NC STATE UNIVERSITY

CSC 591
Systems Attacks and Defenses

Reverse Engineering

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

Introduction

* Reverse engineering
— process of analyzing a system
— understand its structure and functionality
— used in different domains (e.g., consumer electronics)

« Software reverse engineering
— understand architecture (from source code)
— extract source code (from binary representation)
— change code functionality (of proprietary program)
— understand message exchange (of proprietary protocol)

NC STATE UNIVERSITY

Software Engineering

First generation

Ianguage 0010100011011
01010101111000

Assemble

Second

generation mov eax, ebx

language XOr eax, eax
Compile

Third

generation

int Xx;
language while (x<10){

NC STATE UNIVERSITY

Software Reverse Engineering

First generation
language 00101000110111

01010101111000

Disassemble

Second

generation mov eax, ebx

language XOr eax, eax
De-compile

Third

generation

int x;
language while (x<10){

NC STATE UNIVERSITY

Going Back is Hard!

 Fully-automated disassemble/de-compilation of arbitrary
machine-code is theoretically an undecidable problem

* Disassembling problems
— hard to distinguish code (instructions) from data

» De-compilation problems
— structure is lost
« data types are lost, names and labels are lost
— no one-to-one mapping
» same code can be compiled into different (equivalent) assembler
blocks
» assembler block can be the result of different pieces of code

NC STATE UNIVERSITY

Why Reverse Engineering

« Software interoperability
— Samba (SMB Protocol)
— OpenOffice (MS Office document formats)

« Emulation
— Wine (Windows API)
— React-OS (Windows OS)

« Legacy software
— Onlive

 Malware analysis
* Program cracking
« Compiler validation

Analyzing a Binary - Static Analysis

|dentify the file type and its characteristics
— architecture, OS, executable format...

Extract strings
— commands, password, protocol keywords...

|dentify libraries and imported symbols
— network calls, file system, crypto libraries

Disassemble
— program overview

— finding and understanding important functions
* by locating interesting imports, calls, strings...

NC STATE UNIVERSITY

Analyzing a Binary - Dynamic Analysis
Memory dump

— extract code after decryption, find passwords...

Library/system call/instruction trace
— determine the flow of execution
— interaction with OS

« Debugging running process
— Inspect variables, data received by the network, complex
algorithms..

* Network sniffer
— find network activities
— understand the protocol

NC STATE UNIVERSITY

Static Techniques
« Gathering program information

— get some rough idea about binary (file)

linux util # file sil

sil: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.6.9, dynamically linked (uses s
hared libs), not stripped

— strings that the binary contains (strings)

linux util # strings sil | head -n 5
/1ib/1ld-linux.so0.2

~Jv RegisterClasses

~_gmon_start
libc.so.6
puts

NC STATE UNIVERSITY

« Examining the program (ELF) header (elfsh)

e readelf

[ELF HEADER]

Static Techniques

[Object sil, MAGIC 0x464C457F]

Architecture
Object type
Data encoding
PHT foffset

PHT entries number :
PHT entry size

Entry point

{PAX FLAGS = 0x0}

PAX PAGEEXEC
PAX MPROTECT
PAX RANDEXEC

Intel 80386 ELF Version
Executable object SHT strtab index
Little endian SHT foffset

52 SHT entries number ;

8 SHT entry size
32 ELF header size

Ox8048500 [start]
Disabled PAX EMULTRAMP
Restricted PAX_ RANDMMAP

ot randomized PAX SEGMEXEC

Program entry point

1

25
4061
28
40
52

Not emulated
Randomized
Enabled

NC STATE UNIVERSITY

Static Techniques

e Used libraries Interesting “shared” library

_ easier when program is dynamically fisked (Iddj>" SYstem calls

' .6 (0xb7e99000)
/11b/1d 11nux S0.2 (0xb7fcf000)

— more difficult when program is statically linked

Linux util # gcc -static -o sil-static simple.c

Linux util # 1dd sil-static
not a dynamic executable
Linux util # file sil-static

sil-static: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.6.9, statically linked, not stripped

NC STATE UNIVERSITY

Static Techniques
Looking at linux-gate.so.1

Linux util # cat /proc/self/maps | tail -n 1

ffffe@QO-fFffFffOO0 r-xp 00000000 00:00 O [vdso]

Linux util # dd if=/proc/self/mem of=1linux-gate.dso bs=4096 skip=1048574
count=1 2> /dev/null

Linux util # objdump -d linux-gate.dso | head -n 11

linux-gate.dso: file format elf32-1386
Disassembly of section .text:

ffffed00 < Kkernel vsyscall>:

ffffed00: 51 push %ecx
ffffed0l: 52 push Sedx
ffffed02: 55 push %ebp
ffffed03: 89 e5 mov %esp,%ebp

ffffed05: 0f 34 sysenter

NC STATE UNIVERSITY

Static Techniques
» Used library functions

— again, easier when program is dynamically linked (nm -D)

Linux util # nm -D sil | tail -n8
U fprintf
U fwrite
U getopt
U opendir
08049bb4 B optind
U puts
U readdir
B

08049bboO stderr

— more difficult when program is statically linked

Linux util # nm -D sil-static
nm: sil-static: No symbols
Llinux util # 1s -la sil*

-rwxr-xr-x 1 root chrig 8017 Yan 21 20:37
-rwxr-xr-x 1 root chris 544850 Jan 21 20:58

NC STATE UNIVERSITY

Static Techniques

Recognizing libraries in statically-linked programs

« Basic idea
— create a checksum (hash) for bytes in a library function

* Problems
— many library functions (some of which are very short)
— variable bytes — due to dynamic linking, load-time patching,
linker optimizations

« Solution
— more complex pattern file
— uses checksums that take into account variable parts
— implemented in IDA Pro as:
Fast Library ldentification and Recognition Technology (FLIRT)

NC STATE UNIVERSITY

Static Techniques

* Program symbols
— used for debugging and linking
— function names (with start addresses)
— global variables
— use nm to display symbol information
— most symbols can be removed with strip

 Function call trees

— draw a graph that shows which function calls which others
— get an idea of program structure

NC STATE UNIVERSITY

Static Techniques
Displaying program symbols

linux util # nm sil | grep " T"
080488c7 T 1686.get pc thunk.bx
08048850 T libc csu fini
08048860 T 1libc csu init
08048904 T fini

08048420 T init

08048500 T start

080485cd T display directory
080486bd T main

080485a4 T usage

linux util # strip sil

Linux util # nm sil | grep " T"

nm: sil: no symbols

NC STATE UNIVERSITY

Static Techniques

« Disassembly
— process of translating binary stream into machine instructions

 Different level of difficulty

— depending on ISA (instruction set architecture)

* |nstructions can have

— fixed length
» more efficient to decode for processor
» RISC processors (SPARC, MIPS, ARM)
— variable length
» use less space for common instructions
» CISC processors (Intel x86)

This will backfire
in the future :)

NC STATE UNIVERSITY

Static Techniques

* Fixed length instructions

easy to disassemble

take each address that is multiple of instruction length as
instruction start

even if code contains data (or junk), all program instructions are
found

« Variable length instructions

more difficult to disassemble
start addresses of instructions not known in advance
different strategies

 linear sweep disassembler
* recursive traversal disassembler

disassembler can be desynchronized with respect to actual code

NC STATE UNIVERSITY

Static Techniques

* Linear sweep disassembler
— start at beginning of code (.text) section
— disassemble one instruction after the other
— assume that well-behaved compiler tightly packs instructions
— objdump -d uses this approach

NC STATE UNIVERSITY

Let’s break LSD

#include <stdio.h>

int main() A
printf("Hello, world!\n");

return 0;
}
$ gcc hello.c -o hello
$./hello

Hello, world!

NC STATE UNIVERSITY

Objdump disassembly

0804840b <main>:
804840b:
8048407 :
8048412:
8048415
8048416:
8048418:
8048419:
804841c:
804841
8048424 :
8048429:
804842c:
8048431:
8048434 :
8048435
8048438:

$ objdump -D hello

8d
83
ff
55
89
51
83
83
68
e8
83
b8
8b
c9
8d
c3

4c
e4
71

e5

ec
ec
co
b7
c4
00
4d

61

24
fo
fc

04
0c
84
fe
10
00
fc

fc

04

04 08
£f ff

00 00

lea
and
pushl
push
mov
push
sub
sub
push
call
add
mov
mov
leave
lea
ret

ox4(%esp), %ecx
$oxfffffffo,%esp
-ox4 (%ecx)

%ebp

%esp,%ebp

%ecx

$0x4,%esp

$0xc, %esp
$0x80484c0
80482e0 <puts@plt>
$0x10,%esp

$0x0, %eax
-ox4(%ebp) ,%ecx

-ox4(%ecx) ,%esp

NC STATE UNIVERSITY

radare2 disassembly

[0x08048310]> pdf@main
/ (fcn) sym.main 46

| 0x0804840b 8d4c2404 lea ecx, [esp+0x4]

0x0804840f 83e4f0 and esp, Oxfffffffo
0x08048412 ff71fc push dword [ecx-0x4]
0x08048415 55 push ebp

0x08048416 89e5 mov ebp, esp
0x08048418 51 push ecx

0x08048419 83eco4 sub esp, Ox4
0x0804841c 83ecOc sub esp, Oxc

|

|

|

|

|

|

|

| ; DATA XREF from ©x080484c0 (fcn.080484b8)

| 0x0804841f 68c0840408 push str.Helloworld ; ©x080484c0
| ; CODE (CALL) XREF from 0x080482e6 (fcn.080482e6)

| ; CODE (CALL) XREF from 0x080482f6 (fcn.080482f6)

| ; CODE (CALL) XREF from ©x08048306 (fcn.08048306)

| 0x08048424 e8b7feffff call 0x1080482e0 ; (sym.imp.puts)
| sym.imp.puts(unk, unk, unk, unk)

| 0x08048429 83c410 add esp, 0x10

| 0x0804842c b800000OOO mov eax, Ox0O

| 0x08048431 8b4dfc mov ecx, [ebp-0x4]

| 0x08048434 c9 leave

| 0x08048435 8d61fc lea esp, [ecx-0x4]

\ 0x08048438 c3 ret

NC STATE UNIVERSITY

Let’s patch the program

$ radare2 -Aw hello
[0x08048310]> 0x08048419
[0x08048419]> wx eb@l #(jmp 0x804841c)

We patched a 3-byte instruction with a 2-byte
instruction. What is going to happen now with
disassembly?!

NC STATE UNIVERSITY

Disassembly fails!

[0x08048310]> pdf@main
/ (fcn) sym.main 46

| 0x0804840b 8d4c2404 lea ecx, [esp+0x4]

0x0804840f 83e4f0 and esp, Oxfffffffo
0x08048412 ff71fc push dword [ecx-0x4]
0x08048415 55 push ebp
0x08048416 89e5 mov ebp, esp
0x08048418 51 push ecx

,=< 0x08048419 ebol jmp loc.0804841c

| 0x0804841b 0483 add al, ©x83
0x0804841d ec in al, dx
0x0804841e 0c68 or al, Ox68

0x08048428 f83c410b800 inc dword [ebx+0xb810c4]
0x0804842e 0000 add [eax], al

0x08048430 008b4dfcc9o8d add [ebx-0x723603b3], cl
0x08048436 61 popad

0x08048437 fc cld

|
|
|
|
|
|
|
|
|
| 0x08048420 c0840408e8b. rol byte [esp+eax-0x14817f8], oxff
|
|
|
|
|
\ 0x08048438 c3 ret

NC STATE UNIVERSITY

Static Techniques

* Recursive traversal disassembler
— aware of control flow
— start at program entry point (e.g., determined by ELF header)
— disassemble one instruction after the other, until branch or jump
is found
— recursively follow both (or single) branch (or jump) targets
— not all code regions can be reached
* indirect calls and indirect jumps
« use a register to calculate target during run-time
— for these regions, linear sweep is used
— IDA Pro uses this approach

NC STATE UNIVERSITY

.text:0804840B ; int _ cdecl main(int argc, const char **argv, const char **envp)

.text:0804840B public main
.text:0804840B main proc near ; DATA XREF: _start+170
.text:0804840B var_4 = dword ptr -4

.text:0804840B argc
.text:0804840B argv

dword ptr @Ch
dword ptr 10h

.text:0804840B envp = dword ptr 14h

.text:0804840B lea ecx, [esp+4]

.text:0804840F and esp, OFFFFFFF@h

.text:08048412 push dword ptr [ecx-4]

.text:08048415 push ebp

.text:08048416 mov ebp, esp

.text:08048418 push ecx

.text:08048419 jmp short loc_804841C

.text:08048419 ; ------c-emm e e m e e e emmememe-——e--a-
.text:0804841B db 4

.text:0804841C ; ---------mm e e e e e e mmmememe-m—---a-
.text:0804841C loc_804841C: ; CODE XREF: main+Ej
.text:0804841C sub esp, 0Ch

.text:0804841F push offset s ; "Hello, world!"
.text:08048424 call _puts

.text:08048429 add esp, 10h

.text:0804842C mov eax, ©

.text:08048431 mov ecx, [ebp+var_4]

.text:08048434 leave

.text:08048435 lea esp, [ecx-4]

.text:08048438 retn

.text:08048438 main endp%

NC STATE UNIVERSITY

Dynamic Techniques

* General information about a process

— /proc file system
— /proc/<pid>/ for a process with pid <pid>
— Interesting entries

« cmdline (show command line)

 environ (show environment)

* maps (show memory map)

« fd (file descriptor to program image)

* |nteraction with the environment
— filesystem
— network

NC STATE UNIVERSITY

Dynamic Techniques

* Filesystem interaction
- 1sof
— lists all open files associated with processes

* Windows Registry

— regmon (Sysinternals)

 Network interaction

— check for open ports
» processes that listen for requests or that have active connections
e netstat
 also shows UNIX domain sockets used for IPC
— check for actual network traffic
e tcpdump
» ethereal/wireshark

NC STATE UNIVERSITY

Dynamic Techniques

e System calls
— are at the boundary between user space and kernel
— reveal much about a process’ operation
- strace

— powerful tool that can also
» follow child processes
» decode more complex system call arguments
« show signals

— works via the ptrace interface

 Library functions

— similar to system calls, but dynamically linked libraries
- ltrace

NC STATE UNIVERSITY

Dynamic Techniques

« Execute program in a controlled environment
— sandbox / debugger

« Advantages
— can inspect actual program behavior and data values
— (at least one) target of indirect jumps (or calls) can be observed

« Disadvantages
— may accidentally launch attack/malware
— anti-debugging mechanisms
— not all possible traces can be seen

NC STATE UNIVERSITY

Dynamic Techniques
« Debugger

— breakpoints to pause execution
« when execution reaches a certain point (address)
» when specified memory is access or modified

— examine memory and CPU registers
— modify memory and execution path

 Advanced features
— attach comments to code
— data structure and template naming

— track high level logic
« file descriptor tracking
— function fingerprinting

NC STATE UNIVERSITY

Dynamic Techniques
« Debugger on x86 / Linux

— use the ptrace interface

e ptrace

— allows a process (parent) to monitor another process (child)

— whenever the child process receives a signal, the parent is
notified

— parent can then

» access and modify memory image (peek and poke commands)
» access and modify registers
« deliver signals

— ptrace can also be used for system call monitoring

NC STATE UNIVERSITY

Dynamic Techniques

» Breakpoints
— hardware breakpoints
— software breakpoints

« Hardware breakpoints
— special debug registers (e.g., Intel x86)
— debug registers compared with PC at every instruction

« Software breakpoints
— debugger inserts (overwrites) target address with an int 0x03
instruction
— interrupt causes signal SIGTRAP to be sent to process

— debugger
 gets control and restores original instruction
* single steps to next instruction
* re-inserts breakpoint

NC STATE UNIVERSITY

Anti-Disassembly
« Against static analysis (disassembiler)

« Confusion attack
— targets linear sweep disassembler
— insert data (or junk) between instructions and
let control flow jump over this garbage
— disassembler gets desynchronized with true instructions

NC STATE UNIVERSITY

Anti-Disassembly

« Advanced confusion attack
— targets recursive traversal disassembler
— replace direct jumps (calls) by indirect ones (branch functions)

— force disassembler to revert to linear sweep, then use previous
attack

Anti-Debugging
« Against dynamic analysis (debugger)
— debugger presence detection techniques
* API based

 thread/process information
* registry keys, process names, ...

— exception-based techniques

— breakpoint detection
» software breakpoints
* hardware breakpoints

— timing-based and latency detection

Anti-Debugging

Debugger presence checks

e Linux
— a process can be traced only once
if (ptrace(PTRACE_TRACEME, @, 1, @) < 0)
exit(1);

* Windows
— APl calls
OutputDebugString()
IsDebuggerPresent()
... many more ...

— thread control block
» read debugger present bit directly from process memory

Anti-Debugging

Exception-based techniques

SetUnhandledExceptionFilter()

After calling this function, if an exception occurs in a process
that is not being debugged, and the exception makes it to the
unhandled exception filter, that filter will call the exception filter

function specified by the 1pTopLevelExceptionFilter
parameter. [source: MSDN]

— ldea

set the top-level exception filter, raise an unhandled exception,
continue in the exception filter function

Anti-Debugging

Breakpoint detection

— detect software breakpoints

* look for int 0x03 instructions
if ((*(unsigned *)((unsigned)<addr>+3) & Oxff)==0xcc)

exit(1);

 checksum the code

if (checksum(text_segment) != valid_checksum)
exit(1);

— detect hardware breakpoints
» use the hardware breakpoint registers for computation

NC STATE UNIVERSITY

Reverse Engineering

* Goals
— focused exploration
— deep understanding

« Case study
— copy protection mechanism
— program expects name and serial number
— when serial number is incorrect, program exits
— otherwise, we are fine

« Changes in the binary
— can be done with hexedit or radare2

NC STATE UNIVERSITY

Reverse Engineering

* Focused exploration
— bypass check routines
— locate the point where the failed check is reported
— find the routine that checks the serial number
— find the location where the results of this routine are used
— slightly modify the jump instruction

« Deep understanding
— Kkey generation
— locate the checking routine
— analyze the disassembly
— run through a few different cases with the debugger

— understand what check code does and develop code that
creates appropriate keys

NC STATE UNIVERSITY

Malicious Code Analysis

Static analysis vs. dynamic analysis

« Static analysis
— code is not executed
— all possible branches can be examined (in theory)
— quite fast

* Problems of static analysis
— undecidable in general case, approximations necessary

— binary code typically contains very little information
+ functions, variables, type information, ...

— disassembly difficult (particularly for Intel x86 architecture)
— obfuscated code, packed code
— self-modifying code

NC STATE UNIVERSITY

Malicious Code Analysis

* Dynamic analysis
— code is executed
— sees instructions that are actually executed

* Problems of dynamic analysis
— single path (execution trace) is examined
— analysis environment possibly not invisible
— analysis environment possibly not comprehensive

« Possible analysis environments
— instrument program
— instrument operating system
— instrument hardware

NC STATE UNIVERSITY

Malicious Code Analysis

e Instrument program
— analysis operates in same address space as sample
— manual analysis with debugger
— Detours (Windows API hooking mechanism)

— binary under analysis is modified
* breakpoints are inserted
« functions are rewritten
» debug registers are used
— not invisible, malware can detect analysis

— can cause significant manual effort

NC STATE UNIVERSITY

Malicious Code Analysis

* Instrument operating system

— analysis operates in OS where sample is run
— Windows system call hooks

— invisible to (user-mode) malware
— can cause problems when malware runs in OS kernel
— limited visibility of activity inside program

» cannot set function breakpoints

* Virtual machines

— allow to quickly restore analysis environment
— might be detectable (x86 virtualization problems)

NC STATE UNIVERSITY

Malicious Code Analysis

e Instrument hardware

provide virtual hardware (processor) where sample
can execute (sometimes including OS)

software emulation of executed instructions

analysis observes activity “from the outside”

completely transparent to sample (and guest OS)
operating system environment needs to be provided
limited environment could be detected

complete environment is comprehensive, but slower

Anubis uses this approach

NC STATE UNIVERSITY

Stealthiness

 One obvious difference between machine and emulator
— time of execution

* Time could be used to detect such system
— emulation allows to address these issues
— certain instructions can be dynamically modified to return
iInnocently looking results
— for example, RTC (real-time clock) - RDTSC instruction

NC STATE UNIVERSITY

Challenges

» Reverse engineering is difficult by itself
— a lot of data to handle
— low level information
— creative process, experience very valuable
— tools can only help so much

« Additional challenges
— compiler code optimization
— code obfuscation
— anti-disassembly techniques
— anti-debugging techniques

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Ghidra

« Released in March 2019
« NSA

* Open source
— https://github.com/NationalSecurityAgency/ghidra

* In development for ~20 years

» Scripting in Java and Python

 Headless Analyzer

 https://qgithub.com/NationalSecurityAgency/ghidra/wiki/fil
es/recon2019.pdf

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra/wiki/files/recon2019.pdf
https://github.com/NationalSecurityAgency/ghidra/wiki/files/recon2019.pdf

NC STATE UNIVERSITY

Your Security Zen

Jeff Bezos hack:
How Jeff Bezos’ iPhone X Was Hacked

{ MBS

May 1, 2018

Apr 4, 2018
& Messages to this chat and calls are now

secured with end-to-end encryption. Tap for
more info

Hello MBS

Apr 5, 2018

Hello, i saved the number
Mohammad bin Salman

source: https://www.nytimes.com/2020/01/22/technoloqy/jeff-bezos-hack-iphone.html

https://www.nytimes.com/2020/01/22/technology/jeff-bezos-hack-iphone.html

NC STATE UNIVERSITY

Your Security Zen

Google, Mozilla Ban Hundreds of Browser Extensions
in Chrome, Firefox

source: https://threatpost.com/google-mozilla-ban-browser-extensions-chrome-firefox/152257/

https://threatpost.com/google-mozilla-ban-browser-extensions-chrome-firefox/152257/

NC STATE UNIVERSITY

Your Security Zen

After a decade of drama, Apple is ready to kill Flash in
Safari once and for all

R e~ - e N e e
e e S T T g i 5\&.&:&...'*";’.,-3-‘1.—--.“." —

S
(

~ " WANTED

e i
— — 4 h
- '.‘
:
= |
- <

source: https://arstechnica.com/gadgets/2020/01/apple-seems-poised-to-end-adobe-flash-support-in-the-next-safari-release/

https://arstechnica.com/gadgets/2020/01/apple-seems-poised-to-end-adobe-flash-support-in-the-next-safari-release/

NC STATE UNIVERSITY

hackpack summer internships

* Bonus levels in assignments
« Good grade in this class
« Participate in hackpack meetings weekly and play CTFs

research during the summer
publish a research paper

WSPR lab
opportunity to see what a PhD looks like!

