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ROP & return-to-libc reuse existing code 
instead of injecting malicious code. How can 

we stop this?



• Unconditional jumps
• Conditional jumps
• Loops
• Subroutines 
• Unconditional halt

Program control flow



vuln.c
#include <stdio.h>

#include <string.h>

void getinput(char *input) {

   char buffer[32];

   strcpy(buffer, input);

   printf("You entered: %s\n", buffer);

}

int main(int argc, char **argv) {

   getinput(argv[1]);

   return(0);

}



Simple call graph
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Functions locations
$ gcc vuln.c -o vuln

$ radare2 -A ./vuln

[0x004004e0]> afl

0x004004e0 42   1  sym._start
0x004004c0 6    1  sym.imp.__libc_start_main
0x00400631 41   1  sym.main
0x004005d6 91   3  sym.getinput
0x00400490 6    1  sym.imp.strcpy
0x004004b0 6    1  sym.imp.printf
0x004004a0 6    1  sym.imp.__stack_chk_fail

[0x004004e0]> 
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Fundamental problem with this execution 
model?

Code is not executed in the intended way!



How can we make sure that the program is 
executed in the intended way?
Control-Flow Integrity (CFI)



• CFI is a security policy
• Execution must follow a path of a Control-Flow Graph
• CFG can be pre-computed

– source-code analysis
– binary analysis
– execution profiling

• But how can we enforce this extracted control-flow?

Control-flow integrity



Enforcing CFI by Instrumentation

• LABEL ID
• CALL ID, DST
• RET ID

source: Control-Flow Integrity (link)

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf


CFI Instrumentation Code

• The extra code checks that the destination code is the 
intended jump location

source: Control-Flow Integrity (link)

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf


CFI assumptions

• Unique IDs
• Non-writable Code (NWC)
• Non-executable Data (NXD)
• Jumps cannot go into the middle of instructions



Attacker

• Powerful attacker model
– Arbitrary control of all data in memory
– Even hijack the execution flow of the program

• With CFI, execution will always follow the CFG



Overhead



• Windows 10 and Windows 8.1 
• Microsoft Visual Studio 2015+
• Adds lightweight security checks to the compiled code
• Identifies the set of functions in the application that are 

valid targets for indirect calls
• The runtime support, provided by the Windows kernel:

– Efficiently maintains state that identifies valid indirect call 
targets

– Implements the logic that verifies that an indirect call target is 
valid

Control Flow Guard



Control-flow enforcement technology
• Shadow stack

– CALL instruction pushes the return address on both the data 
and shadow stack

– RET instruction pops the return address from both stacks and 
compares them

– if the return addresses from the two stacks do not match, the 
processor signals a control protection exception (#CP)

• Indirect branch tracking
– ENDBRANCH -> new CPU instruction
– marks valid indirect call/jmp targets in the program
– the CPU implements a state machine that tracks indirect jmp 

and call instructions
– when one of these instructions is seen, the state machine 

moves from IDLE to WAIT_FOR_ENDBRANCH state
– if an ENDBRANCH is not seen the processor causes a control 

protection fault



Limitations of CFI?



• Precise monitoring of indirect control-flow changes
• caller-callee must match
• High performance overhead (~21%)
• Highest security

Fine-grained CFI



Coarse-grained CFI
• Trades security for better performance
• Any valid call location is accepted

[1] N. Carlini and D. Wagner, “ROP is still dangerous: 
Breaking modern defenses”
[2] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, 
“Stitching the gadgets: On the ineffectiveness of coarse 
grained control-flow integrity protection” 
[3] E. Goktas, E. Athanasopoulos, H. Bos, and G. 
Portokalidis, “Out of control: Overcoming control-flow 
integrity” 
[4] E. Goktas, E. Athanasopoulos, M. Polychronakis, H. 
Bos, and G. Portokalidis, “Size does matter: Why using 
gadget chain length to prevent code-reuse attacks is hard”



Which type of CFI did Intel choose to 
implement in hardware?

Coarse-grained CFI...



• Static analysis
– all sensitive pointers
– all instructions that 

operate on them
• Instrumentation

– store them in a 
separate, safe 
memory region

• Instruction-level 
isolation mechanism
– prevents 

non-protected 
memory operations 
from accessing the 
safe region

Code-Pointer Integrity

source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf


Defenses overview and overheads



kBouncer
• Detection of abnormal control transfers that take place 

during ROP code execution

• Transparent
– Applicable on third-party applications
– Compatible with code signing, self-modifying code, JIT, …

• Lightweight
– Up to 4% overhead when artificially stressed, practically 

zero

• Effective
– Prevents real-world exploits

source: http://www.cs.columbia.edu/~vpappas/papers/kbouncer.sec13.pdf

http://www.cs.columbia.edu/~vpappas/papers/kbouncer.sec13.pdf


ROP Code Runtime Properties
• Illegal ret instructions that target locations not preceded 

by call sites
– Abnormal condition for legitimate program code

• Sequences of relatively short code fragments “chained” 
through any kind of indirect branch

– Always holds for any kind of ROP code



Illegal Returns
• Legitimate code:

– ret transfers control to the instruction right after the 
corresponding call ➔ legitimate call site

• ROP code:
– ret transfers control to the first instruction of the next gadget                     
➔ arbitrary locations

• Main idea:
– Runtime monitoring of ret instructions’ targets



Gadget Chaining
• Advanced ROP code may avoid illegal returns

– Rely only on call-preceded gadgets
(just 6% of all ret gadgets in our experiments)

– “Jump-Oriented” Programming (non-ret gadgets)

• Look for a second ROP attribute:
Several short instruction sequences chained through 

(any kind of) indirect branches



Gadget Chaining

• Look for consecutive indirect 
branch targets that point to 
gadget locations

• Conservative gadget 
definition: up to 20 
instructions
– Typically 1-5

mov eax,ebx
add ebx,100
ret

pop edi
mov esi,edi
ret

sub  esi,8
push esi
call esi

pop edi
pop esi
ret



Last Branch Record (LBR)
• Introduced in the Intel Nehalem architecture

• Stores the last 16 executed branches in a set of 
model-specific registers (MSR)

– Can filter certain types of branches (relative/indirect calls/jumps, 
returns, ...)

• Multiple advantages
– Zero overhead for recording the branches
– Fully transparent to the running application
– Does not require source code or debug symbols
– Can be dynamically enabled for any running application



Monitoring Granularity
• Non-zero overhead for reading the LBR stack 

(accessible only from kernel level)
– Lower frequency   ➔   lower overhead

• ROP code can run at any point
– Higher frequency   ➔   higher accuracy



Monitoring Granularity

• Meaningful ROP code will eventually interact with the OS 
through system calls

– Check for abnormal control transfers on system call entry



Gadget Chaining: Legitimate Code

detection
threshold

* Dataset from: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office (Word, Excel and 
PowerPoint)



Effectiveness
• Successfully prevented real-world exploits in

– Adobe Reader XI (zero-day!)
– Adobe Reader 9
– Mplayer Lite
– Internet Explorer 9
– Adobe Flash 11.3
– …





Limitations

• Indirect branch tracing only checks the last 16 gadgets, 
up to 20 instructions

– Still possible to find longer call-preceded or non-return gadgets



kBouncer



Your Security Zen
Six year old PDF loop bug affects most major PDF implementations

Found with afl + libfuzzer
create a PDF file with cross-referencing xref tables
A naive parser would get caught in an endless loop

Denial of service!

Mozilla Firefox
Chrome

Microsoft Edge
Ghostscript

Evince

source: https://blog.fuzzing-project.org/59-Six-year-old-PDF-loop-bug-affects-most-major-implementations.html

https://blog.fuzzing-project.org/59-Six-year-old-PDF-loop-bug-affects-most-major-implementations.html

