NC STATE UNIVERSITY

CSC 591
Systems Attacks and Defenses

Control-Flow Integrity

Alexandros Kapravelos
akaprav@ncsu.edu

mailto:akaprav@ncsu.edu

NC STATE UNIVERSITY

ROP & return-to-libc reuse existing code
iInstead of injecting malicious code. How can
we stop this?

NC STATE UNIVERSITY

Program control flow

for(A:B:C)

« Unconditional jumps

« Conditional jumps
 Loops UE

e Subroutines

 Unconditional halt °

NC STATE UNIVERSITY

vuln.c

#include <stdio.h>
#include <string.h>

void getinput(char *input) {
char buffer[32];

strcpy(buffer, input);
printf("You entered: %s\n", buffer);

int main(int argc, char **argv) {
getinput(argv[l]);
return(0);

NC STATE UNIVERSITY

Simple call graph

main

getinput

strcpy printf

NC STATE UNIVERSITY

Functions locations

$ gcc vuln.c -o vuln
$ radare2 -A ./vuln
[0x004004e0]> afl

0x004004e0 42
0x004004cO 6
0x00400631 41
Ox004005d6 91
0x00400490 6
Ox004004b0 6
0x00400430 6

[0Xx004004e0]>

sym. start
sym.imp. 1libc start main
sym.main

sym.getinput
sym.imp.strcpy
sym.imp.printf
sym.imp. stack chk fail

R R R WRRR

NC STATE UNIVERSITY

NOEXEC (WAX)

OXFFFFFF Stack

Heap

BSS

Data

e

NC STATE UNIVERSITY

NOEXEC (WAX)

valid
code
locations

invalid
code
locations

NC STATE UNIVERSITY

Fundamental problem with this execution
model?

Code is not executed in the intended way!

NC STATE UNIVERSITY

How can we make sure that the program is
executed in the intended way?

Control-Flow Integrity (CFI)

NC STATE UNIVERSITY

Control-flow integrity

CFl is a security policy
Execution must follow a path of a Control-Flow Graph
CFG can be pre-computed

— source-code analysis
— Dbinary analysis
— execution profiling

But how can we enforce this extracted control-flow?

NC STATE UNIVERSITY

Enforcing CFIl by Instrumentation

bool 1t(int x, int y) {
return x < y;
J

bool gt(int x, int y) {
return x > y;
+

sort2(int al], int b[], int len)
{

sort(a, len, 1t);

sort{ b; len, gb);

e LABEL ID
e CALL ID, DST
e RET ID

sort2(): sort():
Y
§ e §
call sort”y. & call 17,R{]
label 55 W label 23 &
N
¢ $
SUN
; ~
call sort’ _|-ret 55
//’
label 554
ref o

source: Control-Flow Integrity (link)

1t():

Ly label 17

el g

- ret 23

gt():

label 17

{8

Mret 23

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

NC STATE UNIVERSITY

CFIl Instrumentation Code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions

FF El jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] ; dst

can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678h ; comp ID & dst 78 56 34 12 ; data 12345678h y 1D
75 13 jne error_label ; if != faijl 8B 44 24 04 mov eax, [esp+4] ; dst
8D 49 04 lea ecx, [ecx+4] ; skip ID at dst
FF E1 jmp ecx ; jump to dst

or, alternatively, instrumented as (b):
B8 77 56 34 12 mov eax, 12345677h ; load ID-1 3E OF 18 05 prefetchnta ; label
40 inc eax ; add 1 for ID 78 56 34 12 [12345678h] b 1D
39 41 04 cmp [ecx+4], eax ; compare w/dst 8B 44 24 04 mov eax, [esp+4] ; dst
75 13 jne error_label ; if = fail s e
FF E1 jmp ecx ; jump to label

 The extra code checks that the destination code is the
iIntended jump location

source: Control-Flow Integrity (link)

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

NC STATE UNIVERSITY

CFl assumptions

Unique IDs

Non-writable Code (NWC)

Non-executable Data (NXD)

Jumps cannot go into the middle of instructions

NC STATE UNIVERSITY

Attacker

« Powerful attacker model
— Arbitrary control of all data in memory
— Even hijack the execution flow of the program

« With CFlI, execution will always follow the CFG

NC STATE UNIVERSITY

Overhead

50% -

40% -

30% -

20% -

10% -

I I I I I I I I I I I

CFIl enforcement overhead

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr AVG

NC STATE UNIVERSITY

Control Flow Guard

* Windows 10 and Windows 8.1

* Microsoft Visual Studio 2015+

« Adds lightweight security checks to the compiled code

 |dentifies the set of functions in the application that are
valid targets for indirect calls

* The runtime support, provided by the Windows kernel:
— Efficiently maintains state that identifies valid indirect call
targets
— Implements the logic that verifies that an indirect call target is
valid

NC STATE UNIVERSITY

Control-flow enforcement technology

« Shadow stack

CALL instruction pushes the return address on both the data

and shadow stack

RET instruction pops the return address from both stacks and
compares them

if the return addresses from the two stacks do not match, the

processor signals a control protection exception (#CP)

 Indirect branch tracking

ENDBRANCH -> new CPU instruction

marks valid indirect call/jmp targets in the program

the CPU implements a state machine that tracks indirect jmp
and call instructions

when one of these instructions is seen, the state machine
moves from IDLE to WAIT_FOR_ENDBRANCH state

if an ENDBRANCH is not seen the processor causes a control
protection fault

NC STATE UNIVERSITY

Limitations of CFI?

NC STATE UNIVERSITY

Fine-grained CFI

* Precise monitoring of indirect control-flow changes
 caller-callee must match

« High performance overhead (~21%)

» Highest security

NC STATE UNIVERSITY

Coarse-grained CFI

« Trades security for better performance
* Any valid call location is accepted

[1] N. Carlini and D. Wagner, “ROP is still dangerous:
Breaking modern defenses”

[2] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose,
“Stitching the gadgets: On the ineffectiveness of coarse
grained control-flow integrity protection”

[3] E. Goktas, E. Athanasopoulos, H. Bos, and G.
Portokalidis, “Out of control: Overcoming control-flow
integrity”

[4] E. Goktas, E. Athanasopoulos, M. Polychronakis, H.
Bos, and G. Portokalidis, “Size does matter: Why using
gadget chain length to prevent code-reuse attacks is hard”

NC STATE UNIVERSITY

Which type of CFI did Intel choose to
implement in hardware?

Coarse-grained CFI...

NC STATE UNIVERSITY

Code-Pointer Integrity

« Static analysis
— all sensitive pointers
— all instructions that

operate on them Data: - Code:
* Instrumentation 1 struct A ;
— store themin a + = | FunctionA
separate, safe
memory region 2 E
* Instruction-level ; struct B . » FunctionB
Isolation mechanism _ /
— prevents int [<@—15 =igpl

non-protected
memory operations
from accessing the
safe region

source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

NC STATE UNIVERSITY

Defenses overview and overheads

Attack step Property Mechanism Stops all control-flow hijacks? Avg. overhead
¥ Memory Safety SoftBound+CETS [34, 35] Yes 116%
Corrupt data BBC [4], No: sub-objects, reads not protected 110%
pointer LBC [20], ASAN [43], No: protects red zones only 23%
v WIT [3] No: over-approximate valid sets 7%
v d;' Code-Pointer CPI Yes 8.4%
o Ify o Integrity CPS No: valid code ptrs. interchangeable 1.9%
code pointer ... (this work) Safe Stack No: precise return protection only ~0%
r Randomization ASLR [40], ASLP [26] No: vulnerable to information leaks ~10%
... to address of gggt([‘g]lard [13] Eo: vu:neral;:e to !n;ormat@on :eais égz;o
0: vulnerable to information leaks (]
DadgECshelinnde NOP insertion [21] No: vulnerable to information leaks 2%
* * Control-Flow Stack cookies No: probabilistic return protection only ~2%
Use pointer by Use pointer by | ntegrity CFI [1] No: over-approximate valid sets 20%
return instruction indirect call/jump WIT (CFI part) [3] No: over-approximate valid sets 7%
L B ' DFI [10] No: over-approximate valid sets 104%
\ 2 v :
" = Non-Executable HW (NX bit) No: code reuse attacks 0%
Exec. available Execute injected Data SW (Exec Shield, PaX) No: code reuse attacks few %
gadgets/func.-s shellcode
[» < |
High-level Sandboxing (SFI) Isolation only varies
Control-flow policies ACLs Isolation only varies
hijack Capabilities Isolation only varies

NC STATE UNIVERSITY

kBouncer

Detection of abnormal control transfers that take place
during ROP code execution

Transparent
— Applicable on third-party applications
— Compatible with code signing, self-modifying code, JIT, ...

Lightweight

— Up to 4% overhead when artificially stressed, practically
Zero

Effective
— Prevents real-world exploits

source: http://www.cs.columbia.edu/~vpappas/papers/kbouncer.sec13.pdf

http://www.cs.columbia.edu/~vpappas/papers/kbouncer.sec13.pdf

NC STATE UNIVERSITY

ROP Code Runtime Properties

* |lllegal ret instructions that target locations not preceded
by call sites
— Abnormal condition for legitimate program code

« Sequences of relatively short code fragments “chained”
through any kind of indirect branch
— Always holds for any kind of ROP code

NC STATE UNIVERSITY

lllegal Returns

 Legitimate code:

— ret transfers control to the instruction right after the
corresponding call = legitimate call site

« ROP code:

— ret transfers control to the first instruction of the next gadget
=> arbitrary locations

* Main idea:
— Runtime monitoring of ret instructions’ targets

NC STATE UNIVERSITY

Gadget Chaining

« Advanced ROP code may avoid illegal returns

— Rely only on call-preceded gadgets
(just 6% of all ret gadgets in our experiments)

— “Jump-Oriented” Programming (non-ret gadgets)

* Look for a second ROP attribute:

Several short instruction sequences chained through
(any kind of) indirect branches

NC STATE UNIVERSITY

Gadget Chaining
» Look for consecutive indirect e oo 00
branch targets that point to et
gadget locations \)
pop edi
mov esi,edi
« Conservative gadget ~
definition: up to 20 . /
instructions ush eoi

call esi

— Typically 1-5
\) pop edi

pop esi
ret

NC STATE UNIVERSITY

Last Branch Record (LBR)

* Introduced in the Intel Nehalem architecture

o Stores the last 16 executed branches in a set of
model-specific registers (MSR)

— Can filter certain types of branches (relative/indirect calls/jumps,
returns, ...)

« Multiple advantages
— Zero overhead for recording the branches
— Fully transparent to the running application
— Does not require source code or debug symbols
— Can be dynamically enabled for any running application

NC STATE UNIVERSITY

Monitoring Granularity

« Non-zero overhead for reading the LBR stack
(accessible only from kernel level)
— Lower frequency => lower overhead

 ROP code can run at any point
— Higher frequency => higher accuracy

NC STATE UNIVERSITY

Monitoring Granularity

* Meaningful ROP code will eventually interact with the OS
through system calls
— Check for abnormal control transfers on system call entry

LBR check
kernel =
user :
space

time system call

>

NC STATE UNIVERSITY

Gadget Chaining: Legitimate Code

100

—_
o

©
—

0.01

LBR stack instances (%)

-
Q
éa

o
A

— Protected API calls
All function calls

detection
threshold

4

|
| | | | | | | | | | |
@ 6 7 8 9 10 11 12 13 14 15

Gadget chain length

* Dataset from: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office (Word, Excel and

PowerPoint)

NC STATE UNIVERSITY

Effectiveness

« Successfully prevented real-world exploits in
— Adobe Reader Xl (zero-day!)
— Adobe Reader 9
— Mplayer Lite
— Internet Explorer 9
— Adobe Flash 11.3

é C:_User;\test\Desktop\cve—2012-4]’92.§'\tm - Windaws Internet Explorer

5 - e > -
l \9 Internet Explorer has stopped working 1 (e [£] Ci\Users\test\Desktop! cve-2012-4792.htm =E = e
Windows can chedk online for a solution to the problem. =
E 4 Favorites | 53 @] Suggested Sites v @ | Web Slice Gallery =
Co Rl L L S e B LU s T s) C:\Users\test\Desktop\cve-2012-4792 htm B
[dlose the program || T o X
_v_l ‘iew problem details == — #®% kBouncer detected a bad branch!
kBouncer detected malicious activity! [)
= From: 6ad79cad [avcodec-52.dl:236717]
3 - To: 6ad79cac [avcodec-52.dl: 236716]
[N Error (Not Responding) -@] lllegal Branch Dump of destination bytes:
L7 4 6AD79CI0: 8d602454 4c89384b 4c8b7024 548b4c24
A kBouncer detected a bad branch! From: 28027060 [SKYPE4~1.DLL:16265 6AD79CAQ: 44c74024 00003c24 05d30000 6b0fc348
To: 28024171 [SKYPE4~1.DLL:151409] GADTICED: 3c247c8b 8906e7c1 8b50247c 8b702444
From: 7c346c0b [MSVCR71.dll: 27655] Dump of destination bytes:
To: 7c3415a2 [MSVCR71.dl:5538] 28024F60: 8310247 ¢ d5e904c3 Sffffffe
gé?flosgg?ignamn&;tze;% R CEREE 28024F70: ccc358c4 coccocee coccece
7C3415A0: 20fffffe 67af350f 00620000 b2d435ff ZAU2ATN BER00523 A hoRLEN SH000) E
7C341580: 858d7c38 fffffacd b2e035ff 5650738
File Edit View Window Help
| /1 ‘ | R Tools | Sign | Comment
1 Find | =2
fooltype_sing.calc.pdf - Adobe Reader [iy | v ¢ TS
wment Tools Window Help
-
Ej | 1 /1 i@ @ |93.8% - i i Fne
. Eror x|
Lant in: | e = &

kBouncer detected a bad branch!

From: 4380ch3f [icucnv36.dll:52031]

To: 48822714 [icucnv36.dl: 173844]

Dump of destination bytes:

4AB2AT00: fS0850ff fec01ad8 0004c2c0 00630 18b
4AB2AT10: 50ff006a 018bc3Sc 006a026a c35c50fF
4AB2AT20: c310418b 042474fF 00132ae8 1ad3f600

=

kBouncer detected malicious activity!

Tlegal Branch

From: 765a1569 [CLBCatQ.DLL:202089]

To: 765714eb [CLBCatQ.DLL: 5355]

Dump of destination bytes:

765714D0: 6335676 840fca3b 000014b4 95703539
765714E0: 840f755e 000014fe c35ec68b 90909090
765714F0: f40d3b90 0f755e81 04fa6585 5090c300

m Bolncer detected a bad branch!
File Size: 45 KB
Modified:3/24/2012

From: 7c346c0b [MSVCR71.dI: 27659]
To: 7c3415a2 [MSVCR71.dll:5538]
Dump of destination bytes:

FC3415580: 40fffffe f472c63b 8424538 e3850600
FC3415A0: 20fffffe 67afa50f 00620000 b2d435ff
7C3415B0: 858d7c38 fffffaes b2e035ff 56507038

etour

1
File name: cooltype sing.calc j
Files of type |Adobe PDF Fies (" pdf) ~]

NC STATE UNIVERSITY

Limitations

* Indirect branch tracing only checks the last 16 gadgets,
up to 20 instructions
— Still possible to find longer call-preceded or non-return gadgets

NC STATE UNIVERSITY

kBouncer

EMEE oy

The BlUerRatiEgize .

Winners
Announced

NC STATE UNIVERSITY

Your Security Zen

Six year old PDF loop bug affects most major PDF implementations

Found with afl + libfuzzer
create a PDF file with cross-referencing xref tables
A naive parser would get caught in an endless loop

Denial of service!

Mozilla Firefox
Chrome
Microsoft Edge
Ghostscript
Evince

source: https://blog.fuzzing-project.org/59-Six-year-old-PDF-loop-bug-affects-most-major-implementations.html

https://blog.fuzzing-project.org/59-Six-year-old-PDF-loop-bug-affects-most-major-implementations.html

