
CSC 591
Systems Attacks and Defenses

Malicious Code

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Chris Kruegel)

Overview
• Introduction to malicious code

– taxonomy, history, life cycle

• Virus
– infection strategies, armored viruses, detection

• Worms
– email- and exploit-based worms, spreading strategies

• Trojan horses
– keylogger, rootkits, botnet, spyware

Introduction
• Malicious Code (Malware)

– software that fulfills malicious intent of author
– term often used equivalent with virus (due to media coverage)
– however, many different types exist
– classic viruses account for only 3% of malware in the wild

• Virus - Definition

 A virus is a program that reproduces its own code by attaching
 itself to other executable files in such a way that the virus code is
 executed when the infected executable file is executed

Taxonomy

Computer Virus Computer Worm

Trojan Horse

Rootkit

Keylogger

Spyware

Dialers

M
ea

ns
 o

f D
is

tr
ib

ut
io

n

 N

on
-S

pr
ea

di
ng

Se
lf-

Sp
re

ad
in

g

Requires Host Runs Independently
Dependency on Host

Taxonomy
• Virus

– self-replicating, infects files (thus requires host)

• Worm
– self-replicating, spreads over network

• Interaction-based worms (B[e]agle, Netsky, Sobig)
– spread requires human interaction
– double-click and execute extension
– follow link to download executable

• Process-based worms (Code Red, Blaster, Slammer)
– requires no human interaction
– exploits vulnerability in network service

Blaster Worm

Reasons for Malware Prevalence
• Mixing data and code

– violates important design property of secure systems
– unfortunately very frequent

• Homogeneous computing base
– Windows is just a very tempting target

• Unprecedented connectivity
– easy to attack from safety of home

• Clueless user base
– many targets available

• Malicious code has become profitable
– compromised computers can be sold (e.g., spam, DoS, banking)

Virus Lifecycle
• Lifecycle

– reproduce, infect, run payload

• Reproduction phase
– viruses balance infection versus detection possibility
– variety of techniques may be used to hide viruses

• Infection phase
– difficult to predict when infection will take place
– many viruses stay resident in memory (TSR or process)

• Attack phase
– e.g., deleting files, changing random data on disk
– viruses often have bugs (poor coding) so damage can be done

Infection Strategies
• Boot viruses

– master boot record (MBR) of hard disk (first sector on disk)
– boot sector of partitions
– e.g., Pakistani Brain virus
– rather old, but interest is growing again

• diskless workstations, virtual machine virus (SubVirt)
• MebRoot

• File infectors
– simple overwrite virus (damages original program)
– parasitic virus

• append virus code and modify program entry point
– cavity virus

• inject code into unused regions of program code

Infection Strategies
• Entry Point Obfuscation

– virus scanners quickly discovered to search around entry point
– virus hijacks control later (after program is launched)
– overwrite import table addresses
– overwrite function call instructions

• Code Integration
– merge virus code with program
– requires disassembly of target

• difficult task on x86 machines
– W95/Zmist is a classic example for this technique

Macro Viruses
• Many modern applications support macro languages

– Microsoft Word, Excel, Outlook
– macro language is powerful
– embedded macros automatically executed on load
– mail app. with Word as an editor
– mail app. with Internet Explorer to render HTML

Locky Ransomware

Locky Ransomware

Locky Ransomware

Source:
http://www.bleepingcomputer.com/news/security/the-locky-ransomware-encrypts-local-files-and-unmapped-netw
ork-shares/

http://www.bleepingcomputer.com/news/security/the-locky-ransomware-encrypts-local-files-and-unmapped-network-shares/
http://www.bleepingcomputer.com/news/security/the-locky-ransomware-encrypts-local-files-and-unmapped-network-shares/

Virus Defense
• Antivirus Software

– working horse is signature based detection
• database of byte-level or instruction-level signatures that match virus
• wildcards can be used, regular expressions

– heuristics (check for signs of infection)
• code execution starts in last section
• incorrect header size in PE header
• suspicious code section name
• patched import address table

• Sandboxing
– run untrusted applications in restricted environment
– simplest variation, do not run as Administrator

Tunneling and Camouflage Viruses
• To minimize the probability of its being discovered,

a virus could use a number of different techniques

• A tunneling virus attempts to bypass antivirus programs
– idea is to follow the interrupt chain back down to basic

operating system or BIOS interrupt handlers
– install virus there
– virus is “underneath” everything – including the checking program

• In the past, possible for a virus to spoof a scanner by
camouflaging itself to look like something the scanner was
programmed to ignore
– false alarms of scanners make “ignore” rules necessary

Polymorphism and Metamorphism
• Polymorphic viruses

– change layout (shape) with each infection
– payload is encrypted
– using different key for each infection
– makes static string analysis practically impossible
– of course, encryption routine must be changed as well
– otherwise, detection is trivial

• Metamorphic techniques
– create different “versions” of code that look different

but have the same semantics (i.e., do the same)

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 50 0F 01 4C 24 FE 5B
83 C3 1C FA 8B 2B

Chernobyl (CIH) Virus

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
90 nop
50 push eax
40 inc eax
0F 01 4C 24 FE sidt [esp - 02h]
48 dec eax
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 90 50 40 0F 01 4C 24
FE 48 5B 83 C3 1C FA 8B 2B

Dead Code Insertion

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
89 04 24 mov eax, [esp]

83 C4 04 add 04h, esp

50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
83 04 24 0C add 1Ch, [esp]
5B pop ebx
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 89 04 24 83 C4 04 50 0F
01 4C 24 FE 83 04 24 0C 5B 8B 2B

Instruction Substitution

Advanced Virus Defense
• Most virus techniques very effective against static analysis

• Thus, dynamic analysis techniques introduced
– virus scanner equipped with emulation engine
– executes actual instructions (no disassembly problems)
– runs until polymorphic part unpacks actual virus
– then, signature matching can be applied
– emulation must be fast
– Anubis

• Difficulties
– virus can attempt to detect emulation engine
– time execution, use exotic (unsupported) instructions, …
– insert useless instructions in the beginning of code to deceive scanner

Advanced Virus Defense
• Stalling loops

– exploit overhead of analysis system
– execute “slow” operation many (millions of) times

23

Real host - A few milliseconds
Anubis - Ten hours

Advanced Virus Defense
• Mitigate stalling loops

– detect that program does not make progress
– find loop that is currently executing
– reduce logging for this loop (until exit)

• Progress checks
– based on system calls

too many failures, too few, always the same, …

• When reduced logging is not sufficient
– actively interrupt loop

24

Advanced Virus Defense
• Finding code blocks (white list)

for which logging should be reduced

– build dynamic control flow graph

– run loop detection algorithm

– identify live blocks and call edges

– identify first (closest) active loop
(loop still in progress)

– mark all regions reachable from
this loop

25

Advanced Virus Defense
• Active mitigation

– mark all memory locations (variables) written by loop body
– find conditional jump that leads out of whitelisted region
– simply invert it the next time control flow passes by

• Problem
– program might later use variables that were written by loop

but that do not have the proper value and fail

• Solution
– dynamically track all variables that are marked (taint analysis)
– whenever program uses such variable, extract slice that computes this

value, run it, and plug in proper value into original execution

26

Computer Worms
A self-replicating program able to propagate itself across networks,

typically having a detrimental effect.
(Oxford English Dictionary)

• Worms either
– exploit vulnerabilities that affect large number of hosts
– send copies of worm body via email/social networks/etc

• Difference to classic virus is autonomous spread over network

• Speed of spreading is constantly increasing

• Make use of techniques known by virus writers for long time

Worm Components
• Target locator

– how to choose new victims

• Infection propagator
– how to obtain control of victim
– how to transfer worm body to target system

• Life cycle manager
– control different activities depending on certain circumstances
– often time depending

• Payload
– nowadays, often a Trojan horse (we come back to that later)

Target Locator
• Email harvesting

– consult address books (W32/Melissa)
– files might contain email addresses

• inbox of email client (W32/Mydoom)
• Internet Explorer cache and personal directories (W32/Sircam)

– even Google searches are possible
• search worms (W32/MyDoom.O)

• Network share enumeration
– Windows discovers local computers, which can be attacked
– some worms attack everything, including network printers

prints random garbage (W32/Bugbear)

Target Locator
• Scanning

– more Google searches
• search for vulnerable web applications (Santy)

– randomly generate IP addresses and send probes
– interestingly, many random number generators flawed

• static seed
• not complete coverage of address space

– scanning that favors local addresses (topological scanning)

– some worms use hit-list with known targets (shorten initial phase)

• Service discovery and OS fingerprinting performed as well

Email-Based Worms
• Often use social engineering techniques to get executed

– fake from address
– promise interesting pictures or applications
– hide executable extension (.exe) behind harmless ones (.jpeg)

• Many attempt to hide from scanners
– packed or zipped
– sometimes even with password (ask user to unpack)

• Some exploit Internet Explorer bugs when HTML content is rendered

• Significant impact on SMTP infrastructure

• Speed of spread limited because humans are in the loop
– can observe spread patterns that correspond to time-of-day

Email-Based Worms

Exploit-Based Worms
• Require no human interaction

– typically exploit well-known network services
– can spread much faster

• Propagation speed limited either
– by network latency

worm thread has to establish TCP connection (Code Red)
– by bandwidth

worm can send (UDP) packets as fast as possible (Slammer)

• Spread can be modeled using classic disease model
– worm starts slow (only few machines infected)
– enters phase of exponential growth
– final phase where only few uncompromised machines left

Exploit-Based Worms

Worm Generators

Worm Defense
• Virus scanners

– effective against email-based worms
– email attachments can be scanned as part of mail processing

• Host level defense
– mostly targeted at underlying software vulnerabilities
– code audits
– stack-based techniques

• StackGuard, MS VC compiler extension
– address space layout randomization (ASLR)

• attempt to achieve diversity to increase protection

Worm Defense
• Network level defense

– intrusion detection systems
• scan for known attack patterns
• automatic signature generation (Early Bird, Autograph, Polygraph)

– rate limiting
• allow only certain amount of outgoing connections
• helps to contain worms that perform scanning

– personal firewall
• block outgoing SMTP connections (from unknown applications)

Trojan Horse
• Trojan horse is a malicious program that is disguised as

legitimate software
– software may look useful or interesting (or at the very least

harmless)
– term derived from the classical myth of the Trojan Horse

• Two types of Trojan horses
1. malicious functionality is included into useful program

– disk utility, screensaver, weather alert program
– famous compiler that generated backdoor into code

2. malware is stand-alone program
– possibly disguised file name (sexy.jpg.exe)

Trojan Horse
• Many different types and functions

– spy on (sensitive) user data
• log keystrokes, monitor surfing activity

– disguise presence
• rootkits

– allow remote access
• file transfer, remote program execution
• base for further attacks, mail relay (for spammers)
• Back Orifice, NetBus, SubSeven

– damage routines
• corrupting files
• participate in denial of service attacks

Rootkits

• Tools used by attackers after compromising a system
– hide presence of attacker
– allow for return of attacker at later date
– gather information about environment
– attack scripts for further compromises

• Traditionally trojaned set of user-space applications
– system logging (syslogd)
– system monitoring (ps, top)
– user authentication (login, sshd)

Kernel Rootkits
• Kernel-level rootkits

– kernel controls view of system for user-space applications
– malicious kernel code can intercept attempts by user-space

detector to find rootkits

• Modifies kernel data structures
– process listing
– module listing

• Intercepts requests from user-space applications
– system call boundary
– VFS fileops struct

Linux Kernel Rootkits
• Linux kernel exports well-defined interface to modules

• Examples of legitimate operations
– registering device with kernel
– accesses to devices mapped into kernel memory
– overwriting exported function pointers for event callbacks

• Kernel rootkits violate these interfaces

• Examples of illegal operations
– replacing system call table entries (knark)
– replacing VFS fileops (adore-ng)

https://github.com/eqmcc/rk/blob/master/adore-ng-0.56-wztfix/adore-ng.c

Linux Kernel Rootkits
• System call table hijacking

orig_getuid = sys_call_table[__NR_getuid];
sys_call_table[__NR_getuid] = give_root;

• VFS hijacking
pde = proc_find_tcp();

o_get_info_tcp = pde->get_info;
pde->get_info = n_get_info_tcp;

• Works pretty much the same for Windows

Windows Kernel Rootkits

Sony Rootkit

• Implementation of copy protection measures on about
22 million CDs

• When inserted into a computer, the CDs installed one of
two pieces of software which provided a form of digital
rights management (DRM) by modifying the operating
system to interfere with CD copying

• Neither program could easily be uninstalled, and they
created vulnerabilities that were exploited by unrelated
malware

• Sony claims this was unintentional

source: https://en.wikipedia.org/wiki/Sony_BMG_copy_protection_rootkit_scandal

https://en.wikipedia.org/wiki/Sony_BMG_copy_protection_rootkit_scandal

Windows Kernel Rootkits
• Sony rootkit filters out any files/directories, processes and registry keys that

contain sys

• System call dispatcher
– uses system service dispatch table (SSDT)
– Windows NT kernel equivalent to system call table
– entries can be manipulated to re-route call to custom function

ZwCreateFile
– used to create or open file
ZwQueryDirectoryFile
– used to list directory contents (i.e. list subdirectories and files)
ZwQuerySystemInformation
– used to get the list of running processes (among other things)
ZwEnumerateKey
– used to list the registry keys below a given key

Rootkit Defense
• tripwire

– user-space integrity checker

• chkrootkit
– user-space, signature-based detector

• kstat, rkstat, StMichael
– kernel-space, signature-based detector
– implemented as kernel modules or use /dev/kmem

• Limitations
– typically, rootkit must be loaded in order to detect it
– thus, detectors can be thwarted by kernel-level rootkit
– also suffer from limitations of signature-based detection

chkrootkit detections

Rootkit Defense
• Kernel rootkits

– have complete control over operating system
– operating system is part of trusted computing base, thus

applications can be arbitrarily fooled
– this includes all rootkit or Trojan detection mechanisms
– at best, an arms race can be started

• Proposed solutions
– trusted computing platform

• can enforce integrity of operating system
– smart cards

• attacker can not influence computations on card,
but has still full control of computations performed on machine
and information displayed on screen

Spyware

• Any software that monitors and collects information about a user
in a covert and unsolicited manner

• Goal of spyware
– collect sensitive user information and surfing habits

• Task of spyware
– component must monitor user behavior
– component must leak information to environment (OS, network)

• Often implemented as browser extensions
– chrome.tabs API for WebExtensions
– monitor/modify events

Spyware
• Interaction

– between browser and spyware component
• COM function invocations (exported by Internet Explorer)

– between spyware component and operating system
• Windows API calls

• In addition, it typically has a real company behind it that is making
money from the information gathered
– Adware is any software that injects unsolicited advertisements into

a user’s workspace
– Scumware is a specific type of adware that hides other

advertisements with those from its own controlling source

Spyware
Typical routes of infection:

1. spyware is bundled with legitimate software package
– end-user license agreement (EULA) even informs about this fact
– EULA is very long (often hundreds of pages), user accepts
– classic examples are shareware programs

• P2P file-sharing clients (e.g., Kazaa)

2. drive-by downloads
– exploit browser bug, in particular, vulnerabilities of Internet Explorer
– WMF (Windows meta file) exploit, around Christmas 2005
– arbitrary code execution via mismatched DOM objects (December

2005)
– insufficient ActiveX security settings

3. fake dialogs
– display “Would you like to optimize your Internet” and perform

installation when user agrees

Malware and Vulnerable Software
• Malicious software (Malware) and benign software that can be

exploited to perform malicious actions (Badware) are two facets
of the same problem
→ execution of unwanted code

• Malware
– viruses, worms, Trojan horses, rootkits, and spyware are

evolving to become resilient to eradication and to evade
detection

• Badware
– software that fundamentally disregards a user’s choice about how his or

her computer or network connection will be used
– Unwanted Software Policy

https://www.google.com/about/unwanted-software-policy.html

Conclusions
• Malware

– sophisticated technology developed for more than 20 years
– combined with automatic spread mechanisms
– tools to generate malware significantly lower technological barrier

• Trojan Horses
– particularly dangerous because they infest trusted computing base
– typically full control of platform and applications

• Defense Techniques
– mostly reactive
– using signatures to detect known instances
– use best programming practice for application development,

educate employees, keep infrastructure well maintained (patched)

Your Security Zen

CCleanup: A Vast Number of Machines at Risk

“the legitimate signed version of CCleaner 5.33 being
distributed by Avast also contained a multi-stage

malware payload that rode on top of the installation of
CCleaner. CCleaner boasted over 2 billion total

downloads by November of 2016 with a growth rate of 5
million additional users per week”

source: http://blog.talosintelligence.com/2017/09/avast-distributes-malware.html

http://blog.talosintelligence.com/2017/09/avast-distributes-malware.html

Your Security Zen
Post a boarding pass on Facebook,

get your account stolen

source: https://www.michalspacek.com/post-a-boarding-pass-on-facebook-get-your-account-stolen

https://www.michalspacek.com/post-a-boarding-pass-on-facebook-get-your-account-stolen

