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Abstract

Malware authors have recently begun using emulation
technology to obfuscate their code. They convert native
malware binaries into bytecode programs written in a ran-
domly generated instruction set and paired with a native
binary emulator that interprets the bytecode. No existing
malware analysis can reliably reverse this obfuscation tech-
nique. In this paper, we present the first work in automatic
reverse engineering of malware emulators. Our algorithms
are based on dynamic analysis. We execute the emulated
malware in a protected environment and record the entire
x86 instruction trace generated by the emulator. We then
use dynamic data-flow and taint analysis over the trace to
identify data buffers containing the bytecode program and
extract the syntactic and semantic information about the
bytecode instruction set. With these analysis outputs, we
are able to generate data structures, such as control-flow
graphs, that provide the foundation for subsequent malware
analysis. We implemented a proof-of-concept system called
Rotalumé and evaluated it using both legitimate programs
and malware emulated by VMProtect and Code Virtualizer.
The results show that Rotalumé accurately reveals the syntax
and semantics of emulated instruction sets and reconstructs
execution paths of original programs from their bytecode
representations.

1. Introduction

Malware authors often attempt to defeat state-of-the-art
malware analysis with obfuscation techniques that are be-
coming increasingly sophisticated. Anti-analysis techniques
have moved from simple code encryption, polymorphism,
and metamorphism to multilayered encryption and page-by-
page unpacking. One new alarming trend is the incorporation
of emulation technology as a means to obfuscate malware
[23], [35]. With emulation techniques maturing, we believe
that the widespread use of emulation for malware obfusca-
tion is imminent.

Emulation is the general approach of running a program
written for one underlying hardware interface on another.
An obfuscator that utilizes emulation would convert a binary
program for a real instruction set architecture (ISA), such as
x86, to a bytecode program written for a randomly generated
virtual ISA and paired with an emulator that emulates this

ISA on the real machine. Figure 1 shows an example of this
obfuscation process. The obfuscator has complete freedom
to choose the semantics of the bytecode instructions, and
entities such as virtual registers and memory addresses
can be independent from the underlying real machine. For
example, the Java virtual machine executes on commodity
register machines but emulates a stack machine ISA. The
obfuscated program is the generated emulator together with
a data block containing bytecode. Code protection tools such
as Code Virtualizer [23] and VMProtect [35] are real-world
examples of this class of obfuscators.

Without knowledge of the source bytecode language,
many existing malware analysis schemes are crippled in the
face of malware obfuscated with emulation. At one end of
the spectrum, emulators completely defeat any pure static
analysis, including symbolic execution. The code analyzed
by static analyzers is that of the emulator; the true malware
logic is encoded as bytecode contained in some memory
buffer that is treated as data by the analysis. At the other
extreme, pure dynamic analysis based approaches that treat
the emulated malware as a black box and simply observe
external events are not affected. However, pure dynamic
analysis schemes cannot perform fine-grained instruction
level analysis and can discover only a single execution path
of the malware. More advanced analysis techniques employ-
ing dynamic tainting, information flow analysis, or other
instruction level analysis fall in the middle of the spectrum.
In the context of malware emulators, these techniques ana-
lyze the instructions and behaviors of the generic emulator
and not of the target malware. As an example, multi-path
exploration [21] may explore all possible execution paths of
the emulator. Unfortunately, these paths include all possible
bytecode instruction semantics and all possible bytecode
programs, rather than the paths encoded in the specific
bytecode program of the malware instance. In short, we need
new techniques to analyze emulated malware.

The key challenges in analyzing a malware emulator
are the syntactic and semantic gaps between the observ-
able (x86) instruction trace of the emulator and the non-
observable (interpreted) bytecode trace. Theoretically, pre-
cisely and completely identifying an emulator’s bytecode
language is undecidable. Practically, the manner in which
an emulator fetches, decodes, and executes a bytecode in-
struction may enable us to extract useful information about a
bytecode program. By analyzing a malware emulator’s (x86)



Figure 1. Using emulation for obfuscation

trace, we can identify portions of the malware’s bytecode
program along with syntactic and semantic information of
the bytecode language.

In this paper, we take the first leap toward automatic
reverse engineering of unknown malware emulators. Our
goal is to extract the bytecode malware trace (program)
and the syntax and semantics of the bytecode instructions
to enable further malware analysis, such as multi-path ex-
ploration, across the bytecode program. We have developed
an approach based on dynamic analysis. We execute the
malware emulator and record the entire x86 instruction
trace generated by the malware. Applying dynamic data-
flow and taint analysis techniques to these traces, we identify
data regions containing the bytecode program and extract
information about the bytecode instruction set. Our approach
identifies the fundamental characteristic of decode-dispatch
emulation: an iterative main loop that fetches bytecode
based upon the current value of a virtual program counter,
decodes opcodes from within the bytecode, and dispatches to
bytecode handlers based upon opcodes. This analysis yields
the data region containing the bytecode, syntactic informa-
tion showing how bytecodes are parsed into opcodes and
operands, and semantic information about control transfer
instructions.

We have implemented a prototype called Rotalumé that
uses a QEMU [6] based component to perform dynamic
analysis. The analysis generates both an instruction trace in
an intermediate representation (IR) and a dynamic control-
flow graph (CFG) for offline analysis. Rotalumé reverse
engineers the emulator using a collection of techniques:
abstract variable binding analyzes memory access patterns;
clustering finds associated memory reads, such as those
fetching bytecode during the emulator’s main loop; and
dynamic tainting identifies the primary decode, dispatch, and
execute operations of the emulator. The output of our system
is the extracted syntax and semantics of the source bytecode
language suitable for subsequent analysis using traditional
malware analyses. We have evaluated Rotalumé on legiti-
mate programs and on malware emulated by VMProtect and
Code Virtualizer. Our results show that Rotalumé accurately
identified the bytecode buffers in the emulated malware and
reconstructed syntactic and semantic information for the
bytecode instructions.

The main contributions of our paper are:
• We formulate the research problem of automatic reverse

engineering of malware emulators. To the best of our
knowledge, this is the first work in this area. Although
our current work assumes a decode-dispatch emulation
model, we believe that our ideas and techniques are
applicable to other emulation models: by analyzing
an emulator’s execution trace using a given emulation
model on how a bytecode instruction is fetched and
executed, we can identify the bytecode region and
discover the syntax and semantics of the bytecode
instructions.

• We develop a framework and working prototype system
that includes: a novel method to identify candidate
memory regions containing bytecode, a method for
identifying dispatch and instruction execution blocks,
and a method for discovering bytecode instruction
syntax and semantics. The output of our system can be
used by existing analysis tools to analyze and extract
malware behavior; for example, the identified bytecode
can be converted to x86 instructions for static and/or
dynamic analysis.

• Although our work is in the context of malware, we
believe that this line of research will help spawn work
in several other areas. For example, similar techniques
may help reverse engineer script interpreters, providing
novel ways to analyze scripting languages with binary
analysis.

Section 2 provides a background of program emulation
techniques. Section 3 provides the details of our algorithms
that identify bytecode regions as well as bytecode syntax
and semantics. Section 4 describes our prototype system,
Rotalumé. Section 5 reports results on evaluating Rotalumé
on VMProtect and Code Virtualizer using both real-world
and synthetic malware programs. Section 6 discusses open
problems of reverse engineering malware emulators. Section
7 compares our work with other relevant research. Section
8 discusses future directions and concludes the paper.

2. Background

The term emulation generally expresses the support of
a binary instruction set architecture (ISA) that is different
from that provided by the computer system’s hardware.
This section describes the use of emulation in program
obfuscation and the various possible emulation techniques.

2.1. Using Emulation for Obfuscation

Code authors, including malware authors, are now using
emulation to obfuscate programs. In Figure 1, malicious
software M consists of a program Px86 written in native
x86 code and directly executable on x86 processors. Ana-
lyzers with knowledge of x86 can therefore perform various



analyses on the malware. In order to impede analysis, an
adversary can choose a new ISA L and translate Px86 to PL

that uses only instructions of L. In order to execute PL on
the real x86 machine, the adversary introduces an emulator
EML

x86 that emulates the ISA L on x86. The adversary can
now spread a new malware instance M ′ that is a combination
of PL and EML

x86.
To further impede possible analysis, a malware author can

choose a new, randomly-generated bytecode language for
every instance of the malware and make tools to automati-
cally generate a corresponding emulator. Therefore, results
found about the bytecode language after reverse engineering
one instance of the emulator will not be useful for another
instance. Thus, automated reverse engineering of EML

x86

is essential to malware analysis given that each malware
instance has a completely unknown bytecode instruction set
L and a previously unseen emulator instance.

2.2. Emulation Techniques

Various emulation techniques are widely used in software-
based virtual machines, script interpretation, run-time ab-
stract interfaces for high-level languages (e.g. Java vir-
tual machine (JVM)), and other environments. Although
these are very complex systems, they are all variations of
the simple-interpreter method, also known as the decode-
dispatch approach [31]. Decode-dispatch is used in envi-
ronments where performance overhead is not an issue. The
simple interpreter utilizes a main loop that iterates through
three phases for every bytecode instruction: opcode decode,
dispatch, and execute. The decode phase fetches the part
of an instruction (opcode) that represents the instruction
type. The dispatch phase uses this information to invoke
appropriate handling routines. The execute phase, which
is performed by the dispatched handling routine, performs
additional fetches of operands and executes the semantics
of the instruction. We first provide an illustration of how a
decode-dispatch emulator works and then discuss the other
broad variations in emulation methods.

We show the design of the simple interpreter based
emulators using an illustrative running example. Figure 2
shows a fraction of a simple decode-dispatch based emu-
lator [11] written in a pseudo-C like language; it executes
programs written in a bytecode language for a hypothetical
machine. For conciseness, we describe only the aspects of
this machine relevant to the example. This machine supports
variable length instructions similar to x86. There are general
purpose registers named R1 to R24. A special register called
RF maintains a flag that can be either 0 or 1 based on
some previously executed instruction, and it is used for
performing conditional jumps. We show three instructions
supported by the machine: ADD, JUMP and CJMP. While the
ADD instruction takes three operands, both jump instructions
take an immediate target address. The conditional jump

instruction CJMP jumps to the target if RF is 1, otherwise
control flows to the next instruction.

In this example, the emulator fetches instructions from
the emulated program stored in the buffer P. An emulator
maintains a run-time context of the emulated program,
which includes the necessary storage for virtual registers
and scratch space. The emulator maintains execution context
via a pointer to the next bytecode instruction to be executed,
which we denote throughout the paper as the virtual program
counter or VPC. For the example emulator, the VPC is an
index into the buffer P. Here, decoding is performed by
fetching the opcode from P[VPC], i.e. the first byte of
the instruction. Dispatch uses a jump table resulting from
switch-case constructs in C. Three execution routines
for the three instructions are shown in the example. The
execADD routine updates the register store by adding
relevant virtual register values. The execJUMP routine
updates the VPC with an immediate address contained in the
instruction. Finally, execCJMP shows how the conditional
branch updates the VPC depending on the flag RF. It is
interesting to note that the branch is emulated without
using any conditional jump, but rather with a direct address
computation. This shows how an emulator provides a way to
remove identifiable conditional branches, making it hard for
analysis approaches such as multi-path exploration to even
explore any branch related to the emulated program.

More sophisticated emulation approaches often improve
efficiency. The threaded approach [16] improves perfor-
mance by removing the central decode-dispatch loop. The
decoding and dispatching logic is appended to the execution
semantics by adding a copy of that code to the end of
each execution routine. This removes several branches and
improves execution performance on processors that have
branch prediction. By using pre-decoding [19], the logic
of decoding instructions to their opcodes and operands
executes only once per unique instruction, and the pro-
gram subsequently reuses the decoded results. Hence, the
opcode decoding phase is not executed for each executed
bytecode instruction. The direct threading approach [5]
removes jump table lookups by storing the function address
that executes the instruction semantics together with the
predecoded results. Therefore, the dispatch of the next
instruction’s execution routine is an indirect control transfer
at the end of the previous bytecode instruction’s routine.
Finally, dynamic translation [30], one of the most efficient
methods of emulation, converts blocks of the emulated
program into executable instructions for the target machine
and caches them for subsequent execution. These categories
of emulators maintain a VPC that is updated after blocks of
the translated native instructions are executed.

Dynamic translation based emulators have very complex
behavioral phases. They may seem attractive to malware
authors because of their analysis and reverse engineering
difficulty. However, like page-level unpacking used in some



Figure 2. An example of a simple-interpreter (decode-dispatch) based emulator

packers [29], dynamic translation reveals large blocks of
translated code as a program’s execution proceeds. This
approach reduces the advantage of using emulation as an
obfuscation because the heuristics used by automated un-
packers can capture the fact that new code was generated
and executed. In this paper, we focus our methods on
automatically reverse engineering the decode-dispatch class
of emulators.

Several challenges complicate automatic reverse engi-
neering of interpreter-based emulators. First, no informa-
tion of the bytecode program, such as its location, are
known beforehand. Second, no information regarding the
emulator’s code corresponding to the decode, dispatch, and
execution routines is known. Finally, we anticipate that
emulator code varies in terms of how it fetches opcodes
and operands, maintains context related to the emulated
program, dispatches code, executes semantics, and so on. An
adversary may even intentionally attempt to complicate the
identification of bytecode by storing the bytecode program in
non-contiguous memory or use multiple correlated variables
to maintain the VPC.

Our current work, as a first step, advances the state-of-
the-art and significantly challenges attackers. It also lays
the foundation for reverse engineering of emulators that are
based on other (more advanced and efficient) approaches.

3. Reverse Engineering of Emulation

In order to enable malware analysis of an emulated
malware instance, it is necessary to understand the unknown
bytecode language used by the instance. We have developed
algorithms to systematically and automatically extract the
syntax and semantics of unknown bytecode based upon
the execution behavior of the decode-dispatch based em-
ulator within a malware instance. Our approach identifies
fundamental characteristics of decode-dispatch emulation:
an iterative main loop, bytecode fetches based upon the
current value of a virtual program counter, and dispatch to
bytecode handlers based upon opcodes within the bytecode.
This analysis yields the data region within the malware

containing the bytecode, syntactic information showing how
bytecode instructions are parsed into opcodes and operands,
and semantic information consisting of native instructions
that carry out the actions of the bytecode instructions. We
identify the control-flow semantics from which structures
such as a control-flow graph (CFG) can be generated. To-
gether, these techniques provide the foundation for overcom-
ing the emulation layer and performing subsequent malware
analysis.

Our algorithms are based on dynamic analysis. We exe-
cute the emulated malware once in a protected environment
and record the entire x86 instruction trace generated by the
malware. From this trace, we extract syntactic and semantic
information about the bytecode that the malware’s emulator
was interpreting during execution. The contributions made
by our approach offer the opportunities to reconstruct be-
havioral information about unknown bytecode interpreted by
an unknown decode-dispatch emulator and to subsequently
apply traditional malware analysis to the sample.

The algorithms operate as follows:
1) Identify variables within the raw memory of the emu-

lator based upon the access patterns of reads and writes
in an execution trace. We developed abstract variable
binding, a forward and backward dynamic data-flow
analysis, for this identification.

2) Identify the subset of those variables that are can-
didates for the emulator’s virtual program counter
(VPC). We find possibilities by clustering the emu-
lator’s memory reads, some of which are bytecode
fetches, based upon the abstract variable used to
specify the accessed memory location.

3) Identify the boundaries of the bytecode data within
the x86 application, the decode-dispatch loop, and the
emulator phases. For each cluster of reads through
the same abstract variable, we determine whether the
reads occurred during execution of loop iteration with
emulator-like operations.

4) Identify the syntax and the semantics of bytecode op-
erations. We examine how bytecode is accessed by the
emulation phases to identify its syntax. We discover



bytecode handler, forming the semantics of the byte-
code instructions. Handlers that cause non-sequential
updates to the VPC indicate that the bytecode opcode
corresponds to a control transfer operation, allowing
our system to construct a CFG for the bytecode.

The following sections describe these steps in detail.

3.1. Abstract Variable Binding

A decode-dispatch emulator fetches bytecode instructions
from addresses specified by a virtual program counter
(VPC). Like a program counter or instruction pointer register
in hardware, a VPC acts as a pointer to the currently execut-
ing bytecode instruction. Knowing the memory location of
the VPC allows an analyzer to observe how the emulator
accesses bytecode instructions and executes them, which
reveals information about the bytecode instruction syntax
and semantics. We locate an emulator’s VPC through a series
of analyses, beginning with abstract variable binding.

Abstract variable binding identifies, for each memory read
instruction of an execution trace, the program variable con-
taining the address specifying the location from which the
data should be read. Consider pseudo-code of an emulator
that regularly fetches instructions pointed to by the VPC:

instruction = bytecode[VPC]

or
instruction = ∗VPC (1)

In these examples, the VPC is an index into an array of
bytecode or a direct pointer into a buffer of bytecode. During
its execution, the emulator will execute these bytecode
fetches many times. Although each fetch may access a
different memory location within the bytecode buffer, all
fetches used the same VPC variable as the specifier of the
location. Abstract variable binding will attach a program
variable, such as VPC, to every memory read instruction
in the execution trace that uses that variable to specify its
access location.

Successful abstract variable binding will help our analyzer
identify the VPC and the bytecode buffer used by the
unknown emulator in a malware instance. Each bytecode
fetch will appear in the execution trace as a memory read
instruction whose accessed location is bound to the VPC
variable. The emulator likely executes many other memory
reads unrelated to bytecode fetch, and these may have their
own bindings to other variables in the program. Steps 2 and 3
of our algorithms, presented in Sections 3.2 and 3.3, whittle
down the bindings to only those of the VPC.

Our analysis of x86 instruction traces rather than source
code complicates abstract variable binding in fundamental
ways. First, a binary program has no notion of high-level lan-
guage variables. A compiler translating an emulator’s high-
level code into low-level x86 instructions will assign each

variable to a memory location or register in a way unknown
to our analysis. Second, the x86 architecture requires all
memory read and write operations accessing dynamically
computed addresses to use register indirect addressing. In
case of performing a memory read using an address stored
in a variable, if the variable is assigned a memory location,
then that value will be transferred into the register rather
than being accessed directly. For example, the pseudo-x86
translation of (1) may be the two-instruction sequence:

eax← [VPC] (2)
instruction← [eax] (3)

where VPC represents a pointer variable (assigned a particu-
lar memory address), eax is a register, and instruction
is a register or memory location. The first instruction loads
the value of the variable VPC to eax. This value is the
address used in the second instruction where the register
eax can be considered temporary storage for the VPC. In
other words, (2) binds eax to VPC, and this binding is
propagated to the read operation in (3).

With a limited number of registers, the same register
can be bound to different variables at different points of
execution. When updating a variable with a non-immediate
value, the new value must be loaded into a register using
an instruction similar to (2) before transferring the value
to the variable’s assigned memory location. In this case,
the register is already bound to a variable and the binding
is not changed when loading the value into the register.
Without knowledge of how variables in the program are
assigned to memory or registers, it is hard to determine
whether a register load operation such as (2) is a new
variable binding to the register or a new value assigned to
an already bound variable. We draw three conclusions that
impact the design of our abstract variable binding algorithm.
First, we use absolute memory addresses as our description
of a high-level language variable. Second, we must analyze
data flows along an entire trace to determine variable binding
information appropriately. Third, to be able to identify all
abstract variables, we must conservatively consider both
scenarios described above for each instruction similar to (2).

Abstract variable binding propagates binding informa-
tion using dynamic data-flow analysis across an execution
trace of the emulated malware. We use both a forward
and a backward propagation steps, corresponding to the
two different ways in which a variable’s value may be
set. A variable’s value may be an incremental update to
its previous value; forward binding identifies the abstract
variables (memory locations) from which a read operation’s
address is derived in this case. A variable’s value may
also be directly overwritten with a new value unrelated
to its previous contents. Backward binding determines the
appropriate bindings in this case based on the variable’s
future use. Our backward binding algorithm is conservative
and introduces imprecision.



Algorithm 1 Forward Binding
Initialize: ∀r ∈ R : B0(r) = {} and V0(r) = NONE
for i = 1 to l do
∀r ∈ R : Bi(r) = Bi−1(r) and Vi(r) = Vi−1(r)
Update Bi and Vi using rules F1 to F6
if i ∈ ρ and instruction is r1 ←v [r2] or r1 �v [r2]
then
FB(i) = Bi(r2)

end if
end for

A malicious emulator may also attempt to complicate
analysis by obfuscating its use of a VPC. For example, it
may replace a single VPC with a collection of variables and
switch among the collection during execution. However, the
collection must together still follow an orderly progression
and update sequence to ensure that the emulator correctly
executes the bytecode. This fundamental need to maintain
consistency will produce data flows between two elements
of the VPC collection whenever the emulator switches from
one element to another. Our data-flow analysis will track
these flows and remains robust to this type of emulator
obfuscation.

We use the following notations for the presentation of
our algorithms. Let M denote the memory address space
of the emulator and R the set of registers available on the
target hardware. We uniquely identify abstract variables by
memory addresses using the set α ⊆ M . We represent
instructions in an intermediate representation that expresses
only simple move and compute operations on registers and
memory and has one source and one destination. Let the
loading of constant c into register r be denoted as r ← c.
A memory read operation is r ←v [m], which indicates that
the value v is read from memory address m and loaded
into register r. Here m can be a constant or register holding
an address. Memory writes are denoted by [m] ←v r. A
register-to-register move operation is r1 ← r2. If the right-
hand side of any of these operations involves computation
using the specified variable or address, then we denote the
assignment as � rather than←. We identify each instruction
in an execution trace with a sequence number i ∈ N. Let
the set ρ ⊆ N consist of all read operations of the form
r ← [m] or r � [m]. Lastly, let the function Addr : ρ→M
be defined as: Addr(i) represents the address of a read
operation i ∈ ρ.

3.1.1. Forward Binding. Forward binding identifies those
variables supplying the address used by a read operation.
The algorithm works on the execution trace and propagates
information forward along the instructions in the trace. For
each register, we track both the set of abstract variables
bound to the register and the value stored in the register.
A memory read instruction is bound to the same variable

Algorithm 2 Backward Binding
Input: ∀r ∈ R and 1 ≤ i ≤ l : Vi(r) from Alg. 1
Initialize: ∀r ∈ R : B′l+1(r) = {σr} for 1 ≤ j ≤ k
for i = l to 1 do
∀r ∈ R : B′i(r) = B′i+1(r)
Update B′i using rules B1 to B3
if i ∈ ρ and instruction is r1 ←v [r2] or r1 �v [r2]
then
BB(i) = B′i(r2)

end if
end for

as that bound to the register specifying the address of the
read. The set Bi(r) denotes the abstract variables bound to
register r ∈ R at instruction i. Vi(r) represents the value
in register r at i. Forward propagation updates bindings and
values according to the following six rules based upon the
instruction type. For convenience, we use the function fi to
indicate the computation of instruction i.

F1 r ← c: Bi(r) = {} and Vi(r) = c
F2 r ←v [c]: Bi(r) = {c} and Vi(r) = v
F3 r1 ←v [r2]: Bi(r1) = {Vi−1(r2)} and Vi(r1) = v
F4 r � c: Bi(r) = Bi−1(r) and Vi(r) = fi(Vi(r), c)
F5 r �v [c]: Bi(r) = Bi−1(r) ∪ {c} and Vi(r) =

fi(Vi−1(r), v)
F6 r1 �v [r2]: Bi(r1) = Bi−1(r1) ∪ {Vi−1(r2)} and

Vi(r1) = fi(Vi−1(r1), v)
Rules F1–F3 apply new register value assignments where
values are taken directly from a constant, register, or memory
location. Bindings reset to those of the data source. Rules
F4–F6 compute assigned values from the previous register
value and other data; these correspond to incremental up-
dates to a value and do not cause bindings to reset. Rules
F3 and F6 correspond to reads using indirect addressing and
are points where instruction bindings indicate possible VPC
use.

All rules update B and V based on the current and
immediate predecessor instructions, so propagation operates
from the first instruction to the last. The algorithm outputs
the mapping FB : N → α∗ describing bindings from
memory read operations to abstract variables. Algorithm 1
presents the pseudo-code for forward binding; l is the trace
length.

3.1.2. Backward Binding. We expect realistic bytecode
languages to provide one or more types of control transfer
operations such as jumps and branches. Forward binding
propagates abstract variable bindings when operations com-
pute an incremental update to an already-bound variable,
which does not reflect the semantics of a control transfer.
Control transfers will instead cause the emulator to directly
overwrite the VPC with the target address. The emulator will
execute instructions matching rule F1 or F2, which reset the



binding information. Backward binding, a second variable
binding step that follows the forward algorithm, computes
bindings in such cases by identifying bound variables when
a value is written out to memory and then propagating the
binding backward to all previous uses. This algorithm is
conservative and may over-approximate the actual variable
bindings.

Backward binding operates in the reverse order of forward
binding. It first binds a variable to a register when that
register’s value is stored to memory, and then propagates
the binding backwards to other registers using the following
rules:

B1 [r1]← r2 : B′i(r2) = {Vi(r1)}
B2 [c]← r : B′i(r) = {c}
B3 r1 ← r2 : B′i(r2) = B′i+1(r1)

The algorithm outputs the mapping for backward binding
BB : N → α∗. Algorithm 2 presents pseudo-code for
backward binding.

3.1.3. Identifying Dependent Abstract Variables. Vari-
ables used to contain memory read addresses may them-
selves be interdependent. For example, if the obfuscation
technique of utilizing a collection of VPCs is used, the
VPC related variables have a relationship with each other.
Likewise memory reads that access operands may occur
at short, fixed offsets from the VPC value. We identify
dependencies among abstract variables by tracking the flow
of data values from one abstract variable to another. As
this is forward data-flow, we incorporate dependent variable
identification as part of our forward binding algorithm.

Let the mapping DV : α → α∗ denote abstract variable
dependencies, where Y ∈ α is a dependent variable of X
if Y ∈ DV (X). To populate this mapping, we add the
following rule to Algorithm 1:

D1 [r1]← r2 : DV (r1) = DV (r1) ∪ {Bi(r2)}
Dependencies are commutative. After the completion of
Algorithm 1, we add the converse of each dependency
identified by the algorithm: ∀X,Y ∈ M : if X ∈ DV (Y )
then add Y ∈ DV (X). Identifying these abstract variable
dependencies thwart attacks that introduce extraneous store
operations or copy operations from one variable to another
before use.

3.1.4. Lifetime of Variables. Our x86 execution trace
analysis introduces one final challenge that is often not
present when using high-level language variables. We use
absolute memory locations as our abstract variables, but the
same memory location may be used for different variables
at different points of execution. Although variables in the
static data region have the lifetime of the entire execution,
variables on the stack and heap have shorter lifetimes. The
same address can be shared among multiple variables in
different execution contexts depending on the allocation and
deallocation operations performed during execution.

We address the limited lifetime of stack variables by
including stack semantics and analysis of the stack pointer
register esp as part of our algorithms. Our set of abstract
variables α is made of tuples α ⊆ M × N × N that use
integers to denote the start and end of the variable’s live
range within the execution trace. At the first access to a
memory address m ∈M at instruction s, we add (m, s,∞)
to α. If the tth instruction modifies the esp register such that
an abstract variable’s memory address has been deallocated
from the stack, then the end of its lifetime is set to t.
Any access to the same memory address after its lifetime
expired creates a new abstract variable. For pedagogy, we
presented Algorithms 1 and 2 without live ranges; updates
to the algorithms to include lifetimes are straightforward.

In this work, we do not address lifetimes for variables
allocated on the heap. Prior heap analysis research [3] often
assumed that the analyzer understood the heap allocation
and deallocation routines. We cannot make this assumption
for malware binaries, which may be stripped of debugging
information and deliberately obfuscate the heap routines.
Further research is needed to address this open problem.

3.2. Identifying Candidate VPCs

We use the computed variable bindings to identify can-
didate variables that may be the malware emulator’s virtual
program counter. We first combine the bindings identified
by the forward and backward algorithms to compute the
complete abstract variable bindings for each memory read.
Let the function Vars : N → α∗ be computed as the
transitive application of the dependence function DV to
FB(i)∪BB(i) for a read operation i ∈ ρ. We then cluster all
read operations within the execution trace and group together
those reads that are bound to common abstract variables.
Our clustering uses a simple similarity metric that treats two
reads i1, i2 ∈ ρ as similar if Vars(i1) ∩ Vars(i2) 6= ∅, and
dissimilar otherwise. The clustering algorithm will output n
clusters C1, . . . , Cn where each cluster Ci is a set of read
operations.

The malware bytecode should be fetched for execution
exclusively by memory read operations contained within
one of the n clusters. Abstract variable binding over-
approximates actual bindings due to the backward algorithm,
which results in two reads clustered together if they may use
the same abstract variable to specify the accessed address.
The transitive closure of the dependencies among abstract
variables ensures two reads will be similar even if the reads
use two distinct abstract variables. Therefore, the bytecode
program will be completely contained within a cluster. Each
cluster is then a candidate collection of instruction fetches
into bytecode, and the common abstract variables at each
cluster are candidate VPCs.



3.3. Identifying Emulation Behavior

We analyze each candidate cluster and VPC to find a
cluster containing memory reads characteristic of emula-
tion. Decode-dispatch emulators have fundamental execution
properties: a main loop with a bytecode fetch through the
VPC, decoding of the opcode within the bytecode, dispatch
to an opcode handler, and a change to the VPC value. For
each candidate cluster, we hypothesize that the memory
region read by the cluster corresponds to bytecode and then
test that hypothesis. We determine whether there exists an
iterative pattern of bytecode fetches through the associated
candidate VPC and updates to that possible VPC. To detect
loops, we first create a partial dynamic control-flow graph
(CFG) of the program in execution. We use the control-flow
semantics of the executed instructions to create new basic
blocks and split already created blocks. We use function call
semantics to create separate CFGs for each function. Then,
we use the standard loop detection methods used for static
intra-procedural CFGs [1].

To find decoding, dispatching, and execution of bytecode
after the memory read fetches it from the bytecode buffer,
we analyze how read values are used by other instructions
within the execution trace. We use multi-level dynamic
tainting [38] to track the propagation of the data read from
instructions in a candidate cluster through the emulator’s
code. In contrast to traditional taint analysis with 0/1 taint
labels, we apply multiple labels to memory contents and reg-
isters at the byte level. Different labels track individual data
read from the cluster and maintain state information related
to which phase—fetch, decode, dispatch, or execute—that
the emulator may be in for a particular read.

We use dynamic taint analysis as follows. For each
candidate cluster, we taint the data bytes in the hypothe-
sized bytecode buffer region of the cluster with the label
〈opcode, id〉 where an id is a unique per-byte identifier.
When a read operation in the execution trace accesses a
tainted byte, we mark the instruction as an opcode fetch
for the particular id in the label. If the instruction sequence
number is i, then we also taint the forward bound variables
FB(i) and the register holding the address accessed by the
read operation with the label 〈vpc, id〉, indicating that it is a
VPC for the emulator. Execution continues until our analyzer
detects opcode dispatch behavior.

We identify dispatch behavior by looking for control-flow
transfer instructions executed by the emulator that are influ-
enced by data read from the cluster’s hypothesized bytecode
buffer: these are transfers into handlers for specific bytecode
opcodes. In the simplest scenario, an x86 instruction like
jmp or call can target an address read from a tainted
register or from a dispatch table accessed through a tainted
register. More complex code patterns may include arbitrary
data and control flows between a control-flow target lookup
and the actual dispatch. Taint propagation ensures that taint

labels transfer from address to values read through that
address, to copies of those values, and to the control-flow
transfer. Once the analyzer detects a dispatch-like behavior,
it marks the dispatch instruction with the id of the taint label
and the analysis now tracks the target of the control-transfer
as a probable execute routine.

Each subsequent read in the candidate cluster may be
accessing a new bytecode, operands for the current bytecode,
or an unrelated memory value included in the cluster due
to the imprecision of backward variable binding. We first
identify new bytecode accesses by analyzing the dynamic
CFG to see if execution looped since the previous bytecode
fetch. If a loop is not detected, we then check to see if the
read is accessing a probable operand in the bytecode buffer.
If the register used to perform the read operation is tainted
as 〈vpc, id〉 with the id of the current iteration, and the
computation of the accessed address added a small constant
to the candidate VPC value, then the memory access is likely
for an operand. We consider all other accesses to be spurious.

We consider every candidate cluster containing iterative
memory reads in a loop that includes dispatch behavior.
There must be at least two loop executions in the dynamic
trace for our analysis to identify the loop.

3.4. Extracting Syntax and Semantics

Once the analyzer identifies the emulation behavior, it
reverse engineers each iteration of the emulator loop to
extract the syntax and semantics of the bytecode instruction
executed on that iteration. The syntax of bytecode details
how to parse the instruction: its length and the placement of
its opcode and operands. Bytecode semantics describe the
bytecode’s effect upon execution of the malware instance.
We are particularly interested in identifying bytecode in-
structions exhibiting control-flow transfer semantics, as these
are the locations where malware analysis techniques such as
multipath exploration [21] should be applied.

We identify the syntax of bytecode instructions by observ-
ing the memory reads made from the data regions containing
bytecode, as determined in Section 3.3. To identify the
opcode part of the instruction, we apply our taint analysis to
determine which portion was used by the emulator’s dispatch
stage for selection of an execution handler. We can identify
opcodes at the granularity of one or more bytes within a
bytecode instruction, as our taint analysis works at byte-
level. An emulator may dispatch several different opcodes
to the same execution routine because their semantics may
be similar. As a result, we count the number of instructions
in the bytecode instruction set as the number of unique
execution routines identified in our analysis.

The execution routine invoked by the emulator for the
bytecode’s opcode encodes the semantics of the opcode. We
find control flow transfers by analyzing the changes made
by an execution routine upon the VPC of the emulator.



Figure 3. Analysis process overview

Unconditional transfers, including fall-through instructions,
will always set the VPC to the same value on every execution
of that instruction. Commonly, fall-throughs simply advance
the VPC to the next instruction in sequential order, a
regular update pattern that can be readily identified. Con-
ditional control-flow transfers and transfers to dynamically-
computed targets will update the VPC in different ways upon
repeated execution of the bytecode instruction.

By determining how to parse the bytecode buffer and
by locating control-flow transfer opcodes, we are then able
to construct a control-flow graph (CFG) for the bytecode.
The locations of the control-flow transfers and their target
addresses within the bytecode stipulate how to divide the
entire bytecode buffer into basic blocks. The transfers then
produce edges between the blocks corresponding to possible
VPC changes during emulated execution. The CFG structure
provides a foundation for subsequent malware analysis.

4. Implementation

Our automatic reverse engineering occurs in three dif-
ferent phases: dynamic tracing, clustering, and behavioral
analysis. Figure 3 shows the different phases of our process
and the interactions among the architectural components
used by the different analysis steps. The dynamic tracing
phase gathers run-time data related to a malware emulator’s
execution, and allows the clustering and behavioral analysis
phases to extract malware bytecode and the syntactic and
semantic information for the bytecode instruction set.

There are two important requirements for the run-time
environment of the dynamic tracing phase: instruction-level
tracing, and isolation from malware and attacks. Since
the analysis techniques in Rotalumé are orthogonal to the
underlying run-time environment and our goal here is to
develop and evaluate these techniques, we implemented our
dynamic analysis techniques on top of QEMU [6], which
emulates an x86 computer system. For a deployable version
of Rotalumé, we suggest using a more transparent and robust
environment, such as a hardware virtualization based system
like Ether [12]. The components in the latter two phases

were developed as an offline analyzer written in C++. In
our current prototype implementation, each individual phase
is activated manually using the result of the previous phase.
However, our design can be completely automated to process
large numbers of malware samples.

4.1. Dynamic Tracing

The first phase collects the dynamic instruction trace
of the emulator program that is executing as the QEMU
guest operating system. We modified QEMU by inserting a
callback function that invokes Rotalumé’s Trace Extractor
Engine (EE) for every instruction executed in QEMU. The
EE component collects necessary context information related
to the executed instruction and stores the intermediate-
representation (IR) that is used in latter phases of the
system. Our IR is self-contained—we store the instruction
representation as well as the values of the operands involved
in the instruction. We log all information so that we may per-
form off-line analysis without requiring additional dynamic
analysis. The output information of this phase is represented
by the dynamic trace of the program in IR form.

4.2. Clustering

The second phase clusters the memory read operations
visible in the trace. We group together every read operation
performed by the program based on the common variable
used to access that read memory location. This phase is
performed by two main components: the Binding Engine
(BE) and Clustering Engine (CE). The BE component is
a program that takes as input the IR dynamic program
trace and applies the backward and forward abstract vari-
able binding algorithms described in Section 3.1. For each
algorithm, we store binding information differently. More
specifically, for each instruction in forward binding, we store
the following information: instruction id (a unique identifier
for each instruction present in the dynamic program trace
IR), the destination register operand of the instruction, and
the bound variables associated with the destination register



according to the rules described in Section 3.1.1. For each
instruction in backward binding, we store the instruction
id and the bound variables associated with the registers or
memory locations according to the rules defined in Section
3.1.2. The BE component provides the binding information
to the CE. The CE component is a program that inputs the
IR dynamic trace and the binding information, and applies
the clustering algorithm. At a high level, CE takes the union
of forwarding and backward binding information, applies the
dependence function in Section 3.2, and provides the cluster
information. The cluster information contains a vector of sets
where each set contains the addresses of the memory read
instructions that are accessed by the same variable. At the
end of this phase, the cluster information is saved to a file.

4.3. Behavioral Analysis

The behavioral analysis phase provides the final infor-
mation output of Rotalumé. We implemented a behavioral
analyzer composed of two sub-components: the Taint En-
gine and the Emulation Behavior Detector. The behavioral
analyzer is a program that takes as input the IR dynamic
trace and clustering information, and analyzes one cluster at
a time. For each cluster, the Taint Engine taints the memory
address contained in the cluster and activates the Emulation
Behavior Detector. This analyzer is a state machine that
follows the tainted addresses and identifies the emulation
behavior, as described in Sections 3.3 and 3.4. Whenever
the analyzer recognizes an opcode, the system stores in-
formation of the opcode into a file. More specifically, the
analyzer stores for each opcode executed: its opcode value,
the operands’ values, and the x86 code in assembly format
associated with the executed opcode.

5. Evaluation

We evaluated Rotalumé using both synthetic and real pro-
grams that include both legitimate applications and malware,
including real-world emulated malware. These programs are
obfuscated to run on three commercially available packers
that support emulation: Code Virtualizer [23], Themida [24],
and VMProtect [35]. VMProtect and Code Virtualizer con-
vert selective functions of a given binary program into
a bytecode program with a randomly generated bytecode
language. Themida, which is more widely used for malware,
does not apply emulation to the given malicious binary
program but rather to the unpacking routine and the code
that invokes API calls.

5.1. Synthetic Tests

We first experimented with synthetic test programs. Our
goal was to use the ground truth of the synthetic programs
to evaluate the information about the extracted bytecode

Table 1. Description of synthetic test programs

Program Description x86 Program x86 Trace
Inst. C-Flow Inst. C-Flow

synth1 No branch 24 1 24 1

synth2 Nested if 61 11 21 7

synth3 Loop and if 55 10 270 54

program and the syntax and semantics of the virtual instruc-
tion set architecture identified by Rotalumé. We used Code
Virtualizer and VMProtect because they can obfuscate any
user-specified function in a program.

We wrote three simple synthetic test programs in C.
Each test program contained a function with distinguish-
able control-flow characteristics that we wanted to obfus-
cate. We compiled these programs and converted them
to x86 binaries. We analyzed the static characteristics of
the compiled code using IDAPro [13] and the dynamic
characteristics by tracing the programs in our QEMU-based
system. Table 1 lists information about the three functions
of these test programs. For each function, the table shows
the total numbers of x86 instructions (“Inst.”) and control-
flows instructions (“C-Flow”) obtained from static analysis.
The total numbers of x86 and control-flow instructions in
an execution trace of the functions, obtained from dynamic
analysis, are also shown. Program synth1 involves simple
computation without any conditional branch or function.
Program synth2 contains nested if statements, and hence
its execution trace contains only a part of its (static) program
instructions. Finally, synth3 contains both if statements
and a for loop. Its trace length was larger than the static
x86 instruction count because of loops.

We used VMProtect and Code Virtualizer to obfuscate
the selected functions in our three test (binary) programs.
We then applied Rotalumé to analyze them. Rotalumé was
able to correctly identify emulation behavior in all of the
test cases, and Tables 2 and 3 summarize respectively the
results of reversing Code Virtualizer and VMProtect. The
results show information for bytecode instructions traced and
identified at run-time in terms of the instruction counts (of
all types and the control-flow instructions) of the bytecode
execution trace and the program itself. The results also show
the virtual instruction set architecture (ISA) discovered by
Rotalumé in terms of the number of unique bytecode in-
structions, information regarding the syntax of the bytecode
language in terms of number of operands, and information
regarding the semantics of conditional control-flow transfers.

In both VMProtect and Code Virtualizer, the bytecode
trace of a program was significantly longer than its original
x86 binary. For example, synth3 executed 3,481 bytecode
instructions of Code Virtualizer and 5,709 of VMProtect,
compared to just 270 x86 instructions in the original pro-
gram. The results also show that for all test cases, Rotalumé



Table 2. Results for synthetic programs obfuscated with Code Virtualizer

Program Bytecode Trace (inst. count) Bytecode Program (inst. count) Virtual Instruction Set Architecture
All types C-Flow All types C-Flow All types C-Flow (Cond.) 0 Opr 1 Opr 2 Opr

synth1 277 1 277 1 23 1 (0) 3 6 15

synth2 254 7 254 7 27 3 (1) 4 8 16

synth3 3481 54 684 8 31 3 (1) 4 9 18

Table 3. Results for synthetic programs obfuscated with VMProtect

Program Bytecode Trace (inst. count) Bytecode Program (inst. count) Virtual Instruction Set Architecture
All types C-Flow All types C-Flow All types C-Flow (Cond.) 0 Opr 1 Opr 2 Opr

synth1 497 1 497 1 16 1 (0) 4 8 4

synth2 442 7 442 7 18 2 (0) 4 9 5

synth3 5709 54 785 8 18 2 (0) 4 9 5
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Figure 4. Comparison of x86 and bytecode CFGs of the synth3 test program

accounted for the same number of control-flow instructions
in the bytecode execution trace as in the original x86
execution trace. This shows that Rotalumé was able to
extract the control-flow information of the original programs.

Table 3 shows that for both synth2 and synth3, the
VMProtect virtual ISA extracted by Rotalumé does not
have conditional control-flow instructions, unlike the results
from Code Virtualizer. We investigated this discrepancy by
analyzing the x86 execution traces of VMProtected software
and then comparing with the bytecode information provided
by Rotalumé. We found that Rotalumé correctly identified
the decode, dispatch, and execution routines of the emulator.

We manually analyzed the traces of the execution routines
and did not find any x86 conditional branch instruction. This
means that there were no conditional jumps in the bytecode
program traces. By carefully analyzing the semantics of
the instructions before the control-transfer instruction, we
confirmed that VMProtect emulates conditional branches by
dynamically computing the target address and using a single
jump instruction.

Figure 4 shows that the control-flow graphs extracted
by Rotalumé for synth3 are very similar to that of the
original x86 program. Figure 4(a) shows the original x86
program’s CFG, and it contains a loop with two conditional



Table 4. TR/Killav.PS obfuscated by VMProtect

Description Dyn. x86 CFG Dyn. BC CFG
Inst. (BB) Inst. (BB)

Original 1528 (435) ×
1 function packed 3618 (738) 2617 (16)

5 functions packed 4103 (801) 3830 (49)

branches. The graph shows that basic block B11 was not
executed during execution. Figure 4(b) shows the CFG of
the Code Virtualizer bytecode program trace as extracted
by Rotalumé. The two CFGs show identical control-flow
semantics. Interestingly, we also could identify that there
is an unexplored path from basic block B7. This was
possible because Code Virtualizer’s bytecode language has
a conditional branch instruction that was identified by Ro-
talumé even though it was not executed. This shows a key
benefit of our approach: other analyses such as multipath
exploration [21] can be selectively applied to explore such
paths in the emulated malware bytecode rather than in the
entire emulator.

The CFG in Figure 4(c) is for the VMProtect bytecode
trace. Since we found that VMProtect’s bytecode has no
explicit conditional branches, we are unable to provide
information about a possible path that was not executed
in the trace. However, we can identify the dynamically
computed control-flow instructions in the trace and mark
where analysis of possible branch target addresses needs
to be applied. Thus, we can still uncover the control-flow
information of the bytecode program. The CFG shows the
existence of the loop and the condition but the number of ba-
sic blocks is fewer than the original CFG. This likely occurs
because VMProtect applies optimization on the bytecode.

5.2. Real (Unpacked) Programs

We next tested on a real program obfuscated with em-
ulation by comparing the extracted bytecode information
against the original x86 program. We selected a malware
program that is not packed because self-modifying code can
not be translated into bytecode. We randomly selected the
Killav.PS malware identified as a Trojan by Avira Antivir
antivirus software [2]. We then applied VMProtect on the
binary. We were unable to use Code Virtualizer on this
real software because Code Virtualizer requires a .map file,
which is usually generated at compile time and hence not
available with malware. Table 4 shows the results of using
Rotalumé with various levels of obfuscation applied to the
binary.

We selected one large function in the malware and used
VMProtect to convert it into bytecode. The table shows
that the x86 code size grows after obfuscation because
the new binary additionally contains the emulator’s code.

Table 5. Tests on CMD.EXE obfuscated by VMProtect

Description Dyn. x86 CFG Dyn. BC CFG
Inst. (BB) Inst. (BB)

Original 8458 (1143) ×
1 function packed 10429 (1345) 3488 (31)

5 functions packed 10512 (1394) 12345 (103)

Rotalumé extracted the bytecode trace and the dynamic CFG
of the obfuscated function. We compared the results with the
original x86 version of the obfuscated function. Although
the bytecode version had only 16 basic blocks compared
to the 24 blocks of the original (not shown here; the table
instead shows the size of the whole binary including the
emulator), the control-flow attributes were very similar. Due
to space limitations, the CFGs are not included here but
may be found in a more extensive technical report [28].
From the CFGs, it seems that some basic blocks may have
been combined due to code optimizations performed on
the bytecode by VMProtect, but similar loops and branches
were identifiable. This shows that Rotalumé indeed correctly
extracted the bytecode syntax and semantics. We tested
another obfuscated version of the malware where we se-
lectively obfuscated four additional functions. In that case,
the x86 code increased less substantially, and Rotalumé
successfully extracted the bytecode syntax and semantics of
those functions.

Finally, we tested Rotalumé after applying emulation
to a legitimate program. Using CMD.EXE, we performed
experiments similar to those for the unpacked malware.
Table 5 presents the results. The bytecode CFG that we
obtained contained 31 basic blocks instead of the 36 in the
original function. Figure 5 shows two similar portions of
the control-flow graphs of a large function of CMD.EXE.
We show the original x86 code’s partial CFG in Figure 5(a)
and the bytecode version extracted by Rotalumé from the
VMProtect obfuscated sample in Figure 5(b). The complete
CFGs of the function can be found in the technical report
[28]. We found that some parts of the graphs matched
perfectly, with differences in other parts likely due to code
transformation and optimization differences.

5.3. Emulated Malware

We next evaluated Rotalumé on real malware samples
that use emulation based packers. We selected samples that
are packed with Themida, VMProtect, and Code Virtualizer,
the three known commercial packers that use emulation. We
have access to thousands of malware samples, from which
we identified the ones packed using these three tools. We
then applied Rotalumé to a randomly selected set of these
malware samples.

Among the three obfuscators, Themida is the most widely
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used within our malware samples. Themida is known not
to emulate the code of the original program but rather
the unpacking routine. Nevertheless, we wanted to evaluate
whether Rotalumé can reverse engineer the emulator. Table 6
shows the results of Rotalumé’s output on 8 randomly
selected samples. We obtained the names of these samples
by submitting them to VirusTotal [34] and selecting the
name that was most common among the AV tools. For each
sample, we gathered the execution trace when running it
for 20 seconds. The table first shows the length of the x86
trace as well as the counts of instructions (“Inst.”) and basic
blocks (“BB”) in the dynamically created CFG of the x86
code.

Our analyzer was able to detect the emulator in all cases:
the table shows information for the extracted bytecode trace,
and we built the control-flow graph using the extracted
control-flow semantics of the bytecode language. We do not
show the syntax and semantic information of the bytecode
instruction set here because we found that the instruction sets
consistently contain 31 instructions. However, the syntax of
the instructions varied, showing that the instruction sets were
highly randomized. We also manually analyzed the instruc-
tion set and observed that the semantics were very close to
that from Code Virtualizer. This is not surprising given that
both tools are from the same vendor [22] In all samples,
the x86 CFG is very large compared to the corresponding

Table 6. Malware packed with Themida

Description x86 Dyn. x86 BC Dyn. BC
Trace CFG Trace CFG

Inst. (BB) Inst. (BB)

Themida5 15.3M 9753 (2156) 15232 3421 (57)

Themida1 1.4M 5961 (1156) 1339 1339 (6)

Themida3 14.8M 10211 (2125) 2142 2142 (15)

Themida7 21.4M 14205 (3529) 5171 3042 (28)

Themida8 3.5M 6011 (2125) 1534 1534 (9)

Themida11 11.1M 9021 (2925) 1784 1784 (10)

Themida13 11.4M 10211 (3194) 19642 4142 (65)

Themida14 17.3M 11492 (2877) 14219 3751 (75)

Table 7. Malware packed with VMProtect

Description x86 Dyn. x86 BC Dyn. BC
Trace CFG Trace CFG

Inst. (BB) Inst. (BB)

Win32.KGen.bxp 3.1M 2122 (591) 1112 1112 (9)

Win32.KillAV.ahb 1.4M 4104 (1156) 1231 1231 (12)

Graybird 131K 823 (275) 2926 1584 (18)

Win32.Klone.af∗ 5.0M 4263 (707) 1241 1241 (17)

Win32.Klone.af∗ 3.2M 4123 (484) 1149 1149 (14)

Table 8. Malware packed with Code Virtualizer

Description x86 Dyn. x86 BC Dyn. BC
Trace CFG Trace CFG

Inst. (BB) Inst. (BB)

Win32.Delf.Knz∗ 7.0M 2249 (608) 114526 10054 (343)

Win32.Delf.Knz∗ 15.5M 2594 (720) 234012 25221 (742)

Win32.Delf.Knz∗ 14.5 2531 (738) 215892 19850 (771)

bytecode CFG. Again, this shows that Themida was not
designed to obfuscate a program completely with emulation.

We then experimented with a group of randomly selected
samples that use VMProtect. We present the results of
5 samples in Table 7. Rotalumé was able to detect the
emulation process in each of the samples and produced the
syntactic and semantics information of the bytecode lan-
guage, the bytecode trace, and the CFG. Rotalumé identified
18 bytecode instructions in the instruction set for each case.
This matched the output from the synthetic test samples
synth2 and synth3 in Table 3. Interestingly, the syntax
was also the same. Like the Themida samples, these samples
had very small amounts of code emulated. We conjecture
that the malware authors likely had used the demo version
of VMProtect, which only allows conversion of one function
of the binary into bytecode.

We also experimented with recent malware samples that
use Code Virtualizer. Table 8 shows the results. All of the
samples were identified with the same name in VirusTotal



even though their program sizes and MD5 checksums varied.
After analyzing these malware samples with Rotalumé, we
found that unlike samples we tested with Themida and
VMProtect, these samples have large portions of their code
converted into bytecode. The bytecode CFGs of these pro-
grams varied significantly, showing that they may be quite
different programs even though they share the same name.

6. Discussion

In this section, we discuss three open problems and chal-
lenges: alternative emulator designs, incomplete bytecode
reconstruction, and code analysis limitations.

First, our current work assumes a decode-dispatch emula-
tion model, thus, malware authors may implement variations
or alternative approaches to emulation [5], [16], [19], [30] to
evade our system. For example, our loop identification strate-
gies of Section 3.3 are not directly applicable to malware
emulators using a threaded approach. However, the methods
of identifying the candidate bytecode regions and VPC’s are
still applicable. As discussed in Section 2.2, our approach
is likewise not applicable to dynamic translation based
emulation. In dynamic translation, the emulator dynamically
generates new code that the program subsequently executes,
thus, we expect that heuristics used by unpackers to detect
unpacked code will identify the translated instructions. From
the translated code, a system could trace backward to find
the translation routines, and it could then utilize our methods
to identify bytecode regions and the VPC. More generally,
we believe that our fundamental ideas and techniques are
applicable to other emulation models: by analyzing an em-
ulator’s execution trace using a given emulation model, we
can identify the bytecode region and discover the syntax and
semantics of the bytecode instructions. The main challenge
in future research is to identify observable and discernible
run-time behavior exhibited by sophisticated emulation ap-
proaches.

Malware using decode-dispatch emulation may attempt
to evade accurate analysis by targeting specific properties
of our analysis. For example, since our approach expects
each unique address in memory to hold only one abstract
variable, an adversary may utilize the same location for
different variables at different times to introduce imprecision
in our analysis. Our system will put the memory reads
performed using these variables into the same cluster due
to the conservativeness of our analysis. If the additional
data included in the cluster containing the bytecode program
is used in decode or dispatch-like behavior, they may be
incorrectly identified as bytecode instructions.

The second open problem is how to reconstruct complete
information about the bytecode instruction syntax and se-
mantics, so that a system can extract the entire emulated
malware bytecode program. Using dynamic analysis, we
extracted execution paths in the bytecode program and the

syntax and semantics of the bytecode instructions used
in those paths. However, the paths may not have utilized
all of the possible bytecode instructions supported by the
emulator, though they may be used in other execution
paths of the program. A plausible approach would apply
static analysis on the dispatch routine once our system has
identified the emulation phases correctly. More specifically,
once the dispatching method is identified, static analysis and
symbolic execution may identify other execution routines
and the opcodes of the bytecode instructions that invoke
their dispatch. This provides the syntactic and semantic
information of the bytecode instructions even though they
are not part of the executed bytecode.

A subsequent open problem is utilizing the discovered
syntax and semantics to completely convert bytecode to
native instructions. A solution is possible only when all
execution paths of the bytecode program can be explored.
A potential solution is to use previous techniques employed
for multi-path exploration [21] with the help of control-flow
semantics identified in the bytecode. However, emulators
may be written so that specific control-flow semantics need
not be supported in the bytecode language. Such is the case
for VMProtect, where we have only identified unconditional
branches. In such bytecode languages, the effects of condi-
tional branches are performed in the program by dynamically
computing the target address based on the condition and
then using an unconditional branch to the specific target
(an example was provided in Figure 2). More research is
required before multi-path exploration can be applied to
programs written in such languages.

Another related problem is the use of recursive emulation,
which converts the emulator itself to another bytecode
language and introduces an additional emulator to emulate
it. The recursive step can be performed a number of times
by a malware author, with size and performance increases
as the limiting factors. The solution is to first apply our
reverse engineering method to the malware instance, use
the discovered syntax and semantics to completely convert
the bytecode program into native binary code, and then
apply our method (recursively) on the converted program
to identify any additional emulation-like behavior.

Third, as with all program analysis tasks, reverse engineer-
ing of emulators also faces the challenges of heap analysis
imprecision, limitations of loop detection, and so on. The
techniques to address these problems are orthogonal to our
techniques in reverse engineering.

7. Related Work

Malware authors have developed obfuscation schemes
designed to impede static analysis [8], [18], [25], [26].
Dynamic analysis approaches that treat malware as a black
box can overcome these obfuscation schemes, but they
are able to observe only a small number of execution



paths. Several approaches have been proposed to address
this limitation. Moser et al. proposed a scheme [21] that
explored multiple paths during malware execution. Another
approach [36] forces program execution along different paths
but disregards consistent memory updates. In Rotalumé,
these solutions are unable to properly analyze emulated
malware because they will explore execution paths of the
emulator rather than that of the bytecode program.

Malware authors have broadly applied packing to im-
pede and evade malware detection and analysis. Several
approaches based on the general unpacking idea have been
proposed [14], [20], [27]. For example, Polyunpack per-
forms universal unpacking based on a combination of static
and dynamic binary analysis. Given a packed executable,
Polyunpack first constructs a static view of the code. If the
executable tries to execute any code that is not present in
the static view, Polyunpack detects this as unpacked code.

Recently we observed a new trend in using virtualizers
or emulators such as Themida [24], Code Virtualizer [23],
and VMProtect [35] to obfuscate malware. These emulators
all use a basic interpretation model [31] and transform the
x86 program instructions into its own bytecode in order
to hide the syntax and semantic of the original code and
thwart program analysis. Moreover, by using a randomized
instruction set for the bytecode language together with a
polymorphic emulator, the reverse engineering effort will
have to be applied to every new malware instance, making
it very difficult to reuse the reverse engineered information
of one emulator for another. We argue that this trend will
continue and that a large portion of malware in the near fu-
ture will be emulation based. There is no existing technique
that can reliably counter an emulation-based obfuscation
technique.

Researchers have proposed using a randomized instruction
set with emulation as a software defense against code
injection attacks. Kc et al. [15] and Barrantes et al. [4] de-
veloped approaches that converted a binary program’s native
instructions into a per-process randomized instruction set.
Since an adversary trying to exploit vulnerabilities will not
have knowledge about the random instruction set, injected
code will not run properly and will cause the program to
crash. Subsequent work by Sovarel et al. [32] discussed
the effectiveness of instruction set randomization techniques
against various attacks.

There are research approaches for analysis and reverse
engineering of bytecode for high-level languages such as
Java [9], [33]. However, these approaches assume that the
syntax and semantics of the bytecode are public or already
known. This assumption fails to hold for malware con-
structed using emulators such as Themida, Code Virtualizer,
or VMProtect [23], [24], [35]. These emulators perform a
random translation from bytecode to destination ISA, so the
connection between the bytecode and final ISA is unknown.

In order to overcome these emulation-based obfuscation

techniques, we need analyzers that are able to reverse
engineer the emulator model and extract the bytecode syntax
and semantics. This is a new research area. In a related area,
protocol reverse engineering techniques [7], [17], [37] have
been proposed to understand network protocol formats by
automatically extracting the syntax of the protocol messages.
Tupni [10] automatically reverse engineers the formats of
all general inputs to a program. The analysis techniques for
extracting the input or network message syntax assume that
they can be found at predefined locations in the program.
In contrast, one of the main challenges in malware emulator
analysis is to find where the bytecode program resides.

8. Conclusion

In this paper, we presented a new approach for automatic
reverse engineering of malware emulators. We described
the algorithms and techniques to extract a bytecode trace
and compute the syntax and semantics of the bytecode
instructions by dynamically analyzing a decode-dispatch
based emulator. We developed Rotalumé, a proof-of-concept
system, and evaluated it on synthetic and real programs ob-
fuscated with Code Virtualizer and VMProtect. The results
showed that Rotalumé was able to extract bytecode traces
and syntax and semantic information. For future work, we
plan to address the challenges of reverse engineering other
types of emulators. We also plan to develop algorithms to
extract higher level instruction semantics that include data-
flow information, and to completely convert an extracted
bytecode trace back to x86 form. We hope that our work
will help spawn research in several other related areas, such
as reverse engineering of script interpreters.
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