NC STATE UNIVERSITY

CSC 591
Systems Attacks and Defenses

Sandboxing Applications

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

Native code

« Performance
 Legacy code
« Various languages

Run a random binary on my system?
No way!

NC STATE UNIVERSITY

Sandboxing Native Code

NC STATE UNIVERSITY

Trust the developer

« ActiveX, browser plug-ins, Java, etc.
« Code is signed

» Ask user if developer should be trusted
— Good for known developers
— Tricky for web applications

NC STATE UNIVERSITY

Hardware/OS sandboxing

* Virtual machines

« Containers

« Capsicum, seccomp
« OS kernel vulnerability
« OS incompatibility

System calls, threads, etc
— Virtual memory layout
— OS might not have a sandboxing mechanism
— Might need to run it as root

« Hardware vulnerabilities

NC STATE UNIVERSITY

Software Fault Isolation

Before running a binary, verify it's safe
— Static analysis

« Self-modifying code?

Overlapping instructions?

Safe instruction
— Math, mov, etc
Unsafe instruction
— Memory access
— Privileged instruction
How to deal with unsafe instructions

— Instrument
— Prohibit

NC STATE UNIVERSITY

Trusted Service Runtime

« Code that can be trusted and will perform the sensitive

operations
— Allocate memory
— Threads
— Message passing
 After verifying, safely run it in same process as other
trusted code

* Allow the sandbox to call into trusted service runtime
code

NC STATE UNIVERSITY

Safety

 No disallowed instructions
— Syscall, int
 All code and data within bound of module

— Module cannot corrupt service runtime data structures

— Module does not jJump into existing code
ret2libc
« ROP

— Everything else should be protected from the module

NC STATE UNIVERSITY

Checks

« Scan the binary and look for “int” and “syscall” opcodes
— If check passes, can start running code
— All code is marked as read-only
— All writable memory is non-executable

Is this enough?

NC STATE UNIVERSITY

Check complications

« X80 has variable-length instructions
— "Int" and "syscall" instructions are 2 bytes long
— Other instructions could be anywhere from 1 to 15 bytes

25 CD 80 00 00
| ~ AND %eax, $0x000080cd

» INT $0x80 # Linux syscall

Should we scan the binary from every offset?

NC STATE UNIVERSITY

Reliable Execution

« Ensure code executes only instructions that verifier

knows about

« Scan forward through all instructions, starting at the
beginning

 |f we see a jump instruction, make sure it's jumping to
address we saw
— [Easy to ensure for static jumps (constant addr)

— Cannot ensure statically for computed jumps (jump to addr
from register)

NC STATE UNIVERSITY

Computed jumps

« Add dynamic checks before jumps
* Checks for jumping to a register

AND $Oxffffffeo, %eax # Clear last 5 bits
JMP *%eax

« Ensures that jumps go to multiples of 32 bytes
— Longer than the maximum instruction length
— Power of 2
— Fits trampoline code
— We don’t want to waste space

e nacljmp

NC STATE UNIVERSITY

Computed jumps

* No instructions span a 32-byte boundary

« Compiler's job is to ensure these rules

— Replace every computed jump with the two-instruction
sequence

— Add NOP instructions if some other instruction might span
32-byte boundary

— Add NOPs to pad to 32-byte multiple if next instr is a computed
jump target

— Always possible because NOP instruction is just one byte

NC STATE UNIVERSITY

Guarantees

 Verifier checked all instructions starting at
32-byte-multiple addresses

« Computed jumps can only go to 32-byte-multiple
addresses

« What prevents the module from jumping past the AND,
directly to the JMP?

— The NaCl jump instruction will never be compiled so that the
AND part and the JMP part are split by a 32-byte boundary.
Thus, you could never jump straight to the JMP part

NC STATE UNIVERSITY

What about RET instructions?

« Effectively a computed jump, but with address stored on
stack

 Race condition
— |f we check the address on the stack, TOCTOU with another
thread

* Prohibited
 pop + nacljmp code

NC STATE UNIVERSITY

Segmentation

« We need to prevent jumps outside of the code
« X806 hardware provides "segments”

* Relative address within some segment
— Segment specifies base+size

« Address translation:
(segment selector, addr) -> (segbase + addr % segsize)

NC STATE UNIVERSITY

Invoking trusted code from sandbox

Trampoline undoes the sandbox, enters trusted code
— Starts at a 32-byte multiple boundary

— Loads unlimited segment

— Jumps to trusted code that lives above 256MB

Trampoline must fit in 32 bytes
Trusted code first switches to a different stack
Trusted code reloads other segment selectors

NC STATE UNIVERSITY

Service Runtime

« Memory allocation: sbrk/mmap

 Thread operations: create, etc

« |PC.: initially with Javascript code on page that started
this NaCl program

* Browser interface via NPAPI: DOM access, open URLs,
user input, etc.

* No networking: can use Javascript to access network

NC STATE UNIVERSITY

Limiting code/data

* New segment with offset=0, size=256MB

« Set all segment selectors to that segment

« Modify verifier to reject any instructions that change
segment selectors

* Ensures all code and data accesses will be within
[0..256MB)

NC STATE UNIVERSITY

How secure is Native Client

* |nner sandbox: validator has to be correct
« Quter sandbox: OS-dependent plan

« Why the outer sandbox?
— Possible bugs in the inner sandbox.

« What could an adversary do if they compromise the

inner sandbox?

— Exploit CPU bugs.

— Exploit OS kernel bugs.

— Exploit bugs in other processes communicating with the
sandbox process

« Service runtime: initial loader, runtime trampoline
interfaces.

* |nter-module communication (IMC) interface + NPAPI:
complex code, can (and did) have bugs

NC STATE UNIVERSITY

What about buffer overflows?

« Any computed call (function pointer, return address) has
to use 2-instr jump

* Only jump to validated code in the module's region

« Buffer overflows might allow attacker to take over
module

 However, can't escape NaCl's sandbox

NC STATE UNIVERSITY

Overhead

« CPU overhead dominated by code alignment

requirements
— Larger instruction cache footprint

* Minimal overhead for added checks on computed jumps

« Call-into-service-runtime performance seems
comparable to Linux syscalls

« Average overhead is less than 5%

NC STATE UNIVERSITY

Limitations

« Static code
— No JIT
— No shared libraries
« Dynamic code is possible to sandbox though!
— Language-Independent Sandboxing of Just-In-Time
Compilation and Self-Modifying Code

 No standard APl to communicate with the DOM

— If any other browser wants to implement NaCl, they have to
reverse-engineer Google’s version to be compatible

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37204.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37204.pdf

NC STATE UNIVERSITY

You can use NaCl

<embed name="nacl module"” id="hello world"
width=0 height=0 src="hello world.nmf"
type="application/x-nacl” />

Source: https://developer.chrome.com/native-client/devguide/tutorial/tutorial-part1

https://developer.chrome.com/native-client/devguide/tutorial/tutorial-part1

NC STATE UNIVERSITY

Mozilla’s approach: asm.js

 a strict subset of JavaScript
* can be used as a low-level, efficient target language for
compilers

 abstraction similar to the C/C++ virtual machine:
— alarge binary heap with efficient loads and stores, integer and
floating-point arithmetic, first-order function definitions, and
function pointers

« C/C++ => LLVM => Emscripten => JavaScript

NC STATE UNIVERSITY

asm.js code example

function strlen(ptr) { // calculate length of C
string
ptr = ptr | ©;
var curr = 0;
curr = ptr;
while (MEM8[curr] | © != 0) {
curr = (curr + 1) | 0;

¥

return (curr - ptr) | 0;

NC STATE UNIVERSITY

The future: WebAssembly

« Google is moving away from NaCl/PNacl
— One of the main reasons is the lack of standardized API
— Everyone is familiar with JavaScript

« Binary encoding of the AST
— No more parsing code
— More compact

 Builds on top of asm.js
« Great browser support
« DOM manipulation done through JS API

NC STATE UNIVERSITY

WebAssembly browser support

WebAssembly B - otHer Global 58.25%

WebAssembly or "wasm" is a new portable, size- and load-
time-efficient format suitable for compilation to the web.

Usage relative Date relative Show all

Android * Chrome for

Browser Android

IE Edge " Firefox Chrome Safari Opera i0S Safari - Opera Mini~

4.4

source: http://caniuse.com/#feat=wasm

http://caniuse.com/#feat=wasm

NC STATE UNIVERSITY

Your Security Zen

JS/Linux (x86)

C' | @& Secure | https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/buildroot-x86.cfg

Loading. ..
elcome to JS/Linux (x86)

Use 'vflogin username' to connect to your account.

You can create a new account at https://vfsync.org/signup
Use 'export_file filename' to export a file to your computer.
Imported files are written to the home directory.

[root@localhost ~]# 1s

hello.c
[root@localhost ~]# gcc hello.c
[root@localhost ~]# ./a.out
Hello World
[root@localhost ~]# [

source: https://bellard.org/jslinux/

https://bellard.org/jslinux/

