
CSC-537
Systems Attacks and 

Defenses

Alexandros Kapravelos
akaprav@ncsu.edu

Vulnerability 
Management in the 

Software Supply Chain



Challenge details

2

1) Identify vulnerable lines of 
codes/corresponding files in 
challenge.yaml

2) Make a patched version of your challenge 
that is not vulnerable. (put a git diff 
in a patch file) 



Introduction to Vulnerability Management
• Explore vulnerability management for components and 

containers

• Understand its role in software supply chain security

• Learn severity prioritization with CVSS, EPSS, and KEV

• Apply concepts via demos and real-world examples

• Why it matters: trust and security in software delivery

3



What is the Software Supply Chain?
• Definition

– Network of entities producing and delivering software

– Includes developers, vendors, and open-source communities

• Key elements

– Components: libraries (e.g., Log4j), frameworks (e.g., Spring)

– Containers: Docker images, Kubernetes pods

• Role in modern development

– Enables rapid deployment and scalability

– Introduces security dependencies

• Security and trust: core to user confidence 4



Components in the Supply Chain
• Types of components

– Open-source libraries (e.g., OpenSSL, NumPy)
– Frameworks from repositories (e.g., npm, PyPI)

• Sources
– Public registries and community contributions
– Third-party vendors

• Common vulnerabilities
– Outdated versions with known exploits
– Malicious code injections

• Maintenance challenge: tracking dependencies
5



Containers in the Supply Chain
• Definition and purpose

– Packages apps with dependencies for consistency
– Used in Docker, Kubernetes environments

• Benefits
– Portability across platforms
– Simplified deployment

• Vulnerabilities
– Vulnerable base images
– Misconfigured settings (e.g., exposed ports)

• Maintenance: securing runtime environments
6



Why Vulnerability Management Matters
• Protects software supply chain integrity

– Prevents breaches from unpatched flaws
– Maintains trust with users and stakeholders

• Scope
– Components: libraries and dependencies
– Containers: images and configurations

• Consequences of neglect
– Data leaks and system compromises
– Reputational damage

• Goal: proactive risk reduction
7



Vulnerability Management Overview
• Systematic process

– Identify vulnerabilities in components/containers

– Assess severity and potential impact

– Prioritize based on risk metrics

– Mitigate through updates or fixes

• Tools involved

– Scanners (e.g., npm audit, docker scout)

– Databases (e.g., CVE, NVD)

• Outcome: secure and trustworthy software
8



Step 1: Identification
• Goal: detect vulnerabilities early
• Methods for components

– Dependency checkers (e.g., npm audit)
– Static analysis tools

• Methods for containers
– Image scanners (e.g., grype, Trivy, Clair)
– Runtime monitoring

• Challenges
– Tracking transitive dependencies
– Scanning large container images

9



Step 2: Assessment
• Objective: evaluate vulnerability impact
• Metrics used

– Severity scores (e.g., CVSS)
– Exploit likelihood (e.g., EPSS)

• Tools
– National Vulnerability Database (NVD)
– Vendor-specific reports

• Outcome
– Quantified risk for prioritization
– Contextual understanding of threats

10



Step 3: Prioritization
• Why prioritize

– Limited resources for remediation
– Focus on highest risks first

• Key frameworks
– CVSS: severity scoring
– EPSS: exploit probability
– KEV: known exploited vulnerabilities

• Strategy
– Combine metrics for efficiency
– Address critical threats immediately

11



CVSS: Common Vulnerability Scoring System
• Overview

– Scores vulnerabilities 0-10
– Developed by FIRST

• Components
– Base score: exploitability and impact
– Temporal score: urgency factors

• Example
– CVSS 9.8: critical, remote exploit

• Limitation: static severity focus
Notes: CVSS provides a standardized way to assess severity but 
doesn’t predict exploitation likelihood
Refer to CVSS v4.0 User Guide for detailed scoring methodology 12

https://www.first.org/cvss/v4-0/user-guide


EPSS: Exploit Prediction Scoring System
• Purpose

– Estimates exploit probability (0-1)
– Maintained by FIRST

• Data sources
– CVE data and real-world exploits
– Intrusion detection insights

• Example
– EPSS 0.9: 90% chance of exploit

• Strength: dynamic threat prediction
Notes: EPSS complements CVSS by focusing on likelihood, using 
data from honeypots and exploit databases
See EPSS for more 13

https://www.first.org/epss


KEV: Known Exploited Vulnerabilities
• Definition

– CISA-maintained list of exploited CVEs
– High-priority remediation targets

• Usage
– Mandated for federal agencies (BOD 22-01)
– Covers <0.5% of CVEs

• Example
– Log4j CVE-2021-44228: KEV-listed

• Benefit: immediate action focus
Notes: KEV is a critical resource for supply chain security
Check CISA KEV Catalog for updates

14

https://www.cisa.gov/known-exploited-vulnerabilities-catalog


Prioritization Strategy in Practice
• Step-by-step approach

– Start with KEV-listed vulnerabilities
– Next, high EPSS scores (>0.8)
– Then, high CVSS scores (>7.0)

• Benefits
– Addresses active exploits first
– Balances severity and likelihood

• Supply chain impact
– Protects downstream users
– Maintains trust in delivery

15



Step 4: Mitigation
• Techniques

– Patch vulnerable components
– Update container images

• Best practices
– Automate updates via CI/CD
– Test fixes before deployment

• Challenges
– Dependency conflicts
– Downtime risks

• Goal: eliminate vulnerabilities
16



Step 5: Verification
• Purpose

– Confirm mitigation success
– Prevent false positives

• Methods
– Re-run vulnerability scans
– Penetration testing

• Tools
– Same as identification (e.g., Trivy)
– Custom scripts for validation

• Outcome: verified security
17



Lab Setup: What to Expect
• Two practical demonstrations

– Component scanning with npm audit

– Container scanning with docker scan

• Objectives

– Identify real vulnerabilities

– Apply CVSS/KEV prioritization

• Requirements

– Node.js and Docker installed

– Sample vulnerable projects
18



Lab 1: Component Scanning
• Tool: npm audit

• Steps

– Create Node.js project with old lodash

– Run npm audit to list vulnerabilities

– Check CVSS scores in output

• Expected output

– High-severity issues flagged

– Remediation suggestions

• Takeaway: proactive dependency checks
19



Lab 1: Running the Scan
• Command: npm audit

• Output details

– Vulnerability IDs (e.g., CVE-2021-23337)

– Severity levels via CVSS

• Actions

– Review affected packages

– Plan updates (e.g., npm update)

• Relevance: catches supply chain risks

20



• Tool: grype
• Steps

– Pull an old or known vulnerable image 
• nginx:1.18

• visiblev8/vv8-base

– Scan for vulnerabilities
– Identify KEV or high CVSS issues

• Expected output
– List of CVEs with scores
– Fix recommendations

• Takeaway: secure container deployment

Lab 2: Container Scanning

21



Lab 2: Interpreting Results
• Scan output

– CVEs with severity ratings

– Source of vulnerabilities (e.g., base image)

• Prioritization

– Check KEV status

– Assess CVSS scores

• Next steps

– Update to patched image

– Re-scan to verify
22



Lab report

https://forms.gle/VcHSrNQYVfWVzYjs5
Template:

Tool output + comments on results

23

https://forms.gle/VcHSrNQYVfWVzYjs5


Best Practices: Updates and Scanning
• Regular updates

– Keep components current
– Refresh container images

• Vulnerability scanning
– Integrate into CI/CD pipelines
– Use multiple tools (e.g., Trivy)

• Frequency
– Weekly or post-release scans
– Monitor CVE feeds

• Automation: reduce manual effort
24



Best Practices: Secure Configurations
• Container hardening

– Limit privileges (e.g., non-root users)
– Minimize base image size

• Security measures
– Avoid exposed secrets
– Use network policies

• Tools
– Docker Bench for Security
– Kubernetes RBAC

• Goal: reduce attack surface
25



Best Practices: SBOM and Monitoring
• Software Bill of Materials (SBOM)

– Track all components
– Enhance visibility

• Continuous monitoring
– Check for new CVEs
– Leverage KEV updates

• Tools
– Syft for SBOM generation
– Dependabot for alerts

• Outcome: proactive maintenance
26



Supply Chain Security and Trust
• How maintenance fits

– Prevents vulnerability propagation
– Ensures reliable software delivery

• Trust factors
– User confidence in security
– Partner reliability

• Risks of failure
– Breaches affect entire chain
– Loss of credibility

• Proactive approach: key to success
27



Tools Recap
• Identification and scanning

– npm audit for components
– docker scout/grype for containers

• Prioritization aids
– CVSS: severity assessment
– EPSS: exploit likelihood
– KEV: exploited threats

• Integration
– CI/CD for automation
– SBOM for visibility

28



Further Learning Resources
• Deep dives

– CVSS User Guide (first.org/cvss)
– EPSS Documentation (first.org/epss)

• Official sources
– CISA KEV Catalog (cisa.gov)
– NIST SP 800-161 guideline (supply chain)

• Practical tools
– Trivy, Clair for scanning
– Dependency-Check for components

• Stay updated: evolving field
29



Summary and Takeaway Points
• Vulnerability management essentials

– Maintain components and containers

– Use CVSS, EPSS, KEV for prioritization

• Supply chain security

– Proactive fixes ensure trust

– Neglect risks breaches

• Practical skills

– Scans with npm audit, grype

• Call to action: apply in projects
30


