
CSC 591
Systems Attacks and Defenses

Reverse Engineering
Part 1

Alexandros Kapravelos
akaprav@ncsu.edu

Introduction
• Reverse engineering

– process of analyzing a system
– understand its structure and functionality
– used in different domains (e.g., consumer electronics)

• Software reverse engineering
– understand architecture (from source code)
– extract source code (from binary representation)
– change code functionality (of proprietary program)
– understand message exchange (of proprietary protocol)

Software Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, Pascal,..

First generation
language

Second
generation
language

Third
generation
language

Assemble

Compile

Software Reverse Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, Pascal,..

First generation
language

Second
generation
language

Third
generation
language

Disassemble

De-compile

Going Back is Hard!
• Fully-automated disassemble/de-compilation of arbitrary

machine-code is theoretically an undecidable problem

• Disassembling problems
– hard to distinguish code (instructions) from data

• De-compilation problems
– structure is lost

• data types are lost, names and labels are lost
– no one-to-one mapping

• same code can be compiled into different (equivalent) assembler
blocks

• assembler block can be the result of different pieces of code

Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol)
– OpenOffice (MS Office document formats)

• Emulation
– Wine (Windows API)
– React-OS (Windows OS)

• Legacy software
– Onlive

• Malware analysis
• Program cracking
• Compiler validation

Analyzing a Binary - Static Analysis
• Identify the file type and its characteristics

– architecture, OS, executable format...

• Extract strings
– commands, password, protocol keywords...

• Identify libraries and imported symbols
– network calls, file system, crypto libraries

• Disassemble
– program overview
– finding and understanding important functions

• by locating interesting imports, calls, strings...

Analyzing a Binary - Dynamic Analysis
• Memory dump

– extract code after decryption, find passwords...

• Library/system call/instruction trace
– determine the flow of execution
– interaction with OS

• Debugging running process
– inspect variables, data received by the network, complex

algorithms..

• Network sniffer
– find network activities
– understand the protocol

Static Techniques
• Gathering program information

– get some rough idea about binary (file)

– strings that the binary contains (strings)

Static Techniques
• Examining the program (ELF) header (elfsh)

Program entry point

Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd)

– more difficult when program is statically linked

Interesting “shared” library
used for (fast) system calls

Static Techniques
Looking at linux-gate.so.1

Static Techniques
• Used library functions

– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked

Static Techniques
Recognizing libraries in statically-linked programs

• Basic idea
– create a checksum (hash) for bytes in a library function

• Problems
– many library functions (some of which are very short)
– variable bytes – due to dynamic linking, load-time patching,

linker optimizations

• Solution
– more complex pattern file
– uses checksums that take into account variable parts
– implemented in IDA Pro as:

Fast Library Identification and Recognition Technology (FLIRT)

Static Techniques
• Program symbols

– used for debugging and linking
– function names (with start addresses)
– global variables
– use nm to display symbol information
– most symbols can be removed with strip

• Function call trees
– draw a graph that shows which function calls which others
– get an idea of program structure

Static Techniques
Displaying program symbols

Static Techniques
• Disassembly

– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor
• RISC processors (SPARC, MIPS)

– variable length
• use less space for common instructions
• CISC processors (Intel x86)

Static Techniques
• Fixed length instructions

– easy to disassemble
– take each address that is multiple of instruction length as

instruction start
– even if code contains data (or junk), all program instructions are

found

• Variable length instructions
– more difficult to disassemble
– start addresses of instructions not known in advance
– different strategies

• linear sweep disassembler
• recursive traversal disassembler

– disassembler can be desynchronized with respect to actual code

Static Techniques
• Linear sweep disassembler

– start at beginning of code (.text) section
– disassemble one instruction after the other
– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

Let’s break LSD
#include <stdio.h>

int main() {

 printf("Hello, world!\n");

 return 0;

}

$ gcc hello.c -o hello

$./hello

Hello, world!

Objdump disassembly
0804840b <main>:
 804840b: 8d 4c 24 04 lea 0x4(%esp),%ecx
 804840f: 83 e4 f0 and $0xfffffff0,%esp
 8048412: ff 71 fc pushl -0x4(%ecx)
 8048415: 55 push %ebp
 8048416: 89 e5 mov %esp,%ebp
 8048418: 51 push %ecx
 8048419: 83 ec 04 sub $0x4,%esp
 804841c: 83 ec 0c sub $0xc,%esp
 804841f: 68 c0 84 04 08 push $0x80484c0
 8048424: e8 b7 fe ff ff call 80482e0 <puts@plt>
 8048429: 83 c4 10 add $0x10,%esp
 804842c: b8 00 00 00 00 mov $0x0,%eax
 8048431: 8b 4d fc mov -0x4(%ebp),%ecx
 8048434: c9 leave
 8048435: 8d 61 fc lea -0x4(%ecx),%esp
 8048438: c3 ret

$ objdump -D hello

radare2 disassembly
[0x08048310]> pdf@main

/ (fcn) sym.main 46

| 0x0804840b 8d4c2404 lea ecx, [esp+0x4]

| 0x0804840f 83e4f0 and esp, 0xfffffff0

| 0x08048412 ff71fc push dword [ecx-0x4]

| 0x08048415 55 push ebp

| 0x08048416 89e5 mov ebp, esp

| 0x08048418 51 push ecx

| 0x08048419 83ec04 sub esp, 0x4

| 0x0804841c 83ec0c sub esp, 0xc

| ; DATA XREF from 0x080484c0 (fcn.080484b8)

| 0x0804841f 68c0840408 push str.Helloworld ; 0x080484c0

| ; CODE (CALL) XREF from 0x080482e6 (fcn.080482e6)

| ; CODE (CALL) XREF from 0x080482f6 (fcn.080482f6)

| ; CODE (CALL) XREF from 0x08048306 (fcn.08048306)

| 0x08048424 e8b7feffff call 0x1080482e0 ; (sym.imp.puts)

| sym.imp.puts(unk, unk, unk, unk)

| 0x08048429 83c410 add esp, 0x10

| 0x0804842c b800000000 mov eax, 0x0

| 0x08048431 8b4dfc mov ecx, [ebp-0x4]

| 0x08048434 c9 leave

| 0x08048435 8d61fc lea esp, [ecx-0x4]

\ 0x08048438 c3 ret

Let’s patch the program
$ radare2 -Aw hello

[0x08048310]> 0x08048419

[0x08048419]> wx eb01 #(jmp 0x804841c)

We patched a 3-byte instruction with a 2-byte
instruction. What is going to happen now with

disassembly?!

Disassembly fails!
[0x08048310]> pdf@main

/ (fcn) sym.main 46

| 0x0804840b 8d4c2404 lea ecx, [esp+0x4]

| 0x0804840f 83e4f0 and esp, 0xfffffff0

| 0x08048412 ff71fc push dword [ecx-0x4]

| 0x08048415 55 push ebp

| 0x08048416 89e5 mov ebp, esp

| 0x08048418 51 push ecx

| ,=< 0x08048419 eb01 jmp loc.0804841c

| | 0x0804841b 0483 add al, 0x83

| 0x0804841d ec in al, dx

| 0x0804841e 0c68 or al, 0x68

| 0x08048420 c0840408e8b. rol byte [esp+eax-0x14817f8], 0xff

| 0x08048428 ff83c410b800 inc dword [ebx+0xb810c4]

| 0x0804842e 0000 add [eax], al

| 0x08048430 008b4dfcc98d add [ebx-0x723603b3], cl

| 0x08048436 61 popad

| 0x08048437 fc cld

\ 0x08048438 c3 ret

Static Techniques
• Recursive traversal disassembler

– aware of control flow
– start at program entry point (e.g., determined by ELF header)
– disassemble one instruction after the other, until branch or jump

is found
– recursively follow both (or single) branch (or jump) targets
– not all code regions can be reached

• indirect calls and indirect jumps
• use a register to calculate target during run-time

– for these regions, linear sweep is used
– IDA Pro uses this approach

.text:0804840B ; int __cdecl main(int argc, const char **argv, const char **envp)

.text:0804840B public main

.text:0804840B main proc near ; DATA XREF: _start+17o

.text:0804840B var_4 = dword ptr -4

.text:0804840B argc = dword ptr 0Ch

.text:0804840B argv = dword ptr 10h

.text:0804840B envp = dword ptr 14h

.text:0804840B lea ecx, [esp+4]

.text:0804840F and esp, 0FFFFFFF0h

.text:08048412 push dword ptr [ecx-4]

.text:08048415 push ebp

.text:08048416 mov ebp, esp

.text:08048418 push ecx

.text:08048419 jmp short loc_804841C

.text:08048419 ; ---

.text:0804841B db 4

.text:0804841C ; ---

.text:0804841C loc_804841C: ; CODE XREF: main+Ej

.text:0804841C sub esp, 0Ch

.text:0804841F push offset s ; "Hello, world!"

.text:08048424 call _puts

.text:08048429 add esp, 10h

.text:0804842C mov eax, 0

.text:08048431 mov ecx, [ebp+var_4]

.text:08048434 leave

.text:08048435 lea esp, [ecx-4]

.text:08048438 retn

.text:08048438 main endp%

Dynamic Techniques
• General information about a process

– /proc file system
– /proc/<pid>/ for a process with pid <pid>
– interesting entries

• cmdline (show command line)
• environ (show environment)
• maps (show memory map)
• fd (file descriptor to program image)

• Interaction with the environment
– file system
– network

Dynamic Techniques
• File system interaction

– lsof
– lists all open files associated with processes

• Windows Registry
– regmon (Sysinternals)

• Network interaction
– check for open ports

• processes that listen for requests or that have active connections
• netstat
• also shows UNIX domain sockets used for IPC

– check for actual network traffic
• tcpdump
• ethereal/wireshark

Dynamic Techniques
• System calls

– are at the boundary between user space and kernel
– reveal much about a process’ operation
– strace
– powerful tool that can also

• follow child processes
• decode more complex system call arguments
• show signals

– works via the ptrace interface

• Library functions
– similar to system calls, but dynamically linked libraries
– ltrace

Dynamic Techniques
• Execute program in a controlled environment

– sandbox / debugger

• Advantages
– can inspect actual program behavior and data values
– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware
– anti-debugging mechanisms
– not all possible traces can be seen

Dynamic Techniques
• Debugger

– breakpoints to pause execution
• when execution reaches a certain point (address)
• when specified memory is access or modified

– examine memory and CPU registers
– modify memory and execution path

• Advanced features
– attach comments to code
– data structure and template naming
– track high level logic

• file descriptor tracking
– function fingerprinting

Dynamic Techniques
• Debugger on x86 / Linux

– use the ptrace interface

• ptrace
– allows a process (parent) to monitor another process (child)
– whenever the child process receives a signal, the parent is

notified
– parent can then

• access and modify memory image (peek and poke commands)
• access and modify registers
• deliver signals

– ptrace can also be used for system call monitoring

Dynamic Techniques
• Breakpoints

– hardware breakpoints
– software breakpoints

• Hardware breakpoints
– special debug registers (e.g., Intel x86)
– debug registers compared with PC at every instruction

• Software breakpoints
– debugger inserts (overwrites) target address with an int 0x03

instruction
– interrupt causes signal SIGTRAP to be sent to process
– debugger

• gets control and restores original instruction
• single steps to next instruction
• re-inserts breakpoint

Challenges
• Reverse engineering is difficult by itself

– a lot of data to handle
– low level information
– creative process, experience very valuable
– tools can only help so much

• Additional challenges
– compiler code optimization
– code obfuscation
– anti-disassemble techniques
– anti-debugging techniques

Your Security Zen

Introducing managed SSL for
Google App Engine

Google is a Certificate Authority
SSL is on by default

source: https://cloudplatform.googleblog.com/2017/09/introducing-managed-SSL-for-Google-App-Engine.html

https://security.googleblog.com/2017/01/the-foundation-of-more-secure-web.html
https://cloudplatform.googleblog.com/2017/09/introducing-managed-SSL-for-Google-App-Engine.html

Your Security Zen
Chrome’s Plan to Distrust Symantec

Certificates

The Chrome team and the PKI community converged
upon a plan to reduce, and ultimately remove, trust in

Symantec’s infrastructure in order to uphold users’
security and privacy when browsing the web

Starting with Chrome 66, Chrome will remove trust in
Symantec-issued certificates

source: https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html

https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html

