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Least Privilege
• Grant users, processes, and systems only the absolute 

minimum permissions necessary to perform their required 
functions. This limits the potential damage from a successful 
attack or an error.

• Example: A web application should not have database 
administrator privileges.
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Example
Give me a dockerfile that runs nginx

What user does it run it as?
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Input Validation
• Never trust data received from external sources (users, other 

systems, APIs, etc.). Thoroughly validate all input for type, 
length, format, and range before using it.

• Example: Check that an email address field actually contains 
a valid email address format.
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Output Encoding
• Properly encode or escape data before sending it to another 

component or system. The encoding method should be 
appropriate for the receiving context (e.g., HTML, JavaScript, 
SQL).

• Example: Encoding special characters like < and > as &lt; and 
&gt; when displaying user-supplied data in a web page 
prevents Cross-Site Scripting (XSS) attacks.
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Secure Error Handling
• Handle errors gracefully without revealing sensitive 

information that could aid attackers. Log error details 
securely for debugging purposes, but present generic error 
messages to users.

• Example: Instead of displaying a detailed SQL error message, 
show a user-friendly message like "An unexpected error 
occurred. Please try again later."
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Defense in Depth
• Implement multiple layers of security controls. If one layer 

fails, others are in place to provide protection.
• Example: Combining firewalls, intrusion detection systems, 

input validation, strong authentication, and access controls.
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Fail Securely
• Design systems to fail in a way that prioritizes security. This 

means defaulting to a secure state in case of errors or 
unexpected conditions.

• Example: If a system component fails, ensure it doesn't leave 
data unprotected or allow unauthorized access. If an 
authentication module cannot reach the authentication 
server, don't permit access by default.

8



Keep it Simple
• Simple code is easier to understand, review, and maintain. 

Complexity increases the likelihood of security 
vulnerabilities.

• Example: Avoid overly complicated algorithms or convoluted 
code structures.
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Secure Defaults
• Configure systems and applications with secure settings 

out-of-the-box. Users should not have to manually enable 
security features.

• Example: Require strong passwords by default, enable 
logging of security-relevant events, and disable unnecessary 
services.
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Data Protection
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Protect Data in Transit
• Use strong encryption protocols (e.g., TLS/SSL) to protect 

data transmitted over networks, especially the internet.
• Example: Always use HTTPS for websites that handle 

sensitive information.
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Protect Data at Rest
• Encrypt sensitive data stored in databases, files, or other 

storage media.
• Example: Use database encryption or file system encryption 

to protect data even if physical access to the storage is 
compromised.
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Proper Session Management
• Securely manage user sessions to prevent session hijacking 

and other related attacks.
• Example: Use strong session ID generation, set appropriate 

session timeouts, and invalidate sessions upon logout.
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Authentication and 
Authorization
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Strong Authentication
• Implement robust authentication mechanisms to verify user 

identities.
• Example: Use strong, unique passwords. Enforce multi-factor 

authentication (MFA) whenever possible.

16



Secure Password Storage
• Never store passwords in plain text. Use strong, one-way 

hashing algorithms (e.g., bcrypt, Argon2) with salting to 
protect stored passwords.

• Example: Salt each password with a unique, random value 
before hashing it.
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Code Quality and 
Maintenance
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Regular Security Testing
Conduct regular security assessments, including vulnerability 
scanning, penetration testing, and code reviews, to identify and 
remediate security weaknesses.

Example: Use automated scanning tools and schedule periodic 
manual security audits.
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Keep Software Up-to-Date
Regularly update all software components (operating systems, 
libraries, frameworks) to patch known vulnerabilities.

Example: Enable automatic updates or have a process for 
promptly applying security patches.
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Secure Development Lifecycle (SDL)
• Integrate security into every phase of the software 

development process, from design to deployment and 
maintenance.

• Example: Perform threat modeling during the design phase, 
conduct security code reviews during development, and 
perform penetration testing before release.
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Operational Security
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Principle of Separation of Duties
Divide critical tasks among multiple individuals to prevent fraud 
or errors.

Example: The person who approves a financial transaction 
should not be the same person who initiates it.
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Auditing and Logging
Log security-relevant events (e.g., authentication attempts, 
authorization decisions, system errors) for monitoring, incident 
response, and auditing purposes.

Example: Log failed login attempts to detect brute-force attacks.
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Use Secure Libraries and Frameworks
Leverage well-established and security-focused libraries and 
frameworks to avoid reinventing the wheel and potentially 
introducing vulnerabilities.

Example: Use a reputable web framework that handles common 
security tasks like input validation and output encoding.
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Your Security Zen

Can LLMs write better code if you 

keep asking them to “write better 

code”?

source: https://minimaxir.com/2025/01/write-better-code/ 

https://minimaxir.com/2025/01/write-better-code/

