
CSC-537
Systems Attacks and 

Defenses

Alexandros Kapravelos
akaprav@ncsu.edu

LLMs



Intro to Large Language Models
from Andrej Karpathy

https://www.youtube.com/watch?v=zjkBMFhNj_g 

2

https://www.youtube.com/watch?v=zjkBMFhNj_g


What are LLMs?
• AI systems trained on massive text and code datasets

– sometimes with insecure or outdated patterns
• Capable of understanding and generating human-like text
• Based on Transformers 🤖

– A neural network architecture
– Revolutionized machine learning
– Especially good at natural language processing
– Based on self-attention mechanisms
– Parallelizable architecture
– Handles long-range dependencies in data

3The Annotated Transformer

https://nlp.seas.harvard.edu/annotated-transformer/


Tokens

4source: https://simonwillison.net/2023/Jun/8/gpt-tokenizers/ 

https://simonwillison.net/2023/Jun/8/gpt-tokenizers/


Glitch tokens
• anomalous sequences that cause Large Language Models 

(LLMs) to exhibit unexpected and often nonsensical 
behaviors

• GlitchMiner uses gradient-based discrete optimization to 
identify glitch tokens effectively, enhancing both the security 
and reliability of LLMs.

• https://arxiv.org/pdf/2410.15052 

5https://simonwillison.net/2025/Jan/26/anomalous-tokens-in-deepseek-v3-and-r1/ 

https://arxiv.org/pdf/2410.15052
https://simonwillison.net/2025/Jan/26/anomalous-tokens-in-deepseek-v3-and-r1/


Embeddings
• Embeddings are the numerical representations of tokens in a 

high-dimensional vector space
• Latent space

– items resembling each other are positioned closer to one 
another

embedding("king") - embedding("man") + embedding("woman")

≈ embedding("queen")

6Word2Vec paper, Embeddings are underrated

https://arxiv.org/pdf/1301.3781
https://technicalwriting.dev/embeddings/overview.html


How are LLMs used in code generation?
• Trained on large code repositories (e.g., GitHub)
• Generate code in various programming languages (Python, 

Java, C++, etc.)
• Can create entire functions, classes, or even programs
• Benefits:

– Increased coding speed and efficiency
– Reduced development time
– Assistance with repetitive tasks
– Learning new languages and frameworks

7



Resolving Code Review Comments with Machine Learning

👉 LLMs in the day-to-day development workflow at Google

[..] code-change authors at Google address 7.5% of all reviewer 
comments by applying an ML-suggested edit. The impact of this 
will be to reduce the time spent on code reviews by hundreds of 
thousands of engineer hours annually at Google scale.

8source: https://research.google/pubs/resolving-code-review-comments-with-machine-learning/ 

https://research.google/pubs/resolving-code-review-comments-with-machine-learning/


AI-powered coding assistants

9

• GitHub Copilot (integrated in VS Code)
• Tabnine
• Amazon CodeWhisperer
• Replit Ghostwriter
• Cursor
• Trae
• …

demo

https://www.trae.ai/


Why is code safety important?
• Security Risks:

– Vulnerabilities can be exploited by attackers
– Data breaches, system compromise, financial loss

• Reliability and Trust:
– Software malfunctions can cause disruptions and errors
– Loss of user trust and damage to reputation

• Ethical Considerations:
– Bias in training data can lead to unfair or discriminatory 

code
– Potential for misuse of LLMs to generate harmful code

10



Potential Risks and Vulnerabilities

11



Insecure Code Generation
LLMs learn from massive code datasets, which may contain 
insecure code examples. This can lead to LLMs inadvertently 
reproducing these insecure patterns in the code they generate.

Examples

• Using outdated or vulnerable libraries

• Implementing weak authentication or authorization 
mechanisms

• Failing to sanitize user inputs, leading to injection 
vulnerabilities

12



Malicious Code Generation
LLMs can be exploited to generate code that performs harmful 
actions. Attackers can craft malicious prompts or manipulate training 
data to induce the LLM to produce malicious code.

Examples
• Generating malware or viruses
• Creating code that steals data or credentials
• Launching denial-of-service attacks

Mitigation
• Careful prompt engineering and input validation
• Robust security measures during LLM training and deployment

13



OWASP Top 10 for LLMs
The Open Web Application Security Project (OWASP) provides a list of the most 
critical security risks to consider when developing and deploying LLM applications.
Key Risks

• LLM01: Prompt Injections
• LLM02: Sensitive Information Disclosure
• LLM03: Supply Chain
• LLM04: Data and Model Poison
• LLM05: Improper Output Handling
• LLM06: Excessive Agency
• LLM07: System Prompt Leakage
• LLM08: Vector and Embedding Weaknesses
• LLM09: Misinformation
• LLM10: Unbounded Consumption

14https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/ 

https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/


AI Hallucinations in Code
LLMs sometimes generate outputs that are factually incorrect or nonsensical, known as AI hallucinations.

Impact on Code

• Code that appears correct but contains hidden flaws

• Unexpected or undefined behavior

• Difficult-to-debug errors

Causes

• Limitations in training data or model architecture

• Ambiguous or misleading prompts

Mitigation

• Thorough testing and validation of LLM-generated code

• Clear and concise prompts

• Ongoing research to improve LLM accuracy and reliability
15



Sensitive Information Leakage
LLMs may unintentionally reveal sensitive information in generated code.

Examples
• API keys, database credentials, internal system configurations

Causes
• Presence of sensitive information in training data
• Lack of explicit instructions to handle sensitive data securely

Mitigation
• Scrubbing sensitive data from training datasets
• Implementing data masking and anonymization techniques
• Providing clear instructions to the LLM on handling sensitive information

16



Active Research

17



Many-shot jailbreaking

https://www.anthropic.com/research/many-shot-jailbreaking 18

https://www.anthropic.com/research/many-shot-jailbreaking


> we train models that write secure code when the prompt 
states that the year is 2023, but insert exploitable code when the 
stated year is 2024

> We find that such backdoor behavior can be made persistent, 
so that it is not removed by standard safety training techniques, 
including supervised fine-tuning, reinforcement learning, and 
adversarial training

Sleeper Agents

19https://www.anthropic.com/research/sleeper-agents-training-deceptive-llms-that-persi
st-through-safety-training 

https://www.anthropic.com/research/sleeper-agents-training-deceptive-llms-that-persist-through-safety-training
https://www.anthropic.com/research/sleeper-agents-training-deceptive-llms-that-persist-through-safety-training


CYBERSECEVAL 3

20https://ai.meta.com/research/publications/cyberseceval-2-a-wide-ranging-cybersecurit
y-evaluation-suite-for-large-language-models/ 

https://ai.meta.com/research/publications/cyberseceval-2-a-wide-ranging-cybersecurity-evaluation-suite-for-large-language-models/
https://ai.meta.com/research/publications/cyberseceval-2-a-wide-ranging-cybersecurity-evaluation-suite-for-large-language-models/


Project Naptime

21https://googleprojectzero.blogspot.com/2024/06/project-naptime.html 

https://googleprojectzero.blogspot.com/2024/06/project-naptime.html


• Assessing the Security of 
GitHub Copilot’s Code 
Contributions

• They find 40 % of 1,689 
programs to be vulnerable

Asleep at the Keyboard?

22https://arxiv.org/abs/2108.09293 

https://arxiv.org/abs/2108.09293


Future of LLM-Generated Code Safety
• New Vulnerability Identification Techniques
• Advanced LLM Training for Security
• Secure Coding Standards for LLMs
• Developer Education and Awareness
• …

23



Takeaways
• LLMs offer great potential but come with security risks
• Multiple techniques can improve the safety of 

LLM-generated code
• Continuous research and development are crucial

Call to Action:

• Prioritize code security when using LLMs
• Stay informed about best practices and latest research

24



Your Security Zen

Anomalous Tokens in DeepSeek-V3 and r1

25

> I searched for these tokens by first extracting the vocabulary 
from DeepSeek-V3's tokenizer, and then automatically testing 
every one of them for unusual behavior.

https://outsidetext.substack.com/p/anomalous-tokens-in-deepseek-v3-and 

https://outsidetext.substack.com/p/anomalous-tokens-in-deepseek-v3-and

