
CSC 591
Systems Attacks and Defenses

Sandboxing Applications

Alexandros Kapravelos
akaprav@ncsu.edu

Native code

• Performance
• Legacy code
• Various languages

Run a random binary on my system?
No way!

Sandboxing Native Code

Trust the developer

• ActiveX, browser plug-ins, Java, etc.
• Code is signed
• Ask user if developer should be trusted

– Good for known developers
– Tricky for web applications

Hardware/OS sandboxing

• Virtual machines
• Containers
• Capsicum, seccomp
• OS kernel vulnerability
• OS incompatibility

– System calls, threads, etc
– Virtual memory layout
– OS might not have a sandboxing mechanism
– Might need to run it as root

• Hardware vulnerabilities

Software Fault Isolation

• Before running a binary, verify it’s safe
– Static analysis

• Self-modifying code?
• Overlapping instructions?

• Safe instruction
– Math, mov, etc

• Unsafe instruction
– Memory access
– Privileged instruction

• How to deal with unsafe instructions
– Instrument
– Prohibit

Trusted Service Runtime

• Code that can be trusted and will perform the sensitive
operations
– Allocate memory
– Threads
– Message passing

• After verifying, safely run it in same process as other
trusted code

• Allow the sandbox to call into trusted service runtime
code

Safety

• No disallowed instructions
– Syscall, int

• All code and data within bound of module
– Module cannot corrupt service runtime data structures
– Module does not jump into existing code

• ret2libc
• ROP

– Everything else should be protected from the module

Checks

• Scan the binary and look for “int” and “syscall” opcodes
– If check passes, can start running code
– All code is marked as read-only
– All writable memory is non-executable

Is this enough?

Check complications

• x86 has variable-length instructions
– "int" and "syscall" instructions are 2 bytes long
– Other instructions could be anywhere from 1 to 15 bytes

25 CD 80 00 00

Should we scan the binary from every offset?

INT $0x80 # Linux syscall

AND %eax, $0x000080cd

Reliable Execution

• Ensure code executes only instructions that verifier
knows about

• Scan forward through all instructions, starting at the
beginning

• If we see a jump instruction, make sure it's jumping to
address we saw
– Easy to ensure for static jumps (constant addr)
– Cannot ensure statically for computed jumps (jump to addr

from register)

Computed jumps

• Add dynamic checks before jumps
• Checks for jumping to a register

AND $0xffffffe0, %eax # Clear last 5 bits

JMP *%eax

• Ensures that jumps go to multiples of 32 bytes
– Longer than the maximum instruction length
– Power of 2
– Fits trampoline code
– We don’t want to waste space

• nacljmp

Computed jumps

• No instructions span a 32-byte boundary
• Compiler's job is to ensure these rules

– Replace every computed jump with the two-instruction
sequence

– Add NOP instructions if some other instruction might span
32-byte boundary

– Add NOPs to pad to 32-byte multiple if next instr is a computed
jump target

– Always possible because NOP instruction is just one byte

Guarantees

• Verifier checked all instructions starting at
32-byte-multiple addresses

• Computed jumps can only go to 32-byte-multiple
addresses

• What prevents the module from jumping past the AND,
directly to the JMP?
– The NaCl jump instruction will never be compiled so that the

AND part and the JMP part are split by a 32-byte boundary.
Thus, you could never jump straight to the JMP part

What about RET instructions?

• Effectively a computed jump, but with address stored on
stack

• Race condition
– If we check the address on the stack, TOCTOU with another

thread
• Prohibited
• pop + nacljmp code

Segmentation

• We need to prevent jumps outside of the code
• x86 hardware provides "segments"
• Relative address within some segment

– Segment specifies base+size
• Address translation:

(segment selector, addr) -> (segbase + addr % segsize)

Invoking trusted code from sandbox

• Trampoline undoes the sandbox, enters trusted code
– Starts at a 32-byte multiple boundary
– Loads unlimited segment
– Jumps to trusted code that lives above 256MB

• Trampoline must fit in 32 bytes
• Trusted code first switches to a different stack
• Trusted code reloads other segment selectors

Service Runtime

• Memory allocation: sbrk/mmap
• Thread operations: create, etc
• IPC: initially with Javascript code on page that started

this NaCl program
• Browser interface via NPAPI: DOM access, open URLs,

user input, etc.
• No networking: can use Javascript to access network

Limiting code/data

• New segment with offset=0, size=256MB
• Set all segment selectors to that segment
• Modify verifier to reject any instructions that change

segment selectors
• Ensures all code and data accesses will be within

[0..256MB)

How secure is Native Client

• Inner sandbox: validator has to be correct
• Outer sandbox: OS-dependent plan
• Why the outer sandbox?

– Possible bugs in the inner sandbox.
• What could an adversary do if they compromise the

inner sandbox?
– Exploit CPU bugs.
– Exploit OS kernel bugs.
– Exploit bugs in other processes communicating with the

sandbox process
• Service runtime: initial loader, runtime trampoline

interfaces.
• Inter-module communication (IMC) interface + NPAPI:

complex code, can (and did) have bugs

What about buffer overflows?

• Any computed call (function pointer, return address) has
to use 2-instr jump

• Only jump to validated code in the module's region
• Buffer overflows might allow attacker to take over

module
• However, can't escape NaCl's sandbox

Overhead

• CPU overhead dominated by code alignment
requirements
– Larger instruction cache footprint

• Minimal overhead for added checks on computed jumps
• Call-into-service-runtime performance seems

comparable to Linux syscalls
• Average overhead is less than 5%

Limitations

• Static code
– No JIT
– No shared libraries

• Dynamic code is possible to sandbox though!
– Language-Independent Sandboxing of Just-In-Time

Compilation and Self-Modifying Code
• No standard API to communicate with the DOM

– If any other browser wants to implement NaCl, they have to
reverse-engineer Google’s version to be compatible

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37204.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37204.pdf

You can use NaCl

<embed name="nacl_module" id="hello_world"
width=0 height=0 src="hello_world.nmf"

type="application/x-nacl" />

Source: https://developer.chrome.com/native-client/devguide/tutorial/tutorial-part1

https://developer.chrome.com/native-client/devguide/tutorial/tutorial-part1

Mozilla’s approach: asm.js

• a strict subset of JavaScript
• can be used as a low-level, efficient target language for

compilers
• abstraction similar to the C/C++ virtual machine:

– a large binary heap with efficient loads and stores, integer and
floating-point arithmetic, first-order function definitions, and
function pointers

• C/C++ => LLVM => Emscripten => JavaScript

asm.js code example

function strlen(ptr) { // calculate length of C

string

 ptr = ptr | 0;

 var curr = 0;

 curr = ptr;

 while (MEM8[curr] | 0 != 0) {

 curr = (curr + 1) | 0;

 }

 return (curr - ptr) | 0;

}

The future: WebAssembly

• Google is moving away from NaCl/PNacl
– One of the main reasons is the lack of standardized API
– Everyone is familiar with JavaScript

• Binary encoding of the AST
– No more parsing code
– More compact

• Builds on top of asm.js
• Great browser support
• DOM manipulation done through JS API

WebAssembly browser support

source: http://caniuse.com/#feat=wasm

http://caniuse.com/#feat=wasm

Your Security Zen

JS/Linux (x86)

source: https://bellard.org/jslinux/

https://bellard.org/jslinux/

