
CSC-537
Systems Attacks and

Defenses

Secure Coding
Principles

Alexandros Kapravelos
akaprav@ncsu.edu

Least Privilege
• Grant users, processes, and systems only the absolute

minimum permissions necessary to perform their required
functions. This limits the potential damage from a successful
attack or an error.

• Example: A web application should not have database
administrator privileges.

2

Example
Give me a dockerfile that runs nginx

What user does it run it as?

3

Input Validation
• Never trust data received from external sources (users, other

systems, APIs, etc.). Thoroughly validate all input for type,
length, format, and range before using it.

• Example: Check that an email address field actually contains
a valid email address format.

4

Output Encoding
• Properly encode or escape data before sending it to another

component or system. The encoding method should be
appropriate for the receiving context (e.g., HTML, JavaScript,
SQL).

• Example: Encoding special characters like < and > as < and
> when displaying user-supplied data in a web page
prevents Cross-Site Scripting (XSS) attacks.

5

Secure Error Handling
• Handle errors gracefully without revealing sensitive

information that could aid attackers. Log error details
securely for debugging purposes, but present generic error
messages to users.

• Example: Instead of displaying a detailed SQL error message,
show a user-friendly message like "An unexpected error
occurred. Please try again later."

6

Defense in Depth
• Implement multiple layers of security controls. If one layer

fails, others are in place to provide protection.
• Example: Combining firewalls, intrusion detection systems,

input validation, strong authentication, and access controls.

7

Fail Securely
• Design systems to fail in a way that prioritizes security. This

means defaulting to a secure state in case of errors or
unexpected conditions.

• Example: If a system component fails, ensure it doesn't leave
data unprotected or allow unauthorized access. If an
authentication module cannot reach the authentication
server, don't permit access by default.

8

Keep it Simple
• Simple code is easier to understand, review, and maintain.

Complexity increases the likelihood of security
vulnerabilities.

• Example: Avoid overly complicated algorithms or convoluted
code structures.

9

Secure Defaults
• Configure systems and applications with secure settings

out-of-the-box. Users should not have to manually enable
security features.

• Example: Require strong passwords by default, enable
logging of security-relevant events, and disable unnecessary
services.

10

Data Protection

11

Protect Data in Transit
• Use strong encryption protocols (e.g., TLS/SSL) to protect

data transmitted over networks, especially the internet.
• Example: Always use HTTPS for websites that handle

sensitive information.

12

Protect Data at Rest
• Encrypt sensitive data stored in databases, files, or other

storage media.
• Example: Use database encryption or file system encryption

to protect data even if physical access to the storage is
compromised.

13

Proper Session Management
• Securely manage user sessions to prevent session hijacking

and other related attacks.
• Example: Use strong session ID generation, set appropriate

session timeouts, and invalidate sessions upon logout.

14

Authentication and
Authorization

15

Strong Authentication
• Implement robust authentication mechanisms to verify user

identities.
• Example: Use strong, unique passwords. Enforce multi-factor

authentication (MFA) whenever possible.

16

Secure Password Storage
• Never store passwords in plain text. Use strong, one-way

hashing algorithms (e.g., bcrypt, Argon2) with salting to
protect stored passwords.

• Example: Salt each password with a unique, random value
before hashing it.

17

Code Quality and
Maintenance

18

Regular Security Testing
Conduct regular security assessments, including vulnerability
scanning, penetration testing, and code reviews, to identify and
remediate security weaknesses.

Example: Use automated scanning tools and schedule periodic
manual security audits.

19

Keep Software Up-to-Date
Regularly update all software components (operating systems,
libraries, frameworks) to patch known vulnerabilities.

Example: Enable automatic updates or have a process for
promptly applying security patches.

20

Secure Development Lifecycle (SDL)
• Integrate security into every phase of the software

development process, from design to deployment and
maintenance.

• Example: Perform threat modeling during the design phase,
conduct security code reviews during development, and
perform penetration testing before release.

21

Operational Security

22

Principle of Separation of Duties
Divide critical tasks among multiple individuals to prevent fraud
or errors.

Example: The person who approves a financial transaction
should not be the same person who initiates it.

23

Auditing and Logging
Log security-relevant events (e.g., authentication attempts,
authorization decisions, system errors) for monitoring, incident
response, and auditing purposes.

Example: Log failed login attempts to detect brute-force attacks.

24

Use Secure Libraries and Frameworks
Leverage well-established and security-focused libraries and
frameworks to avoid reinventing the wheel and potentially
introducing vulnerabilities.

Example: Use a reputable web framework that handles common
security tasks like input validation and output encoding.

25

Your Security Zen

Can LLMs write better code if you

keep asking them to “write better

code”?

source: https://minimaxir.com/2025/01/write-better-code/

https://minimaxir.com/2025/01/write-better-code/

