
CSC-537
Systems Attacks and 

Defenses

Alexandros Kapravelos
akaprav@ncsu.edu

Software 
Composition Analysis 

(SCA) & Security



Deliverables
• Challenge idea: February 7 
• Challenge + PoC: February 21 February 28
• Unit test/Code tranf/Prompt fix for your own challenges: 

March 7
– Test your challenges with Gemini 2.0 Flash for now

Attacking other teams:
• Code tranf/Prompt fix for other team challenges: March 21
• Final challenges deliverable (based on feedback): March 28



Introduction to Software Composition Analysis
What is Software Composition Analysis (SCA)?

• Automated identification of open-source components

• Evaluates:

– Security vulnerabilities

– License compliance

– Code quality

• Typically integrated into development lifecycle

• Facilitates early detection of risks in software projects

3



Importance of SCA
• 70-90% of any given piece of modern software relies on 

open-source (via Linux Foundation)

• Enables faster development cycles

• Reduces redundant effort through reuse

• Potentially introduces security risks

• Allows proactive security management

4



Common Security Risks in OSS
• Known vulnerabilities in public databases

• Outdated or unmaintained packages

• Malicious code injection into packages

• Dependency confusion (typosquatting)

• Extensive dependency graphs increasing risk exposure

5



Real-World Case Studies

6



Log4Shell Vulnerability (2021)
• CVE-2021-44228, Log4j vulnerability
• Allowed remote code execution (RCE) through Java Naming and 

Directory Interface (JNDI) injection
– Attackers can include malicious JNDI lookups in logged 

messages
– Vulnerable Log4j versions automatically execute code 

downloaded through these lookups
– This allows hackers to run arbitrary Java code on affected 

systems, potentially gaining full control
• Exploited via malicious log entries
• Global impact, widespread exploitation
• Maximum CVSS severity rating (10)

7



Impact of Log4Shell
• Potential impact on millions of systems

• Global patching efforts were massive

• Prompted security awareness shift globally

• Demonstrated OSS dependency security risks

• Increased adoption of automated security checks

8



Case Study: xz Backdoor Attack (2024)
• Compromise of popular compression library

• Malicious maintainer inserted SSH backdoor

• Early discovery prevented widespread harm

• Could have affected millions of Linux devices

• Led to review of OSS security policies

9



Other High-Profile Attacks
SolarWinds Orion (2020)

• Nation-state espionage via 
trusted software update

• Over 18,000 affected 
organizations

10

UA-Parser-JS (NPM) compromise in 
2021

• Injected crypto-mining 
malware

• Over 8 million weekly 
downloads affected briefly



Practical Demonstrations

11



OWASP Dependency-Check
• Open-source vulnerability scanner

• Supports Java, Python, JavaScript, and more 

• Integrates into build processes (CI/CD)

• Generates detailed vulnerability reports

• Uses NVD database to identify CVEs

12

https://dependency-check.github.io/DependencyCheck/analyzers/index.html


Demo: OWASP Dependency-Check Usage
• Setting up Dependency-Check locally
> brew update && brew install dependency-check

• Running a scan on example project
> dependency-check --scan ./

• Reviewing vulnerability reports

• Integrating into continuous integration (CI/CD)

• Understanding severity and action items

13



GitHub Dependabot Overview
• Automatic dependency monitoring tool

• Creates automated security patches via PRs

• Customizable alerts and update schedules

• Easy integration into GitHub repositories

• Enables proactive vulnerability management

14



Demo: Configuring GitHub Dependabot
• Enabling in repository settings

• Creating dependabot.yml configuration

• Reviewing pull requests for security updates

• Resolving security alerts

• Configuring notifications and scheduling updates

15

https://docs.github.com/en/code-security/dependabot/working-with-dependabot/dependabot-options-reference#about-the-dependabotyml-file
https://github.com/wspr-ncsu/mininode/security/dependabot/2


Discussion: how do you handle 
alerts?

16



Exploiting a Vulnerable Package
• Demonstration of exploitation process

• Highlighting ease of exploiting known issues

• Importance of timely patching

• Illustration using intentionally vulnerable package

• Practical attacker perspective demonstration

17



Securing the Software Supply Chain

18



Defense-in-Depth Strategy
• Layered security to reduce risk

• Incorporate automated checks in CI/CD pipelines

• Continuous vulnerability scanning

• Regular dependency audits and updates

• Comprehensive education and awareness training

19



Best Practices for Secure OSS
• Regular updates and proactive patching

• Continuous monitoring for new vulnerabilities

• Assessment of OSS project health

• Restricting dependencies to minimize risks

• Internal security policy and clear documentation

20



Software Bill of Materials (SBOM)
• Comprehensive list of software dependencies

• Facilitates rapid response to security alerts

• Industry-standard practice and regulatory compliance

• Key to transparency in software supply chains

• Streamlines vulnerability management and remediation

21



Cryptographic Integrity Checks
• Digital signatures and checksum validation

• Prevent tampering and ensure authenticity

• Standard recommendation for software security

• Part of holistic security approach

22



Key Takeaways
• SCA essential due to pervasive OSS usage

• High-profile vulnerabilities illustrate significant risk

• OWASP Dependency-Check and Dependabot critical for 
proactive security

• Implement regular updates, maintain SBOMs, manage 
dependencies rigorously

• Ongoing security vigilance and developer education vital

23


