
CSC 591
Systems Attacks and Defenses

Control-Flow Integrity
Alexandros Kapravelos

akaprav@ncsu.edu

mailto:akaprav@ncsu.edu

ROP & return-to-libc reuse existing code
instead of injecting malicious code. How can

we stop this?

• Unconditional jumps
• Conditional jumps
• Loops
• Subroutines
• Unconditional halt

Program control flow

vuln.c
#include <stdio.h>

#include <string.h>

void getinput(char *input) {

 char buffer[32];

 strcpy(buffer, input);

 printf("You entered: %s\n", buffer);

}

int main(int argc, char **argv) {

 getinput(argv[1]);

 return(0);

}

Simple call graph

main

getinput

strcpy printf

Functions locations
$ gcc vuln.c -o vuln

$ radare2 -A ./vuln

[0x004004e0]> afl

0x004004e0 42 1 sym._start
0x004004c0 6 1 sym.imp.__libc_start_main
0x00400631 41 1 sym.main
0x004005d6 91 3 sym.getinput
0x00400490 6 1 sym.imp.strcpy
0x004004b0 6 1 sym.imp.printf
0x004004a0 6 1 sym.imp.__stack_chk_fail

[0x004004e0]>

NOEXEC (W^X)

0xFFFFFF Stack

Heap

BSS

Data

0x000000 Code

RW

RX

NOEXEC (W^X)

Code

valid
code

locations

invalid
code

locations

Fundamental problem with this execution
model?

Code is not executed in the intended way!

How can we make sure that the program is
executed in the intended way?
Control-Flow Integrity (CFI)

• CFI is a security policy
• Execution must follow a path of a Control-Flow Graph
• CFG can be pre-computed

– source-code analysis
– binary analysis
– execution profiling

• But how can we enforce this extracted control-flow?

Control-flow integrity

Enforcing CFI by Instrumentation

• LABEL ID
• CALL ID, DST
• RET ID

source: Control-Flow Integrity (link)

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

CFI Instrumentation Code

• The extra code checks that the destination code is the
intended jump location

source: Control-Flow Integrity (link)

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

CFI assumptions

• Unique IDs
• Non-writable Code (NWC)
• Non-executable Data (NXD)
• Jumps cannot go into the middle of instructions

Attacker

• Powerful attacker model
– Arbitrary control of all data in memory
– Even hijack the execution flow of the program

• With CFI, execution will always follow the CFG

Overhead

• Windows 10 and Windows 8.1
• Microsoft Visual Studio 2015+
• Adds lightweight security checks to the compiled code
• Identifies the set of functions in the application that are

valid targets for indirect calls
• The runtime support, provided by the Windows kernel:

– Efficiently maintains state that identifies valid indirect call
targets

– Implements the logic that verifies that an indirect call target is
valid

Control Flow Guard

Control-flow enforcement technology
• Shadow stack

– CALL instruction pushes the return address on both the data
and shadow stack

– RET instruction pops the return address from both stacks and
compares them

– if the return addresses from the two stacks do not match, the
processor signals a control protection exception (#CP)

• Indirect branch tracking
– ENDBRANCH -> new CPU instruction
– marks valid indirect call/jmp targets in the program
– the CPU implements a state machine that tracks indirect jmp

and call instructions
– when one of these instructions is seen, the state machine

moves from IDLE to WAIT_FOR_ENDBRANCH state
– if an ENDBRANCH is not seen the processor causes a control

protection fault

Limitations of CFI?

• Precise monitoring of indirect control-flow changes
• caller-callee must match
• High performance overhead (~21%)
• Highest security

Fine-grained CFI

Coarse-grained CFI
• Trades security for better performance
• Any valid call location is accepted

[1] N. Carlini and D. Wagner, “ROP is still dangerous:
Breaking modern defenses”
[2] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose,
“Stitching the gadgets: On the ineffectiveness of coarse
grained control-flow integrity protection”
[3] E. Goktas, E. Athanasopoulos, H. Bos, and G.
Portokalidis, “Out of control: Overcoming control-flow
integrity”
[4] E. Goktas, E. Athanasopoulos, M. Polychronakis, H.
Bos, and G. Portokalidis, “Size does matter: Why using
gadget chain length to prevent code-reuse attacks is hard”

Which type of CFI did Intel choose to
implement in hardware?

Coarse-grained CFI...

• Static analysis
– all sensitive pointers
– all instructions that

operate on them
• Instrumentation

– store them in a
separate, safe
memory region

• Instruction-level
isolation mechanism
– prevents

non-protected
memory operations
from accessing the
safe region

Code-Pointer Integrity

source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Defenses overview and overheads

kBouncer
• Detection of abnormal control transfers that take place

during ROP code execution

• Transparent
– Applicable on third-party applications
– Compatible with code signing, self-modifying code, JIT, …

• Lightweight
– Up to 4% overhead when artificially stressed, practically

zero

• Effective
– Prevents real-world exploits

source: http://www.cs.columbia.edu/~vpappas/papers/kbouncer.sec13.pdf

http://www.cs.columbia.edu/~vpappas/papers/kbouncer.sec13.pdf

ROP Code Runtime Properties
• Illegal ret instructions that target locations not preceded

by call sites
– Abnormal condition for legitimate program code

• Sequences of relatively short code fragments “chained”
through any kind of indirect branch

– Always holds for any kind of ROP code

Illegal Returns
• Legitimate code:

– ret transfers control to the instruction right after the
corresponding call ➔ legitimate call site

• ROP code:
– ret transfers control to the first instruction of the next gadget
➔ arbitrary locations

• Main idea:
– Runtime monitoring of ret instructions’ targets

Gadget Chaining
• Advanced ROP code may avoid illegal returns

– Rely only on call-preceded gadgets
(just 6% of all ret gadgets in our experiments)

– “Jump-Oriented” Programming (non-ret gadgets)

• Look for a second ROP attribute:
Several short instruction sequences chained through

(any kind of) indirect branches

Gadget Chaining

• Look for consecutive indirect
branch targets that point to
gadget locations

• Conservative gadget
definition: up to 20
instructions
– Typically 1-5

mov eax,ebx
add ebx,100
ret

pop edi
mov esi,edi
ret

sub esi,8
push esi
call esi

pop edi
pop esi
ret

Last Branch Record (LBR)
• Introduced in the Intel Nehalem architecture

• Stores the last 16 executed branches in a set of
model-specific registers (MSR)

– Can filter certain types of branches (relative/indirect calls/jumps,
returns, ...)

• Multiple advantages
– Zero overhead for recording the branches
– Fully transparent to the running application
– Does not require source code or debug symbols
– Can be dynamically enabled for any running application

Monitoring Granularity
• Non-zero overhead for reading the LBR stack

(accessible only from kernel level)
– Lower frequency ➔ lower overhead

• ROP code can run at any point
– Higher frequency ➔ higher accuracy

Monitoring Granularity

• Meaningful ROP code will eventually interact with the OS
through system calls

– Check for abnormal control transfers on system call entry

Gadget Chaining: Legitimate Code

detection
threshold

* Dataset from: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office (Word, Excel and
PowerPoint)

Effectiveness
• Successfully prevented real-world exploits in

– Adobe Reader XI (zero-day!)
– Adobe Reader 9
– Mplayer Lite
– Internet Explorer 9
– Adobe Flash 11.3
– …

Limitations

• Indirect branch tracing only checks the last 16 gadgets,
up to 20 instructions

– Still possible to find longer call-preceded or non-return gadgets

kBouncer

Your Security Zen
Six year old PDF loop bug affects most major PDF implementations

Found with afl + libfuzzer
create a PDF file with cross-referencing xref tables
A naive parser would get caught in an endless loop

Denial of service!

Mozilla Firefox
Chrome

Microsoft Edge
Ghostscript

Evince

source: https://blog.fuzzing-project.org/59-Six-year-old-PDF-loop-bug-affects-most-major-implementations.html

https://blog.fuzzing-project.org/59-Six-year-old-PDF-loop-bug-affects-most-major-implementations.html

