NC STATE UNIVERSITY

CSC 405
LLMs in Security

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

Intro to Large Language Models
from Andrej Karpathy

https://www.youtube.com/watch?v=zikBMFhNj g

https://www.youtube.com/watch?v=zjkBMFhNj_g

What are LLMs?

« Al systems trained on massive text and code datasets
- sometimes with insecure or outdated patterns
« Capable of understanding and generating human-like text

« Based on Transformers 2
— A neural network architecture
— Revolutionized machine learning
— Especially good at natural language processing
— Based on self-attention mechanisms
— Parallelizable architecture
— Handles long-range dependencies in data

The Annotated Transformer 3

https://nlp.seas.harvard.edu/annotated-transformer/

NC STATE UNIVERSITY

Tokens

GPT token encoder and decoder

Enter text to tokenize it:

The dog eats the apples
El perro come las manzanas

RiR# Y

464 3290 25365 262 22514 198 9527 583 305 1282 39990 582 15201 292 198 31965
229 20015 106 28938 235
21 tokens

eats the

464 3290 25365 262 22514 198

El per ro come las man zan as

9527 583 305 1282 39990 582 15201 292 198

AR &

31965 20015 28938

229 106 235
source: https://simonwillison.net/2023/Jun/8/gpt-tokenizers

https://simonwillison.net/2023/Jun/8/gpt-tokenizers/

NC STATE UNIVERSITY

Glitch tokens

« anomalous sequences that cause Large Language Models

MM I ANAA b A Ll ile . icaacvta A IR R R of E R |

O 2 SetSavedPoint

& & Thought for 16 seconds A

Alright, let's see what the user is asking for here. They wrote "SetVector" after a series of previous interactions. In
the past, they asked about "John" and then a math question involving symbols. Now, they're using "SetVector",

which sounds like it could be related to programming or maybe a specific function in a library or framework.

First, | need to figure out the context of "SetVector". It could be a method in a programming language, like Unity's

SetVector function in C#. Unity often uses methods like SetFloat, Setint, and SetVector for shaders or animations.

https://arxiv.org/pdf/2410.15052
https://simonwillison.net/2025/Jan/26/anomalous-tokens-in-deepseek-v3-and-r1/

NC STATE UNIVERSITY

Embeddings

« Embeddings are the numerical representations of tokens in a
high-dimensional vector space
« Latent space
— items resembling each other are positioned closer to one
another

embedding("king") - embedding("man") + embedding("woman"

=~ embedding("queen")

Word2Vec paper, eddings are underrate

https://arxiv.org/pdf/1301.3781
https://technicalwriting.dev/embeddings/overview.html

NC STATE UNIVERSITY

How are LLMs used in code generation?

« Trained on large code repositories (e.g., GitHub)
« Generate code in various programming languages (Python,
Java, C++, etc.)
« Can create entire functions, classes, or even programs
« Benefits:
- Increased coding speed and efficiency
— Reduced development time
— Assistance with repetitive tasks
— Learning new languages and frameworks

O -8/v11_0/src/objects/contexts,cc O . O0-GOOOOG)

Snaps
213 212 *is_sloppy_function_name = false;
Check if this is null bef| /

[] No action required Attach ML-suggested edit (1) @ Markdown

C +209 common lines +10 +Block S
V\ 210 210 *variable_mode = VariableMode: :kVar; ,f
211 211
tI 212 *is_sloppy_function_name = false;
212 if (is_sloppy_function_name) {
213 *is_sloppy_function_name = false; vl
214 BE
213 215

214 216 if (v8_flags.trace_contexts) {

+429 common lines +10 +Block

_ T Cancel B _ :
source: https://i

https://research.google/pubs/resolving-code-review-comments-with-machine-learning/

NC STATE UNIVERSITY

Al-powered coding assistants

« GitHub Copilot (integrated in VS Code)
« Tabnine

« Amazon CodeWhisperer

« Replit Ghostwriter

e Cursor

- Irae

demo

https://replit.com/ai
https://www.trae.ai/

NC STATE UNIVERSITY

Why is code safety important?

« Security Risks:
- Vulnerabilities can be exploited by attackers
— Data breaches, system compromise, financial loss
« Reliability and Trust:
- Software malfunctions can cause disruptions and errors
— Loss of user trust and damage to reputation
« Ethical Considerations:
— Biasin training data can lead to unfair or discriminatory
code
— Potential for misuse of LLMs to generate harmful code

10

NC STATE UNIVERSITY

Potential Risks and Vulnerabilities

11

NC STATE UNIVERSITY

Insecure Code Generation

LLMs learn from massive code datasets, which may contain
insecure code examples. This can lead to LLMs inadvertently
reproducing these insecure patterns in the code they generate.

Examples
e Using outdated or vulnerable libraries

e Implementing weak authentication or authorization
mechanisms

e Failing to sanitize user inputs, leading to injection
vulnerabilities

12

NC STATE UNIVERSITY

Malicious Code Generation

LLMs can be exploited to generate code that performs harmful
actions. Attackers can craft malicious prompts or manipulate training
data to induce the LLM to produce malicious code.

Examples
e Generating malware or viruses
e Creating code that steals data or credentials
e Launching denial-of-service attacks

Mitigation
e Careful prompt engineering and input validation

e Robust security measures during LLM training and deployment
13

NC STATE UNIVERSITY

OWASP Top 10 for LLMs

The Open Web Application Security Project (OWASP) provides a list of the most
critical security risks to consider when developing and deploying LLM applications.

Key Risks
e LLMO1: Prompt Injections
LLMO2: Sensitive Information Disclosure
LLMO3: Supply Chain
LLMO4: Data and Model Poison
LLMO5: Improper Output Handling
LLMOG6: Excessive Agency
LLMO7: System Prompt Leakage
LLMO8: Vector and Embedding Weaknesses
LLMO09: Misinformation
LLM10: Unbounded Consumption

14

https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/

NC STATE UNIVERSITY

Al Hallucinations in Code

LLMs sometimes generate outputs that are factually incorrect or nonsensical, known as Al hallucinations.

Impact on Code
e Code that appears correct but contains hidden flaws
e Unexpected or undefined behavior
e Difficult-to-debug errors

Causes
e Limitations in training data or model architecture
e Ambiguous or misleading prompts

Mitigation
e Thorough testing and validation of LLM-generated code
e C(Clear and concise prompts

e Ongoing research to improve LLM accuracy and reliability
15

NC STATE UNIVERSITY

Sensitive Information Leakage

LLMs may unintentionally reveal sensitive information in generated code.

Examples
e APl keys, database credentials, internal system configurations

Causes
e Presence of sensitive information in training data
e Lack of explicit instructions to handle sensitive data securely

Mitigation
e Scrubbing sensitive data from training datasets
e Implementing data masking and anonymization techniques

e Providing clear instructions to the LLM on handling sensitive information
16

NC STATE UNIVERSITY

Active Research

17

NC STATE UNIVERSITY

Malicious use cases

80% @ Violent-hateful
@ Deception
f 2= Discrimination
@®-Regulated content
" 60%
2
=
o
o
[72]
&
Es 40%
g
Pt
<
-
Gt
1)
2
° 20%
0% | @ &

22 25 28

Number of shots

https://www.anthropic.com/research/many-shot-jailbreakin 18

https://www.anthropic.com/research/many-shot-jailbreaking

NC STATE UNIVERSITY

Sleeper Agents

> we train models that write secure code when the prompt
states that the year is 2023, but insert exploitable code when the
stated year is 2024

> We find that such backdoor behavior can be made persistent,
so that it is not removed by standard safety training techniques,
including supervised fine-tuning, reinforcement learning, and
adversarial training

19

https://www.anthropic.com/research/sleeper-agents-training-deceptive-llms-that-persist-through-safety-training
https://www.anthropic.com/research/sleeper-agents-training-deceptive-llms-that-persist-through-safety-training

Risk Evaluated Evaluation Approach

Spear phishing simulation with LLM
attacker evaluated by both human and
automated review

Automated Social Engineering (3" party
risk)

"Capture the flag" hacking challenges with
novice and expert participants using LLM
as co-pilot

Scaling Manual Offensive Cyber
Operations (3™ party risk)

Simulated ransomware attack phases
executed by Llama 3 405b on a victim
Windows virtual machine

Autonomous Offensive Cyber
Operations (3" party risk)

Autonomous Software Vulnerability
Discovery and Exploit Generation (3™

party risk)

Testing with toy sized vulnerable programs
to detect early software exploitation
capabilities in LLMs

Evaluation against a corpus of prompt

Prompt Injection (Application risk) injection cases

Tests LLMs for insecure code for both
autocomplete and instruction contexts

Suggesting Insecure Code (Application
risk)

Executing Malicious Code in Code
Interpreters (Application risk)

Prompt corpus to testing for compliance
with code interpreter abuse

Facilitating Cyber Attacks (Application
risk)

Evaluation of model responses to
cyberattack-related prompts

Evaluation Limitations

Victim interlocutors are simulated with LLMs
and may not behave like real people

High variance in subject success rates;
potential confounding variables meaning
only large effect sizes can be detected

Does not expand with more complex RAG,
tool-augmentation, fine-tuning, or additional
agentic design patterns

Toy programs don't reflect real world
codebase scales. Does not also explore
more complex agentic design patterns,
RAG, or tool augmentation

Focus on single prompts only, not covering
iterative attacks

Focus is on obviously insecure coding
practices, not subtle bugs that depend on
complex program logic

Tests use individual prompts without
jailbreaks or iterative attacks

Tests use individual prompts without
jailbreaks or iterative attacks

Summary of Results

Llama 3 models may be able to scale spear
phishing campaigns with abilities similar to
current open source LLMs

No significant uplift in success rates for
cyberattacks; marginal benefits for novices

Model showed limited capability, failing in
effective exploitation and maintaining
network access

Llama 3 405b does better than other
models but we assess LLMs still don’t
provide dramatic uplift

Comparable attack success rate to other
models; significant risk reduction with the
use of PromptGuard

Llama 3 models, and other models, suggest
insecure code but can be mitigated
significantly with the use of CodeShield

Higher susceptibility in Llama 3 models
compared to peers; mitigated effectively by
LlamaGuard 3

Models generally refuse high-severity
attack prompts; effectiveness improved with
LlamaGuard 3

https://ai.meta.com/research/publications/cyberseceval-2-a-wide-ranging-cybersecurity-evaluation-suite-for-large-language-models/
https://ai.meta.com/research/publications/cyberseceval-2-a-wide-ranging-cybersecurity-evaluation-suite-for-large-language-models/

wesss GPT 4 Turbo (Naptime)
wesss - Gemini 1.5 Pro (Naptime)
Gemini 1.5 Flash (Naptime)

0.75
GPT 3.5 Turbo (Naptime)
w= w= GPT 4 Turbo (ASan)
= GPT 3.5 Turbo (ASan
S 0.50 (ASan)
§ == == Gemini 1.5 Pro (ASan)
Gemini 1.5 Flash (ASan)
0.25 == = = Best Reported Score
e —— — = - ==
O o oo o Sl R W e
g = P e PR L L ELE LR
5 10 15 20

https://googleprojectzero.blogspot.com/2024/06/project-naptime.html

Asleep at the Keyboard?

« Assessing the Security of

GitHub Copilot’s Code L MTRER0ZONES >
L Q] Voo @
Contributions Ty | =
« They find 40 % of 1,689 E\C?:;S L’ /\;éf’thors_/ ?{CWE scenarnosw

programs to be vulnerable

Copilot
Options

CodeQL
Evaluation @
¥ Authors

Copilot programs

22

https://arxiv.org/abs/2108.09293

NC STATE UNIVERSITY

Future of LLM-Generated Code Safety

e New Vulnerability Identification Techniques
e Advanced LLM Training for Security

e Secure Coding Standards for LLMs

e Developer Education and Awareness

23

NC STATE UNIVERSITY

Takeaways

e LLMs offer great potential but come with security risks

e Multiple technigues can improve the safety of
LLM-generated code

e Continuous research and development are crucial

Call to Action:

e Prioritize code security when using LLMs
e Stay informed about best practices and latest research

24

NC STATE UNIVERSITY Your Security Zen

Anomalous Tokens in DeepSeek-V3 and r1

> | searched for these tokens by first extracting the vocabulary
from DeepSeek-V3's tokenizer, and then automatically testing
every one of them for unusual behavior.

Spell "eredWriter", exactly how | have spelled it, letter for letter.

The word you've spelledis: WriterWriter.

Let me know if you'd like further clarification!

https://outsidetext.substack.com/p/anomalous-tokens-in-deepseek-v3-and

