
CSC 591
Systems Attacks and Defenses

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

Sir Tim Berners-Lee

ACM Turing
Award 2016

Birth of the Web
• Created by Tim Berners-Lee while he was

working at CERN
– First CERN proposal in 1989
– Finished first website end of 1990

• Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide
Web, Tim Berners-Lee

Design
• Originally envisioned as a way to share

research results and information at CERN
• Combined multiple emerging technologies

– Hypertext
– Internet (TCP/IP)

• Idea grew into “universal access to a large
universe of documents”

Three Central Questions
• How to name a resource?
• How to request and serve a resource?
• How to create hypertext?

Three Central Technologies
• How to name a resource?

– Uniform Resource Identifier (URI/URL)
• How to request and serve a resource?

– Hypertext Transfer Protocol (HTTP)
• How to create hypertext?

– Hypertext Markup Language (HTML)

URI

HTTP

HTML

URI

HTTP

HTML

Uniform Resource Identifier
• Essential metadata to reach/find a

resource
• Answers the following questions:

– Which server has it?
– How do I ask?
– How can the server locate the resource?

• Latest definition in RFC 3986 (January
2005)

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>
• path

– Usually a hierarchical pathname composed of “/” separated strings
• query

– Used to pass non-hierarchical data
• fragment

– Used to identify a subsection or subresource of the resource

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

Examples:
foo://example.com:8042/over/there?test=bar#nose

ftp://ftp.ietf.org/rfc/rfc1808.txt

mailto:akaprav@ncsu.edu

https://example.com/test/example:1.html?/alex

URI – Reserved Characters
:
/
?
#
[
]
@
!
$

&
‘
(
)
*
+
,
;
=

URI – Percent Encoding
• Must be used to encode anything that is

not of the following:
Alpha [a-zA-Z]
Digit [0-9]
-
.
_
~

URI – Percent Encoding
• Encode a byte outside the range with percent sign

(%) followed by hexadecimal representation of
byte
– & -> %26
– % -> %25
– <space> -> %20
– …

• Let’s fix our previous example:
– https://example.com/test/example:1.html?/alex
– https://example.com/test/example%3A1.html?%2Falex

URI – Absolute vs. Relative
• URI can specify the absolute location of the resource

– https://example.com/test/help.html

• Or the URI can specify a location relative to the current
resource
– //example.com/example/demo.html

• Relative to the current network-path (scheme)
– /test/help.html

• Relative to the current authority
– ../../people.html

• Relative to the current authority and path
• Context important in all cases

– http://localhost:8080/test

Hypertext Transport Protocol
• Protocol for how a web client can request

a resource from a web server
• Based on TCP, uses port 80 by default
• Version 1.0

– Defined in RFC 1945 (May 1996)
• Version 1.1

– Defined in RFC 2616 (June 1999)
• Version 2.0

– Based on SPDY, still under discussion

HTTP – Overview
• Client

– Opens TCP connection to the server
– Sends request to the server

• Server
– Listens for incoming TCP connections
– Reads request
– Sends response

Architecture

HTTP Reply

HTTP Request

Client Server

Architecture

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Architecture

Application
 Server

Application

Gateway
Program

Application-specific
requestBrowser

Extension

JavaScript,
ActiveX,
Flash,
Java

CGI, PHP,
ASP, Servlet

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Requests
• An HTTP request consists of:

– method
– resource (derived from the URI)
– protocol version
– client information
– body (optional)

Requests – Syntax
• Start line, followed by headers, followed by

body
– Each line separated by CRLF

• Headers separated by body via empty line
(just CRLF)

Requests – Methods
• The method that that client wants applied to

the resource
• Common methods

• GET – Request transfer of the entity referred to by the
URI

• POST – Ask the server to process the included body
as “data” associated with the resource identified by the
URI

• PUT – Request that the enclosed entity be stored
under the supplied URI

• HEAD – Identical to GET except server must not
return a body

Requests – Methods
• OPTIONS – Request information about the

communication options available on the
request/response chain identified by the URL

• DELETE – Request that the server delete the
resource identified by the URI

• TRACE – used to invoke a remote,
application-layer loop-back of the request
message and the server should reflect the
message received back to the client as the body
of the response

• CONNECT – used with proxies
• …

– A webserver can define arbitrary extension methods

Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*

Modern Requests
GET / HTTP/1.1
Host: www.google.com
Accept-Encoding: deflate, gzip
Accept:
text/html,application/xhtml+xml,applica
tion/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_10_1)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.95 Safari/537.36

Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body

Responses – Syntax
• Status line, followed by headers, followed

by body
– Each line separated by CRLF

• Headers separated by body via empty line
(just CRLF)

• Almost the same overall structure as
request

Responses – Status Codes
• 1XX – Informational: request received,

continuing to process
• 2XX – Successful: request received,

understood, and accepted
• 3XX – Redirection: user agent needs to take

further action to fulfill the request
• 4XX – Client error: request cannot be fulfilled

or error in request
• 5XX – Server error: the server is aware that it

has erred or is incapable of performing the
request

Responses – Status Codes
• "200" ; OK
• "201" ; Created
• "202" ; Accepted
• "204" ; No Content
• “301" ; Moved Permanently
• "307" ; Temporary Redirect

Responses – Status Codes
• "400" ; Bad Request
• "401" ; Unauthorized
• "403" ; Forbidden
• "404" ; Not Found
• "500" ; Internal Server Error
• "501" ; Not Implemented
• "502" ; Bad Gateway
• "503" ; Service Unavailable

Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*

Responses – Example
HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 03:57:26 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: …
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic,p=0.02
Accept-Ranges: none
Vary: Accept-Encoding
Transfer-Encoding: chunked

<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage" lang="en"><head><meta
content="Search the world's information, including webpages,
images, videos and more. Go …

HTTP Authentication
• Based on a simple challenge-response

scheme
• The challenge is returned by the server as

part of a 401 (unauthorized) reply message
and specifies the authentication schema to be
used

• An authentication request refers to a realm,
that is, a set of resources on the server

• The client must include an Authorization
header field with the required (valid)
credentials

HTTP Basic Authentication
• The server replies to an unauthorized request

with a 401 message containing the header field
WWW-Authenticate: Basic realm="ReservedDocs"

• The client retries the access including in the
header a field containing a cookie composed of
base64 encoded (RFC 2045) username and
password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

• Can you crack the username/password?

HTTP 1.1 Authentication
• Defines an additional authentication scheme

based on cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the

username, the password, the given nonce value,
the HTTP method, and the requested URL

• To authenticate the users the web server has
to have access to clear-text user passwords

Monitoring and Modifying HTTP
Traffic

• HTTP traffic can be analyzed in different ways
– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the content received from

a server
– Client-side/server-side proxies can be used to analyze the

traffic without having to modify the target environment
• Client-side proxies are especially effective in

performing vulnerability analysis because they allow
one to examine and modify each request and reply
– Firefox extensions: LiveHTTPHeaders, Tamper Data
– Burp Proxy

• This is a professional-grade tool that I use

Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable

from one platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML)
(January 2000)

• HTML 5.0
– Proposed as W3C recommendation (October 2014)

• HTML 5.1
– Under development

HTML – Overview
• Basic idea is to “markup” document with tags,

which add meaning to raw text
• Start tag:

– <foo>

• Followed by text
• End tag:

– </foo>

• Self-closing tag:
– <bar />

• Void tags (have no end tag):
–

HTML – Tags
• Tag are hierarchical

HTML – Tags
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>I am the example text</p>
 </body>
</html>

HTML – Tags
• <html>

– <head>

•<title>
–Example

– <body>

•<p>
–I am the example text

HTML – Tags
• Tags can have “attributes” that provide metadata about

the tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">

HTML – Hyperlink
• anchor tag is used to create a hyperlink
• href attribute is used provide the URI
• Text inside the anchor tag is the text of the

hyperlink

• Example

Example

http://google.com

HTML – Basic HTML 5 Page
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>CSC 591</title>
 </head>

 <body>
 Text
 </body>
</html>

HTML – Browsers
• User agent is responsible for parsing and

interpreting the HTML and displaying it to
the user

HTML – Parsed HTML 5 Page

DEMO

HTML – Character References
• How to include HTML special characters as text/data?
< > ' " & =
– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined_name>;

– Decimal numeric character reference
• &#<decimal_unicode_code_point>;

– Hexadecimal numeric character reference
• &#x<hexadecimal_unicode_code_point>;

• Note: This will be the root of a significant number of
vulnerabilities and is critical to understand

HTML – Character References
Example

• The ampersand (&) is used to start a
character reference, so it must be
encoded as a character reference

• &
• &
• &
• &

HTML – Character References
Example

• é
• é
• é
• é

HTML – Character References
Example

• Why must ‘<’ be encoded as a character
reference?

• <
• <
• 0
• 0

HTML – Forms
• A form is a component of a Web page that has

form controls, such as text fields, buttons,
checkboxes, range controls, or color pickers
– Form is a way to create a complicated HTTP request

• action attribute contains the URI to submit the
HTTP request
– Default is the current URI

• method attribute is the HTTP method to use in the
request
– GET or POST, default is GET

HTML – Forms
• Children input tags of the form are transformed into

either query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files, so we

will focus on “application/x-www-form-urlencoded”

HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo"
value="bar">

• Name is taken from the input tag’s name
attribute

• Value is taken either from the input tag’s
value attribute or the user-supplied input
– Empty string if neither is present

application/x-www-form-urlencoded
• All name-value pairs of the form are

encoded
• form-urlencoding encodes the name-value

pairs using percent encoding
– Except that spaces are translated to + instead

of %20
• foo=bar

• Multiple name-value pairs separated by
ampersand (&)

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit">

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

http://example.com/grades/submit?student=Wolf+Pack&
class=csc+591&grade=A%2B&submit=Submit

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

POST /grades/submit HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

student=Wolf+Pack&class=csc+591&grade=A%2B&submit=Submit

Web Applications
• It was quickly realized that the way the web was

structured allowed for returning dynamic responses
• Early web was intentionally designed this way, to allow

organizations to offer access to a database via the web
• Basis of GET and POST also confirm this

– GET "SHOULD NOT have the significance of taking an
action other than retrieval"

• Safe and idempotent
– POST

• Annotation of existing resources; posting a message to a bulletin
board, newsgroup, mailing list, or similar group of articles,
providing a block of data, such as the result of submitting a form,
to a data-handling process; and extending a database through an
append operation

Web Applications
• Server-side code to dynamically create an

HTML response
• How does this differ from a web site?
• In the HTTP protocol we've looked at so

far, each request is distinct
– Server has client IP address and User-Agent

Maintaining State
• HTTP is a stateless protocol
• However, to write a web application we would like

maintain state and link requests together
• The goal is to create a "session" so that the web

application can link requests to the same user
– Allows authentication
– Rich, full applications

• Three ways this can be achieved
– Embedding information in URLs
– Using hidden fields in forms
– Using cookies

Embedding Information in Cookies
• Cookies are state information that is passed between a

web server and a user agent
– Server initiates the start of a session by asking the user

agent to store a cookie
– Server or user agent can terminate the session

• Cookies first defined by Netscape while attempting to
create an ecommerce application

• RFC 2109 (February 1997) describes first
standardization attempt for cookies

• RFC 2965 (October 2000) tried to standardize cookies
2.0

• RFC 6265 (April 2011) describes the actual use of
cookies in the modern web and is the best reference

Embedding Information in Cookies
• Cookies are name-value pairs (separated

by "=")
• Server includes the "Set-Cookie" header

field in an HTTP response
– Set-Cookie: USER=foo;

• User agent will then send the cookie back
to the server using the "Cookie" header on
further requests to the server
– Cookie: USER=foo;

Embedding Information in Cookies
• Server can ask for multiple cookies to be

stored on the client, using multiple
"Set-Cookie" headers
– Set-Cookie: USER=foo;

– Set-Cookie: lang=en-us;

Embedding Information in Cookies
• Server can sent several attributes on the cookie, these

attributes are included in the Set-Cookie header line, after
the cookie itself, separated by ";"
– Path

• Specifies the path of the URI of the web server that the cookies are valid
– Domain

• Specifies the subdomains that the cookie is valid
– Expires or Max-Age

• Used to define the lifetime of the cookie, or how long the cookie should
be valid

– HttpOnly
• Specifies that the cookie should not be accessible to client-side scripts

– Secure
• Specifies that the cookie should only be sent over secure connections

Embedding Information in Cookies
• Example cookie headers from curl request to

www.google.com
– curl -v http://www.google.com

• Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1421424672:LM=14
21424672:S=OqGXMZZhmeyihyKi; expires=Sun,
15-Jan-2017 16:11:12 GMT; path=/;
domain=.google.com

• Set-Cookie:
NID=67=bs1lLyrXtfdUj79IlcuqR7_MWEsyNdLWU_FpGKwlWR
9QpEzi3UrVV2UGO6LBW3sJNk9mlLcYIJns3PG3NUu-M3pT9qD
-V4F8oyyJ_UJnCGKDUDGbllL9Ha8KGufv0MUv;
expires=Sat, 18-Jul-2015 16:11:12 GMT; path=/;
domain=.google.com; HttpOnly

• Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1
421424672:LM=1421424672:S=OqGXMZZh
meyihyKi; expires=Sun, 15-Oct-2019
16:11:12 GMT; path=/;
domain=.google.com
– expires is set two years in the future
– path is / which means to send this cookie to

all subpaths of www.google.com/
– domain is .google.com, which means to send

this cookie to all subdomains of .google.com
• Includes www.google.com, drive.google.com, …

• Set-Cookie:
NID=67=bs1lLyrXtfdUj79IlcuqR7_MWEs
yNdLWU_FpGKwlWR9QpEzi3UrVV2UGO6LBW
3sJNk9mlLcYIJns3PG3NUu-M3pT9qD-V4F
8oyyJ_UJnCGKDUDGbllL9Ha8KGufv0MUv;
expires=Sat, 18-Jul-2015 16:11:12
GMT; path=/; domain=.google.com;
HttpOnly
– HttpOnly is a security feature, which means

only send this cookie in HTTP, do not allow
JavaScript code to access the cookie

Embedding Information in Cookies
• The server can request the deletion of cookies

by setting the "expires" cookie attribute to a
date in the past

• User agent should then delete cookie with that
name

• Set-Cookie: USER=foo; expires=Thu,
1-Jan-2015 16:11:12 GMT;
• User agent will then delete the cookie with name "USER"

that is associated with this domain
– Proxies are not supposed to cache cookie headers

• Why?

Embedding Information in Cookies
• User agent is responsible for following the

server's policies
– Expiring cookies
– Restricting cookies to the proper domains and

paths
• However, user agent is free to delete

cookies at any time
– Space/storage restrictions
– User decides to clear the cookies

Modern Sessions
• Sessions are used to represent a time-limited interaction of a

user with a web server
• There is no concept of a "session" at the HTTP level, and

therefore it has to be implemented at the web application
level
– Using cookies
– Using URL parameters
– Using hidden form fields

• In the most common use of sessions, the server generates a
unique (random and unguessable) session ID and sends it to
the user agent as a cookie

• On subsequent requests, user agent sends the session ID to
the server, and the server uses the session ID to index the
server's session information

Designing Web Applications
• In the early days of the web, one would write a "web

application" by writing a custom web server that
received HTTP requests, ran custom code based on
the URL path and query data, and returned a
dynamically created HTML page
– The drawback here is that one would have to keep the web

server up-to-date with the latest HTTP changes (HTTP/1.1
spec is 175 pages)

• Generally decided that it was a good idea to separate
the concerns into a web server, which accepted HTTP
request and forwarded relevant requests to a web
application
– Could develop a web application without worrying about

HTTP

Web Application Overview

HTTP Request

HTTP Response

Web
Server

Client

Web
Application

Common Gateway Interface (CGI)

• standard protocol for web servers to execute programs
• request comes in
• web server executes CGI script
• script generates HTML output
• often under cgi-bin/ directory
• environmental variables are used to pass information to

the script
– PATH_INFO
– QUERY_STRING

Active Server Pages (ASP)
• Microsoft's answer to CGI scripts
• First version released in 1996
• Syntax of a program is a mix of

– Text
– HTML Tags
– Scripting directives (VBScript Jscript)
– Server-side includes (#include, like C)

• Scripting directives are interpreted and executed at
runtime

• Will be supported "a minimum of 10 years from the
Windows 8 release date"
– October 26th, 2022

ASP Example
<% strName = Request.Querystring("Name")

 If strName <> "" Then %>

Welcome!

<% Response.Write(strName)

 Else %>

You didn't provide a name...

<% End If %>

Web Application Frameworks
• As the previous Request.Querystring example

shows, frameworks were quickly created to
assist web developers in making web
applications

• Frameworks can help
– Ease extracting input to the web application

(query parameters, form parameters)
– Setting/reading cookies
– Sessions
– Security
– Database

Web Application Frameworks
• Important to study web application

frameworks to understand the (security)
pros and cons of each

• Some vulnerability classes are only
present in certain frameworks

PHP: Hypertext Preprocessor
• Scripting language that can be embedded in HTML pages to

generate dynamic content
– Basic idea is similar to JSP and ASP

• Originally released in 1995 as a series of CGI scripts as C
binaries

• PHP 3.0 released June 1998 is the closest to current PHP
– "At its peak, PHP 3.0 was installed on approximately 10% of the

web servers on the Internet" -
http://php.net/manual/en/history.php.php

• PHP 4.0 released May 2000
• PHP 5.0 released July 2004

– Added support for objects
• PHP 5.6 released August 2014 is the latest version

PHP – Popularity

http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html

PHP
• The page is parsed and interpreted on each

page request
– Can be run as CGI, so that a new copy of the

PHP interpreter is run on each request
– Or the PHP interpreter can be embedded into the

web server
• mod_php for apache

• Completely new language
– C-like in syntax
– Custom designed to build web applications
– Language grew organically over time

PHP – Example
<!DOCTYPE html>

<html>

 <head>

 <title>PHP Hello World</title>

 </head>

 <body>

 <?php echo '<p>Hello World</p>'; ?>

 </body>

</html>

PHP – Features
• Dynamically typed
• String variable substitution
• Dynamic include/require
• Superglobals
• Variable variables
• register_globals

PHP – String Variable Substitution
<?php

echo 'this is a simple string';

echo 'Variables do not $expand $either';

$juice = "apple";

echo "He drank some $juice juice.";

$juices = array("apple", "orange", "koolaid1" => "purple");

echo "He drank some $juices[0] juice.";

echo "He drank some $juices[1] juice.";

echo "He drank some $juices[koolaid1] juice.";

echo "This works: {$juices['koolaid1']}";

http://php.net/manual/en/language.types.string.php

PHP – Dynamic include/require
<?php

/**

* Front to the WordPress application. This file doesn't do anything, but loads

* wp-blog-header.php which does and tells WordPress to load the theme.

*

* @package WordPress

*/

/**

* Tells WordPress to load the WordPress theme and output it.

*

* @var bool

*/

define('WP_USE_THEMES', true);

/** Loads the WordPress Environment and Template */

require(dirname(__FILE__) . '/wp-blog-header.php');

wp-blog-header.php
<?php

/**

* Loads the WordPress environment and template.

*

* @package WordPress

*/

if (!isset($wp_did_header)) {

 $wp_did_header = true;

 require_once(dirname(__FILE__) . '/wp-load.php');

 wp();

 require_once(ABSPATH . WPINC . '/template-loader.php');

}

allow_url_include

• PHP setting to allow http and ftp urls to
include functions

• Must enable allow_url_fopen as well
– This setting allows calling fopen on a url

• Remote file is fetched, parsed, and
executed

PHP - Superglobals
<?php

if ('POST' != $_SERVER['REQUEST_METHOD']) {

 header('Allow: POST');

 header('HTTP/1.1 405 Method Not Allowed');

 header('Content-Type: text/plain');

 exit;

}

$comment_post_ID = isset($_POST['comment_post_ID']) ? (int) $_POST['comment_post_ID'] : 0;

$post = get_post($comment_post_ID);

if (empty($post->comment_status)) {

 /**

 * Fires when a comment is attempted on a post that does not exist.

 * @since 1.5.0

 * @param int $comment_post_ID Post ID.

 */

 do_action('comment_id_not_found', $comment_post_ID);

 exit;

}

// get_post_status() will get the parent status for attachments.

$status = get_post_status($post);

$status_obj = get_post_status_object($status);

Wordpress – wp-comments-post.php

PHP – Variable Variables
<?php

$a = 'hello';

$$a = 'world';

echo "$a $hello";

echo "$a ${$a}";

http://php.net/manual/en/language.variables.variable.php

PHP – register_globals
• "To register the EGPCS (Environment, GET,

POST, Cookie, Server) variables as global
variables."

• PHP will automatically inject variables into
your script based on input from the HTTP
request
– HTTP request variable name is the PHP variable

name and the value is the PHP variable's value
• Default enabled until 4.2.0 (April 2002)
• Deprecated as of PHP 5.3.0
• Removed as of PHP 5.4.0

PHP – register_globals
<html>

 <head> <title>Feedback Page</title></head>

 <body>

 <h1>Feedback Page</h1>

 <?php

 if ($name && $comment) {

 $file = fopen("user_feedback", "a");

 fwrite($file, "$name:$comment\n");

 fclose($file);

 echo "Feedback submitted\n";

 }

 ?>

 <form method=POST>

 <input type="text" name="name">

 <input type="text" name="comment">

 <input type="submit" name="submit" value="Submit">

 </form>

 </body>

</html>

PHP – register_globals
<?php

// define $authorized = true only if user is authenticated

if (authenticated_user()) {

 $authorized = true;

}

// Because we didn't first initialize $authorized as false, this might be

// defined through register_globals, like from GET auth.php?authorized=1

// So, anyone can be seen as authenticated!

if ($authorized) {

 include "/highly/sensitive/data.php";

}

?>

source: http://php.net/manual/en/security.globals.php

http://php.net/manual/en/security.globals.php

Storing State
• Web applications would like to store persistent

state
– Otherwise it's hard to make a real application, as

cookies can only store small amounts of information
• Where to store the state?

– Memory
– Filesystem

• Flat
• XML file

– Database
• Most common for modern web applications

Web Applications and the Database
• Pros

– ACID compliance
– Concurrency
– Separation of concerns

• Can run database on another server
• Can have multiple web application processes

connecting to the same database
• Cons

– More complicated to build and deploy
– Adding another language to web technology

(SQL)

LAMP Stack
• Classic web application model

– Linux
– Apache
– MySQL
– PHP

• Nice way to think of web applications, as each
component can be mixed and swapped
– Underlying OS
– Web server
– Database
– Web application language/framework

MySQL
• Currently second-most used open-source

relational database
– What is the first?

• First release on May 23rd 1995
– Same day that Sun released first version of

Java
• Sun eventually purchased MySQL (the

company) for $1 billion in January 2008
• Oracle acquired Sun in 2010 for $5.6 billion

Structured Query Language
• Special purpose language to interact with

a relational database
• Multiple commands

– SELECT
– UPDATE
– INSERT

• Some slight differences between SQL
implementations

SQL Examples
SELECT * FROM Users WHERE userName = 'admin';

SELECT * FROM Book WHERE price > 100.00 ORDER BY title;

SELECT isbn, title, price FROM Book WHERE price < (SELECT

AVG(price) FROM Book) ORDER BY title;

INSERT INTO example (field1, field2, field3) VALUES ('test',

'N', NULL);

UPDATE example SET field1 = 'updated value' WHERE field2 = 'N';

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10) UNION

(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

PHP and MySQL
<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

if (!$link) {

 die('Could not connect: ' . mysql_error());

}

mysql_select_db('example', $link);

$firstname = 'fred';

$lastname = 'fox';

$query = sprintf("SELECT firstname, lastname, address, age FROM friends

 WHERE firstname='%s' AND lastname='%s'", $firstname, $lastname);

$result = mysql_query($query);

if (!$result) {

 $message = 'Invalid query: ' . mysql_error() . "\n";

 die($message);

}

while ($row = mysql_fetch_assoc($result)) {

 echo $row['firstname'];

 echo $row['address'];

} source: http://php.net/manual/en/function.mysql-query.php

http://php.net/manual/en/function.mysql-query.php

HTML
• Original HTML had

– images
– tables
– font sizes
– …

• Content was static

source: https://web.archive.org/web/19961017235908/http://www2.yahoo.com/

https://web.archive.org/web/19961017235908/http://www2.yahoo.com/

source: https://web.archive.org/web/19961022174810/http://www.altavista.com/

https://web.archive.org/web/19961022174810/http://www.altavista.com/

source: https://web.archive.org/web/19981202230410/http://www.google.com/

https://web.archive.org/web/19981202230410/http://www.google.com/

HTML Design
• HTML designed to describe a text

document with hyperlinks to other
documents

• How to do fancy animations or pretty web
pages?

JavaScript
• Client-Side scripting language for interacting and manipulating HTML
• Created by Brendan Eich at Netscape Navigator 2.0 in September 1995 as

"LiveScript"
• Renamed to "JavaScript" in December 1995 and is (from the Netscape Press

Release)
– "announced JavaScript, an open, cross-platform object scripting language for the

creation and customization of applications on enterprise networks and the Internet"
• JavaScript is a (from wikipedia) "prototype-based scripting language with

dynamic typing and first-class functions"
– Does this sound like Java?

• Questions over why the name change
– Marketing ploy to capitalize on the "hot" Java language?
– Collaboration between Sun and Netscape?

• By August 1996, Microsoft added support for JavaScript to Internet Explorer
– Microsoft later changed the name to JScript to avoid Sun's Java trademark

• Submitted to Ecma International for standardization on November 1996
• ECMA-262, on June 1997, standardized first version of ECMAScript

JavaScript
• Lingua franca of the web
• Eventually supported by all browsers
• Language organically evolved along the

way

JavaScript
• Code can be embedded into HTML pages using the script element and

(optionally storing the code in HTML comments)
<script>
<!--
var name = prompt('Please enter your name below.', '');
if (name == null) {
 document.write('Welcome to my site!');
}
else {
 document.write('Welcome to my site ' + name + '!');
}
-->
</script>

<script type="text/javascript">
<script language="javascript">

JavaScript
• You can also include external JavaScript files in

your HTML
– As opposed to the inline JavaScript that we saw in the

previous example
• <script src="<absolute or relative
URL"></script>

• When the browser parses this HTML element, it
automatically fetches and executes the JavaScript
before continuing to parse the rest of the HTML
– Semantically equivalent as if the JavaScript was

directly in the page

Document Object Model (DOM)
• The Document Object Model is a programmatic interface in

JavaScript to the manipulation of client-side content
• Created a globally accessible in JavaScript document object

– The document object is used to traverse, query, and manipulate the
browser's representation of the HTML page as well as handle events

• DOM 0, released in 1995 with original JavaScript
– Very basic

• Intermediate DOM began in 1997 with Microsoft and Netscape
releasing incompatible improvements to DOM

• W3C stepped in and started to define standards
– DOM 1, October 1998
– DOM 2, November 2000
– DOM 3, April 2004
– DOM is now a W3C Living Standard, and various snapshots of the

standard will turn into DOM4

https://www.w3.org/TR/domcore/

DOM Example
<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>DOM Example</title>

 </head>

 <body>

 <h1>DOM Example</h1>

 <div id='insert_here'>

 </div>

 </body>

 <script>

 var hr = document.createElement('HR');

 document.getElementById('insert_here').appendChild(hr);

 </script>

</html>

Using the DOM
• Coding proper DOM access in a cross-browser approach is a

nightmare
– Some highlights from

http://stackoverflow.com/questions/565641/what-cross-browser-is
sues-have-you-faced

• "Internet Explorer does not replace or HTML char code 160, you
need to replace its Unicode equivalent \u00a0"

• "In Firefox a dynamically created input field inside a form (created using
document.createElement) does not pass its value on form submit."

• "document.getElementById in Internet Explorer will return an element
even if the element name matches. Mozilla only returns element if id
matches."

• jQuery is an amazing library that provides a uniform interface
and handles all the DOM cross-browser compatibilities

Browser Object Model (BOM)
• Programmatic interface to everything

outside the document (aka the browser)
• No complete standard (the term BOM is

colloquial)
• Examples

– window.name = "New name"
– window.close()
– window.location = "http://example.com"

JavaScript vs. DOM and BOM
• JavaScript the language is defined separate from the DOM

and BOM
– DOM has its own specification, and much of the BOM is specified

in HTML5 spec
• In the web context, these are often confused, because they

are used together so often
• However, now with JavaScript popping up all over the place,

it's an important distinction
– Server-side code using Node.js
– Database queries (MongoDB)
– Flash (ActionScript, which has its own DOM-like capabilities)
– Java applications (javax.script)
– Windows applications (WinRT)

JavaScript – Object-based
• Almost everything in JavaScript is an object

– Objects are associative arrays (hash tables), and
the properties and values can be added and
deleted at run-time

var object = {test: "foo", num: 50};

object['foo'] = object;

console.log(object[object['test']]);

object.num = 1000;

console.log(object['num']);

JavaScript – Recursion
function factorial(n) {

 if (n === 0) {

 return 1;

 }

 return n * factorial(n - 1);

}

console.log(factorial(5));

120

http://en.wikipedia.org/wiki/JavaScript

JavaScript – Anonymous Functions
and Closures

var createFunction = function() {

 var count = 0;

 return function () {

 return ++count;

 };

};

var inc = createFunction();

inc();

inc();

inc();

var inc2 = createFunction();

inc2();

JavaScript – Runtime Evaluation
• JavaScript contains features to interpret a string as code and

execute it
– eval
– Function
– setTimeout
– setInterval
– execScript (deprecated since IE11)

var foo = "bar";

eval("foo = 'admin';");

console.log(foo);

var x = "console.log('hello');";

var test = new Function(x);

test();

JavaScript Uses – Form Validation
• How to validate user input on HTML

forms?
• Traditionally requires a round-trip to the

server, where the server can check the
input to make sure that it is valid

JavaScript Uses – Form Validation
<?php

if ($_GET['submit']) {

 $student = $_GET['student'];

 $class = $_GET['class'];

 $grade = $_GET['grade'];

 if (empty($student) || empty($class) || empty($grade)) {

 echo "Error, did not fill out all the forms";

 }

 else if (!($grade == 'A' || $grade == 'B' || $grade == 'C' ||

 $grade == 'D' || $grade == 'F')) {

 echo "Error, grade must be one of A, B, C, D, or F";

 }

 else { echo "Grade successfully submitted!";

 }

} ?>

<form>

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

Quick tip:
$ cd /var/www/public_html
$ php -S localhost:8000

form_validation_regular.php

empty class field

wrong grade format

correct submission

JavaScript Uses – Form Validation
<script>

function check_form() {

 var form = document.getElementById("the_form");

 if (form.student.value == "" || form.class.value == "" || form["grade"].value == ""){

 alert("Error, must fill out all the form");

 return false;

 }

 var grade = form["grade"].value;

 if (!(grade == 'A' || grade == 'B' || grade == 'C' ||

 grade == 'D' || grade == 'F')) {

 alert("Error, grade must be one of A, B, C, D, or F");

 return false;

 }

 return true;

}

</script>

<form id="the_form" onsubmit="return check_form()">

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

form_validation_js.php

correct submission

Client-Side Validation
• Now that we're doing validation on the client, can we get rid

of all those PHP checks in our server-side code?
– No!
– No guarantee that client-side validation is performed

• User disables JavaScript
• Command-line clients

• Otherwise, users could enter arbitrary data that does not
conform to your validation
– Could lead to a security compromise or not

• So the validation must remain on the server-side and the
client-side
– Brings up another problem, how to perform consistent validation

when server-side and client-side written in different languages

The XMLHttpRequest Object
• Microsoft developers working on Outlook Web Access for Exchange

2000
• Scalability problems with traditional web application
• They created a DHTML version (circa) 1998 using an ActiveX

control to fetch bits of data from the server using JavaScript
• OWA team got the MSXML team (MSXML is Microsoft's XML library,

and it shipped with IE) to include their ActiveX control (hence the
XML in the name)
– Shipped in IE 5, March 1999

• Exchange 2000 finally released in November 2000, and OWA used
the ActiveX Object

• Added by Netscape in December 2000 as XMLHttpRequest
• Find the full story here:

https://hackerfall.com/story/the-story-of-xmlhttp-2008

https://hackerfall.com/story/the-story-of-xmlhttp-2008

The XMLHttpRequest Object
• Allows JavaScript code to (asynchronously) retrieve data

from the server, then process the data and update the
DOM

• Because of the origin (ActiveX control on Windows and
included in Netscape's DOM), used to need two different
ways to instantiate the control
– Most browsers (including Microsoft Edge):

• http_request = new XMLHttpRequest();

– Internet Explorer
• http_request = new ActiveXObject("Microsoft.XMLHTTP");

Creating an XMLHttpRequest
• Using the onreadystatechange property of an

XMLHttpRequest object one can set the action to be
performed when the result of a query is received
http_request.onreadystatechange = function(){

 <JS code here>

};

• Then, one can execute the request
• http_request.open('GET',

'http://example.com/show.php?keyword=foo', true);

• http_request.send();
• Note that the third parameter indicates that the request is

asynchronous, that is, the execution of JavaScript will
proceed while the requested document is being downloaded

XMLHttpRequest Lifecycle
• The function specified using the "onreadystatechange"

property will be called at any change in the request
status
– 0 (uninitialized: Object is not initialized with data)
– 1 (loading: Object is loading its data)
– 2 (loaded: Object has finished loading its data)
– 3 (interactive: User can interact with the object even though

it is not fully loaded)
– 4 (complete: Object is completely initialized)

• Usually wait until the status is “complete”
– if (http_request.readyState == 4) {
 operates on data} else {
 not ready, return}

XMLHttpRequest Success
• After having received the document (and

having checked for a successful return
code – 200) the content of the request can
be accessed:
– As a string by calling:
http_request.responseText

– As an XMLDocument object:
http_request.responseXML

• In this case the object can be modified using the
JavaScript DOM interface

XMLHttpRequest Example
<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>AJAX Example</title>

 </head>

 <body>

 <h1>AJAX Example</h1>

 <div id='insert_here'>

 </div>

 <script>

 …
 </script>

 </body>

</html>

XMLHttpRequest Example
if (typeof XMLHttpRequest != "undefined") {

 var http_request = new XMLHttpRequest();

 }

 else {

 var http_request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if (typeof console == "undefined") {

 console = { "log" : function (text) { alert(text); } };

 }

 http_request.onreadystatechange = function () {

 console.log(http_request.readyState);

 if (http_request.readyState === 4) {

 var text = http_request.responseText;

 var new_node = document.createTextNode(text);

 document.getElementById('insert_here').appendChild(new_node);

 }

 };

 console.log("Before Request");

 http_request.open('GET', 'ajax_test.txt', true);

 http_request.send();

 console.log("After Request");

XMLHttpRequest with jQuery
<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>AJAX jQuery Example</title>

 </head>

 <body>

 <h1>AJAX jQuery Example</h1>

 <div id='insert_here'>

 </div>

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js">

 </script>

 <script>

 $.get("ajax_test.txt", function(data) {

 $("#insert_here").html(data);

 });

 </script>

 </body>

</html>

