NC STATE UNIVERSITY

CSC 591
Systems Attacks and Defences

Symbolic Execution

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

Let’s find some bugs

* We have a potentially vulnerable program
 The program has some inputs which can be controlled
by the attacker

» \What should we do as developers?
— Add checks (assertions)
— Write tests
— Make sure the checks do not fail

* [s this enough?

NC STATE UNIVERSITY

Concrete Execution

void foo(int x, int y) { x=0, y=0
int z = 0;
3 ()Z(: i’) { False
}
else {
z = y; z=0
}
if (z < x) { False

assert false;
// not reached

NC STATE UNIVERSITY

Concrete Execution

void foo(int x, int y) { x=1, y=0
int z = 0;
if (x > y) { True
Z = X; z=1
}
else {
zZ =Y;
}
if (z <x){ False
assert false; /I not reached
}

NC STATE UNIVERSITY

Pros/Cons

+ Testing intended functionality
« Testing for known bugs

« Unintended functionality

* Unknown bugs

« Complete coverage

Can we automate this part?

NC STATE UNIVERSITY

Symbolic Execution

void foo(int x, int y) { X=a, y=P
int z = 0;
if (x >y) {
z = X; z=0a,a>f
}
else {
Z:B’q<=B
Z =Y;
}
if (z < x) { 1. a<a->False
assert false; 2. B<a,a<=, False
}

NC STATE UNIVERSITY

Feasible and Infeasible Paths

* A path is a particular route in the
control-flow graph of the program

« Afeasible path is the path covered for
a particular input

« An infeasible path is the path that no
Input can cover

NC STATE UNIVERSITY

Infeasible Paths

 Dead code => infeasible path
* Infeasible path !=> dead code

« Itis normal in a large program to have a large number
of infeasible paths

* This makes automatic testing based on the input to the
program incredibly hard

NC STATE UNIVERSITY

Constrains

a>BAa+p<=10

* q, B are called free variables

« Solution: a set of variable assignments that makes the
constraint satisfiable

« {a =3, 3 =2}is a solution

« {a =6, 3 =5} is not a solution

» Decision procedure: is the constraint satisfiable?
« Constraint solver: if is satisfiable, find assignments
« Undecidable problem

NC STATE UNIVERSITY

Symbolic Execution

« Execute the program differently, “symbols” as input
« Take all feasible paths

« Program state is different:

— No stack/heap
— Symbolic values for memory locations
— Path condition

« Path condition: input constraints so that a certain path is

feasible
« A solution to a path condition is a test input that covers

the desired path

NC STATE UNIVERSITY

History of Symbolic Execution

James C. King
Symbolic execution and program testing
Communications of the ACM
(July 1976)

NC STATE UNIVERSITY

Why are we talking about it now?

« Computation intensive
— Too many paths
— Program state grows a lot
— Constraint solver is computationally expensive, but we need to
identify the feasible paths

* Powerful computers
 Better constraint solvers

NC STATE UNIVERSITY

Symbolic Execution Tools

« KLEE
— Open source symbolic executor
— Runs on top of LLVM
— Has found lots of problems in open-source software

« SAGE

— Microsoft internal tool
— Symbolic execution to find bugs in file parsers - E.g., JPEG,

DOCX, PPT, etc
— Cluster of n machines continuously running SAGE

NC STATE UNIVERSITY

Constraint Solver

« Boolean SATisfiability Problem
* Find values that satisfy a boolean formula
 NP-Complete

MTVI2V x2)A (7x2 V I3 V x3)

0

Solver

N

SAT UNSAT

NC STATE UNIVERSITY

SMT Solvers

 Satisfiability modulo theories
« SAT, but with binary variables replaced by predicates
over a suitable set of non-binary variables

3X+2y-z>=4

(sin(:z;)3 = cos(log(y) - z) VbV —x?2 > 2.3y) A (ﬂb Vy< —34.4V exp(x) > %)

NC STATE UNIVERSITY

Popular SMT solvers

Z3 - developed at Microsoft Research

— https://qithub.com/Z3Prover/z3

Yices - developed at SR

— http://yices.csl.sri.com/

STP - developed by Vijay Ganesh, now @ Waterloo
— http://stp.qgithub.io/

CVC3 - developed primarily at NYU

— http://www.cs.nyu.edu/acsys/cvc3/

NC STATE UNIVERSITY

Forking Execution

« What to do when we reach a branching point?
— Follow both paths (condition satisfied and negation)
« State explosion *really* fast (exponential)
— Loops on symbolic variables are problematic
« How can we do this more efficiently?
— Prune paths by following only feasible ones
— Concolic execution: run the program concretely and assist the
execution with symbolic execution by changing the path
conditions

NC STATE UNIVERSITY

Static analysis

« |t will terminate, even if the whole program is taken into
account

* Approximation is the key
— Let's assume every path is feasible

 False alarms
» |Less accurate

NC STATE UNIVERSITY

Symbolic search

 We have to decide on a strategy
— Depth-first search (DFS)
— Breadth-first search (BFS)

« Potential drawbacks
— No smart choices
— DFS can get easily stuck in one part of the program
 Literally on a loop

— BFS is a better choice
Harder to implement (think about concolic execution)

NC STATE UNIVERSITY

Search strategies

* Focus on the paths that matter
— Assertion failures
— Time bound
— Vulnerable functions (like strcmp)

* Improve coverage

— Program execution as a DAG
Nodes = program states
« Edge(n1, n2) = can transition from n1 to state n2

— Graph exploration algorithm

NC STATE UNIVERSITY

Randomness

* In the beginning we know
nothing, how do we start?

* Ideas
— Pick next path at random
— Randomly restart search
— Choose randomly among
equal priority paths

 But then how do we

reproduce our analysis?

— Pseudo-randomness

— Record the seed

— Otherwise bugs can
disappear on reruns

NC STATE UNIVERSITY

Coverage-guided heuristics

Let’'s visit statements that we haven’t seen before
Approach

— Score of statement = # visits
— Pick the next statement with the lowest score

Pros
— Errors are often in hard-to-reach parts of the program
— This strategy tries to reach everywhere.

Cons
— Maybe never be able to get to a statement if proper
precondition not set up

NC STATE UNIVERSITY

Generational search

. Hybrld of BFS and coverage-guided
Generation 0: pick one program at random, run to completion
— Generation 1: take paths from gen 0; negate one branch
condition on a path to yield a new path prefix; find a solution for
that prefix; then take the resulting path
— Generation n: similar, but branching off gen n-1

« Also uses a coverage heuristic to pick priority

NC STATE UNIVERSITY

Path-based search limited

int counter = 0, values = 0;
for (i = 0; i<100; i++) {
if (input[i] == ‘B’) {
counter++;
values += 2;
}
}
assert(counter != 75);

« 210 possible execution paths

« Hard to find the bug

(190 75) = 28 paths reach buggy line of code
— Pr(finding bug) = 278 / 2100 = 2-22

NC STATE UNIVERSITY

Libraries and native code

« Execution of a program is not solely contained on the

program’s code
— Libraries, system calls, assembly code

* We could extend the symbolic execution to those parts
— Pullin the library and symbolically execute it
— If library is complicated, then our program state will grow too

large
— Replace the library with a simpler version (libc -> newlib)

* Model the code of the external dependencies

NC STATE UNIVERSITY

Concolic Execution

* Dynamic symbolic execution
« Concrete execution of the program with assistance by
symbolic execution

* Instrument the program
— Keep a shadow state with symbolic variables
— Start with a concrete execution that sets an initial path

* Follow one path and use symbolic execution to

determine the next one
— Negate a condition
— Inputs are concrete values

NC STATE UNIVERSITY

Concretization

» Use symbolic execution as guidance
— But replace symbolic variables with concrete values that satisfy

the path condition

* This way the program is actually executed
— Abstract parts that are not in the code (system calls)
— No symbolic-ness at such calls (we lose information)

« Very useful when conditions get too complex for SMT
solver

NC STATE UNIVERSITY

Conclusion

« Symbolic execution is very powerful and productive

* Not very practical as programs grow large
— Limited by the power of the constraint solver
— Bound by the infeasible paths number

* Promising research area!

NC STATE UNIVERSITY

CSC 591
Systems Attacks and Defenses

Fuzzing

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

Let’s find some bugs (again)

* We have a potentially vulnerable program
 The program has some inputs which can be controlled
by the attacker

Can we generate automatic tests?

NC STATE UNIVERSITY

Fuzzing

A form of vulnerability analysis
Steps

— Generate random inputs and feed them to the program
— Monitor the application for any kinds of errors

Simple technique

Inefficient

— Input usually has a specific format, randomly generated inputs
will be rejected

— Probability of causing a crash is very low

NC STATE UNIVERSITY

Example

Standard HTML document
e <html></html>

Randomized HTML

o <htmI>AAAAAAA</html|>
o <html><></html>

o <html></html></html>

o <html>htmli</htmI>

o <html>/</<>></html>

NC STATE UNIVERSITY

Types of Fuzzers

 Mutation Based
— mutate existing data samples to create test data

e Generation Based
— define new tests based on models of the input

 Evolutionary
— Generate inputs based on response from program

NC STATE UNIVERSITY

Mutation Based Fuzzing

« Little or no knowledge of the structure of the inputs is
assumed

 Anomalies are added to existing valid inputs

« Anomalies may be completely random or follow some
heuristics

* Requires little to no setup time

« Dependent on the inputs being modified

« May fail for protocols with checksums, those which
depend on challenge response, etc.

« Example Tools:
— Taof, GPF, ProxyFuzz,
— Peach Fuzzer, etc.

NC STATE UNIVERSITY

Fuzzing a pdf viewer

« Google for .pdf files (about 1,640,000,000 results)
« Crawl pages and build a pdf dataset

« Create a fuzzing tool that:
— Picks a PDF file
— Mutates the file
— Renders the PDF in the viewer
— Check if it crashes

NC STATE UNIVERSITY

Mutation Based Fuzzing

« East to setup and automate
 Little to no protocol knowledge required

« Limited to the initial dataset
* May fail on protocols with checksums, or other
challenges

NC STATE UNIVERSITY

Generation-Based Fuzzing

« Generate random inputs with the input specification in
mind (RFC, documentation, etc.)

 Add anomalies to each possible spot

« Knowledge of the protocol prunes inputs that would
have been rejected by the application

NC STATE UNIVERSITY

Word (.doc) Binary File Format

— pr=g
1), OffVis: Hello.doc ' A M
File Edit View Tools Help
Parser: | Cases.dl : WordBinaryFommatDetectionLogic(CVE-2006-4534, CVE-2007-0515,C v| [Pamse |
Raw File Contents Parsing Results
00000940 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «eeeeeeeennnenns - [Name I,__Ioﬁset Size b]
00000950 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +.evuuuuneennnns =
00000960 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ueeevuuuneeennn (& WordDocumentStream:_|.... |0x0000400° | 0x00000080
00000970 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «eevvvuueeeennnn - EleName . 0x00004f00 0x00000040
00000980 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...ececcecccccnn 5: . CbEleName . 0x00004f40 0x00000002
00000990 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «eevuvuuneeennnns
00000920 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «ueevvceeeeennn-. - Type - 0x00004f42 0x00000001
00000980 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wueeevuuuneeeenn-n - ThyFlags . 0x00004f43 0x00000001
DOOOOOQCO 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 ceceeeccccccccscse . sidLeft . 0x00004f44 0x00000004
000009D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ueveuunnneeenn-s =y -
000009E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eeeeevuuuneeeennn -~ sidRight - 0x00004f48 0x00000004
000009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wueeeuuunneeeenn-s . sidChild . 0x00004f4c 000000004
00000200 8 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21 0D 00 00 Hello, world! G- dsidThis T
00000A10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +oevuuunnneeennns
00000A20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eeveeeeeeenennnn - UserFlags . 0x00004f60 0x00000004
00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «eevvvuuneeennnn - CreateTime . 0x00004f64 0x00000008
00000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eueeeunnnneennn-n A
00000A50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +uuvceennneennn- Moyt =] 0RI0004EC._ | OMI0000008
00000A60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .eeeeveneneanann - StartSect . 0x00004f74 0x00000004 | |
00000270 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ueeveuuunneeeenn-s | Sizelow . 0x00004f78 0x00000004
00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «.eoo... —
00000290 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oeveuunnneeenn-s i etih . 0x00004f7c __ 0x00000004
00000RA0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eeeeevuuuneeeennn
00000AB0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...ececeeccccnnn [+} OneTableDocumentStr... ... 0x00004e80 0x00000080
00000ACO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wuveeevunnneeeenn-n T
00000AD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <eeeeeevececnnns G Cix xa0est | xa00001
00000RE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ueeewuuuneeenn-n & =]
00000AF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «eevevuuueeeennn
00000B00O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wueeeeunnnneennn-n Parsing Notes |
(alala¥alal-ENa) nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn J
iOffset: 0x00000A07 Length: 0x00000000 43.0043ms Oms | Detection loaded: CVI .:

TS

https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.14).aspx (576 pages)

T

NC STATE UNIVERSITY

Generation-Based Fuzzing

Completeness
Can deal with complex input, like checksums

Input generator is labor intensive for complex protocols
There has to be a specification

NC STATE UNIVERSITY

Evolutionary Fuzzing

« Attempts to generate inputs based on the response of
the program

 Autodafe

— Fuzzing by weighting attacks with markers
— Open source

« Evolutionary Fuzzing System (EFS)

— Generates test cases based on code coverage metrics

NC STATE UNIVERSITY

Challenges

* Mutation based
— Enormous amount of generated inputs
— Can run forever

« Generation based
— Less inputs (we have more knowledge)
— Is it enough?

NC STATE UNIVERSITY

Code Coverage

A metric of how well your code was tested

Percent of code that was executed during analysis
Profiling tools
— gcov

« Code coverage types:
— Line coverage
« which lines of source code have been executed
— Branch coverage
« which branches have been taken
— Path coverage
* which paths were taken

NC STATE UNIVERSITY

Fuzzing Chrome

« AddressSanitizer
e ClusterFuzz

« SyzyASAN
 ThreadSanitizer
o |libFuzzer

°* more...

NC STATE UNIVERSITY

Chrome’s fuzzing infrastructure

« Automatically grab the most current Chrome LKGR
(Last Known Good Revision)

« Hammer away at it to the tune of multi-million test cases
a day

* Thousands of Chrome instances

* Hundreds of virtual machines

NC STATE UNIVERSITY

AddressSanitizer

« Compiler which performs instrumentation

* Run-time library that replaces malloc(), free(), etc

« custom malloc() allocates more bytes than requested
and “poisons” the redzones around the region returned
to the caller

« Heap buffer overrun/underrun (out-of-bounds access)
« Use after free
« Stack buffer overrun/underrun

« Chromium’s “browser tests” are about 20% slower

NC STATE UNIVERSITY

AddressSanitizer Results

* 10 months of testing the tool with Chromium (May 2011)
« 300 previously unknown bugs in the Chromium code

and in third-party libraries

— 210 bugs were heap-use-after-free
— 73 were heap-buffer-overflow

— 8 global-buffer-overflow

— 7 stack-buffer-overflow

— 1 memcpy parameter overlap

« 1.73x performance penalty

SyzyASAN

« AddressSanitizer works only on Linux and Mac

 Different instrumenter that injects instrumentation into
binaries produced by the Microsoft Visual Studio
toolchain

* Run-time library that replaces malloc, free, et al.

« ~4.7x performance penalty

NC STATE UNIVERSITY

ThreadSanitizer

« Runtime data race detector based on binary translation

« Supports also compile-time instrumentation
— Greater speed and accuracy

 Data races in C++ and Go code

« Synchronization issues
— deadlocks
— unjoined threads
— destroying locked mutexes
— use of async-signal
— unsafe code in signal handlers
— Others...

« ~5x-15x performance penalty

NC STATE UNIVERSITY

libFuzzer

* Engine for in-process, coverage-guided, whitebox
fuzzing

* |In-process
— don’t launch a new process for every test case
— mutate inputs directly in memory
« Coverage-guided
— measure code coverage for every input
— accumulate test cases that increase overall coverage

 Whitebox

— compile-time instrumentation of the source code

e Fuzz individual components of Chrome
— don’t need to generate an HTML page or network payload and
launch the whole browser

NC STATE UNIVERSITY

libFuzzer

==9896==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x62e000022836 at
pCc 0x000000499c51 bp Ox7fffaedcl450 sp Ox7fffaedcoOcoo
WRITE of size 41994 at 0x62e000022836 thread TO
SCARINESS: 45 (multi-byte-write-heap-buffer-overflow)

#0 Ox499c50 in _ asan_memcpy

#1 Ox4e6b50 in Read third party/woff2/src/buffer.h:86:7

#2 Ox4e6b50 in ReconstructGlyf third party/woff2/src/woff2 dec.cc:500

#3 Ox4e6b50 in ReconstructFont third_party/woff2/src/woff2_dec.cc:917

#4 Ox4e6b50 in woff2::ConvertWOFF2ToTTF(unsigned char const*, unsigned long,
woff2::WOFF20ut*) third party/woff2/src/woff2_dec.cc:1282

#5 Ox4dbfd6 in LLVMFuzzerTestOneInput
testing/libfuzzer/fuzzers/convert woff2ttf fuzzer.cc:15:3

NC STATE UNIVERSITY

Cluster Fuzzing

ClusterFuzz uses the following memory debugging tools
with libFuzzer-based fuzzers:

« AddressSanitizer (ASan): 500 GCE VMs
 MemorySanitizer (MSan): 100 GCE VMs
« UndefinedBehaviorSanitizer (UBSan): 100 GCE VMs

NC STATE UNIVERSITY

July 2016 (30 days of fuzzing)

14,366,371,459,772 unique test inputs
112 bugs filed

NC STATE UNIVERSITY

Analysis of the bugs found so far

® Heap-buffer-overflow (ASan)

@ Stack-buffer-overflow (ASan)

) Global-buffer-overflow (ASan)

@ Heap-use-after-free (ASan)

@ Use-of-uninitialized-value (MSan)
@ Direct-leak (LSan)

® Undefined-shift (UBSan)

12.2% 4. @ Integer-overflow (UBSan)

@ Floating-point-exception (UBSan)
@ Other crashes

Source: hitps://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

NC STATE UNIVERSITY

Chrome’s Vulnerability Reward Program

« Submit your fuzzer
« Google will run it with ClusterFuzz

« Automatically nominate bugs they find for reward
payments

