
to the caller

• Heap buffer overrun/underrun (out-of-bounds access)
• Use after free
• Stack buffer overrun/underrun

• Chromium’s “browser_tests” are about 20% slower

AddressSanitizer Results

• 10 months of testing the tool with Chromium (May 2011)
• 300 previously unknown bugs in the Chromium code

and in third-party libraries
– 210 bugs were heap-use-after-free
– 73 were heap-buffer-overflow
– 8 global-buffer-overflow
– 7 stack-buffer-overflow
– 1 memcpy parameter overlap

• 1.73x performance penalty

SyzyASAN

• AddressSanitizer works only on Linux and Mac
• Different instrumenter that injects instrumentation into

binaries produced by the Microsoft Visual Studio
toolchain

• Run-time library that replaces malloc, free, et al.
• ~4.7x performance penalty

 ThreadSanitizer

• Runtime data race detector based on binary translation
• Supports also compile-time instrumentation

– Greater speed and accuracy
• Data races in C++ and Go code
• Synchronization issues

– deadlocks
– unjoined threads
– destroying locked mutexes
– use of async-signal
– unsafe code in signal handlers
– Others…

• ~5x-15x performance penalty

libFuzzer

• Engine for in-process, coverage-guided, whitebox
fuzzing

• In-process
– don’t launch a new process for every test case
– mutate inputs directly in memory

• Coverage-guided
– measure code coverage for every input
– accumulate test cases that increase overall coverage

• Whitebox
– compile-time instrumentation of the source code

• Fuzz individual components of Chrome
– don’t need to generate an HTML page or network payload and

launch the whole browser

libFuzzer
==9896==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x62e000022836 at

pc 0x000000499c51 bp 0x7fffa0dc1450 sp 0x7fffa0dc0c00

WRITE of size 41994 at 0x62e000022836 thread T0

SCARINESS: 45 (multi-byte-write-heap-buffer-overflow)

 #0 0x499c50 in __asan_memcpy

 #1 0x4e6b50 in Read third_party/woff2/src/buffer.h:86:7

 #2 0x4e6b50 in ReconstructGlyf third_party/woff2/src/woff2_dec.cc:500

 #3 0x4e6b50 in ReconstructFont third_party/woff2/src/woff2_dec.cc:917

 #4 0x4e6b50 in woff2::ConvertWOFF2ToTTF(unsigned char const*, unsigned long,

woff2::WOFF2Out*) third_party/woff2/src/woff2_dec.cc:1282

 #5 0x4dbfd6 in LLVMFuzzerTestOneInput
testing/libfuzzer/fuzzers/convert_woff2ttf_fuzzer.cc:15:3

Cluster Fuzzing

ClusterFuzz uses the following memory debugging tools
with libFuzzer-based fuzzers:

• AddressSanitizer (ASan): 500 GCE VMs
• MemorySanitizer (MSan): 100 GCE VMs
• UndefinedBehaviorSanitizer (UBSan): 100 GCE VMs

July 2016 (30 days of fuzzing)

14,366,371,459,772 unique test inputs
112 bugs filed

Analysis of the bugs found so far

Source: https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

Chrome’s Vulnerability Reward Program

• Submit your fuzzer
• Google will run it with ClusterFuzz
• Automatically nominate bugs they find for reward

payments

