NC STATE UNIVERSITY

CSC 405
SSL/TLS & HTTPS

Alexandros Kapravelos
akaprav@ncsu.edu

HTTP Workflow

. Web The Web server Disk drive
1 User enters web address in browser Internet at server.com at server.com
address bar
User enters:
htto:/fservercom §
5 Browser looks up the IP ;
address of the URL via DNS Look up IP
gersasssessresineing address of
: server.com
3 Browser submits a request for
content from IP Request
Serve,:com maln .----..-.--.......-------..----.---...--..--....-3
page using IP :
4 Server receives the request Receive
re uest for -.................E
index page i
5 Server looks for the content on ~ Fetch
its hard disk N index.html
: from hard disk
s Binary Digits are Transferred S, Return the
via the Internet index page
Browser processes the binary Receive and
7 into HTML, which it then display page
interprets

NC STATE UNIVERSITY

HTTPS Workflow

Web The Web server Disk drive
browser Internet at server.com at server.com
User enters:
htto:servercom o
: Look up IP
1 User enters web address in address JRE—— odilras of
bar server.com
Request
) Browser looks up IP address of the SVELCOMMAIN oo v v v v rrremme e eeees :
URL via DNS page using IP :
Receive request |
3 Browser submits request for SSL for SSL cert
Connect from Website
Website responds with an SSL Retrieves public SSL
4 certificate cert from drive

Transfers cert to
User

NC STATE UNIVERSITY

HTTPS Workflow

User verifies SSL certificate is

5 . . .
issued to website and not expired

6 User generates a random number

7 User encrypts session key with

public key
3 Website decrypts the session key
with their private key
9 "Secure" communication can now

occur between the two

Web
browser

Transfers cert
to User

User verifies
certificate

User generates
session key

Secure
Communication
Begins

The
Internet

Web server
at server.com

Disk drive
at server.com

Retrieves public SSL cert
from drive

Website verifies session key
with private key

Website switches
communications to session
key encryption

NC STATE UNIVERSITY

SSL vs TLS

e SSL (Secure Sockets Layer): Developed by Netscape in the mid-1990s.
SSL versions 1.0 (never publicly released), 2.0, and 3.0 were created.

® TLS (Transport Layer Security): When SSL 3.0 was found to have
security weaknesses, the Internet Engineering Task Force (IETF) took over
development, improved upon it, and released it under the new name TLS.
O TLS 1.0 was released in 1999, essentially an upgrade of SSL 3.0.

O TLS 1.1, 1.2, and the current strongest version, TLS 1.3 (released in 2018),
followed, each bringing significant security and performance improvements.

NC STATE UNIVERSITY

Creating the Certificate

Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

You are about to be asked to enter information that will be incorporated into your
certificate request.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:NC

Locality Name (eg, city) []:Raleigh

Organization Name (eg, company) [Internet Widgits Pty Ltd]:NC State University
Organizational Unit Name (eg, section) []:HackPack

Common Name (e.g. server FQDN or YOUR name) []:Hack T. Pack

Email Address []:hackpackclub@ncsu.edu

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

NC STATE UNIVERSITY

Creating the Certificate
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

This will generate two files with RSA-2048 encryption

myserver.key server.csr

NC STATE UNIVERSITY

Creating the CSR
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

This will generate two files with RSA-2048 encryption

myserver.key server.csr

The . key file becomes your internal
private key for encryption

NC STATE UNIVERSITY

Creating the CSR
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

This will generate two files with RSA-2048 encryption

myserver.key server.csr

The . csr file contains the

information entered during creation

NC STATE UNIVERSITY

Submitting Your CSR

* The CSR file is then submitted to a Certificate Authority

— These entities in turn verify the certificate for users and the server

— Once verified by the CA, the registering party will receive a signed
version of the certificate

@ Certificate Services Manager <support@cert-manager.com> % “
e tome v

Hello,
You have successfully enrolled for an InCommon SSL certificate.
You now need to complete the following steps

* Click the following link to download your SSL certificate (generally try to use a version that includes intermediates & root or your certificate may be
rejected by some older clients)

Available formats
as Certificate only, PEM encoded: https://cert-manager.com/customer/InCommon/ssi?action=downloa

as Certificate (w/ issuer after), PEM encoded: https://cert-manager. com/customer/InCommon/ss|?actio
as Certificate (w/ chain), PEM encoded: hitps://cert-manager.com/customer/InCommon/ssl?action=dow

as PKCS#T: https://cert-manager.com/customer/InCommon/ssi?action=download&sslid=3027913&fori
as PKCS#7, PEM encoded: https://cert-manager.com/customer/InCommon/ssi?action=download&sslid

Issuing CA certificates only:

as Root/Intermediate(s) only, PEM encoded: https://cert-manager.com/customer/InCommon/ssi?action=downloa
as Intermediate(s)/Root only, PEM encoded: https://cert-manager.com/customer/InCommon/ssi?action=downloac

Submitting Your CSR

* The CSR file is then submitted to a Certificate Authority
— These entities in turn verify the certificate for users and the server

— Once verified by the CA, the registering party will receive a signed
version of the certificate

@ (Certificate Services Manager <support@cert-manager.con> % “
‘ tome v

Hello,

You have successfully enrolled for an InCommon SSL certificate.

g steps:

Congratulations!

 your SSL certificate (generally try to use a version that includes intermediates & root or your certificate may be

https:/icert-manager.com/customer/InCommon/ssi?action=downloa

M encoded: https://cert-manager. com/customer/InCommon/ss|?actio

You've registered for SSL!

as PKCS#T: https://cert-manager.com/customer/InCommon/ssi?action=download&sslid=3027913&fori
as PKCS#7, PEM encoded: https://cert-manager.com/customer/InCommon/ssl?action=download&ssll

Issuing CA certificates only:

as Root/Intermediate(s) only, PEM encoded: https://cert-manager.com/customer/InCommon/ssi?action=downloa
as Intermediate(s)/Root only, PEM encoded: https://cert-manager.com/customer/InCommon/ssi?action=downloa

NC STATE UNIVERSITY

The Foundation of Trust: Certificate Authorities (CAs)

Who are they? CAs are trusted third-party organizations (e.g., Let's
Encrypt, DigiCert, GlobalSign).

What do they do? They issue digital certificates (like SSL/TLS
certificates).

Core Function: To verify the identity of an entity (like a website owner)
and bind that identity to a cryptographic public key.

NC STATE UNIVERSITY

N>R W

©

How CAs Enable Secure Connections (TLS/SSL)

\éeArification: A website owner proves their identity and control over a domain to a
Issuance: The CA issues a certificate containing the website's domain name,
public key, and other details. This certificate is digitally signed by the CA using its
private key.

Browser Trust: Your web browser and operating system come pre-loaded with a
list of trusted Root CAs and their public keys (the "Trust Store").

Connection: When you visit an HTTPS website:

The website presents its certificate.

Your browser checks if the certificate was signed by a CA in its Trust Store.

It verifies the signature using the CA's public key.

It checks if the certificate is valid (not expired, revoked) and matches the domain
name.

Result: If everything checks out, the browser trusts the server's identity and
establishes an encrypted connection. This system allows millions of websites to
be trusted without prior direct relationships.

NC STATE UNIVERSITY

Upload Your Key and Cert to the Server

* Transfer the myserver.key file to your server
— Typically stored somewhere like /etc/ssl/

[user@server ~] ls /etc/ssl/key
myserver.key

NC STATE UNIVERSITY

Upload Your Key and Cert to the Server

* Transfer the signed certificate files to your server
— Typically domainName.crt and domainName.ca-bundle

[user@server ~] 1ls /etec/ssl/cert
domainName.crt
domainName.ca-bundle

NC STATE UNIVERSITY

Configure Your Server

* This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf/httpd.conf

Load config files in "/etc/httpd/conf.d" directory, 1if any.
IncludeOptional conf.d/*.conf
<VirtualHost *:80>
ServerName domainname.tld
Redirect "/" "https://domainname.tld/"
</VirtualHost>

Apache Configuration

NC STATE UNIVERSITY

Configure Your Server

* This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf/httpd.conf

Load config files in "/etc/httpd/conf.d" directory, 1if any.
IncludeOptional conf.d/*.conf
<VirtualHost *:80>
ServerName domainname.tld
Redirect "/" "https://domainname.tld/"
</VirtualHost>

Establish that requests occurring from Port 80 should be
redirected to the HTTPS address (Port 443)

NC STATE UNIVERSITY

Configure Your Server

* This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf.d/ssl.conf
<VirtualHost default :443>
ServerName domainName:65432
SSLEngine on
SSLCertificateFile /etc/ssl/cert/domainName.crt
SSLCertificateKeyFile /etc/ssl/key/myserver.key

ProxyPass / uwsgi://localhost:65432/
ProxyPassReverse / uwsgi://localhost:65432/
</VirtualHost>

NC STATE UNIVERSITY

Configure Your Server

* This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf.d/ssl.conf
<VirtualHost default :443>
ServerName domainName:65432
SSLEngine on
SSLCertificate
SSLCertificate

Now, communications occur via the 443
port, which can in turn redirect traffic to
internal applications or /var/www/html ¥

ProxyPass / uwsgi://localhost:65432/
ProxyPassReverse / uwsgi://localhost:65432/
</VirtualHost>

NC STATE UNIVERSITY

Configure Your Server

* This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf.d/ssl.conf
<VirtualHost default :443>
ServerName domainName: 65432
SST.Fnaine on
Congratulations! You're 'etc/ssl/cert/domainName.crt
website is HTTPS! e [/etc/ssl/key/myserver.key

ProxyPass / uwsgi://localhost:65432/
ProxyPassReverse / uwsgi://localhost:65432/
</VirtualHost>

NC STATE UNIVERSITY

Configure Your Server

* This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] systemctl restart httpd

Now restart Apache...

NC STATE UNIVERSITY

The Life of a Computer Scientist...

* This will range from the application running your server
(Apache, nginx, etc.)

B

This site can't provide a secure connection

domainName.tld sentan invalid response.

ERR_SSL_PROTOCOL_ERROR

...and debug whatever

you broke &

NC STATE UNIVERSITY

Let's Encrypt

Literally no reason to not have SSL encryption on your site

Kl Let’s Encrypt

https://letsencrypt.org/

My HTTP website is running (___=v=) on (___s=n)

Software

Nginx Help, I'm not sure!
HAProxy
Plesk
Other
Web Hosting Product

user@server snap install core
userl@server snap refresh core

user@server 1n -s /snap/bin/certbot /usr/bin/certbot

[
[
[user@server snap install --classic certbot
[
[user@server certbot --apache

https://letsencrypt.org/

HTTPS Workflow

Web The Web server Disk drive
browser Internet at server.com at server.com

" oo . Retrieves public SSL cert
User verifies SSL certificate is EEEEEE P '
5 . . . : from drive
issued to website and not expired Transfers cert :

to User

6 User generates a random number ; Where'S the

User verifies

User encrypts session key with certificate VU I n e ra b I I Ity?

7 .
public key
.) User generates | = . . ipe .
8 Web5|tet decrypts t.he session key sessionkey | ..., WebSIte- verlf.les session key
with their private key with private key
9 "Secure" communication can now ;]
occur between the two Website switches
T communications to session
Secure . key encryption
communication - y yp

Begins

NC STATE UNIVERSITY

SSL Hijacking

Attacker sends a phishing attack utilizing
JavaScript to install a bogus CA certificate

business.com

NC STATE UNIVERSITY

SSL Hijacking

Known as
"DNS Poisoning"

The user's DNS caches are poisoned to

make the user's browser route traffic to
business.com to attacker's IP Address

business.com

NC STATE UNIVERSITY

SSL Hijacking

Attacker also configures their server

to act as a proxy to business.com

business.com

NC STATE UNIVERSITY

SSL Hijacking

When the user attempts to connect to
business.com, their DNS cache

points to the attacker's server and
accepts the fake SSL certificate

business.com

NC STATE UNIVERSITY

SSL Hijacking

User's request is decrypted by
attacker, logged, and then relayed to
business.com's server

business.com

NC STATE UNIVERSITY

SSL Hijacking
v
A
A

business.com

This attack will persist until the
user's DNS cache expires

NC STATE UNIVERSITY

SSL Hijacking

If the victim installs the fake CA certificate

onto the system, detecting SSL hijacking
becomes nearly impossible

business.com

NC STATE UNIVERSITY

SSL Hijacking

If the server also relies on
Session IDs, the attacker can also
store those for future attacks

business.com

NC STATE UNIVERSITY

The Problem: Limitations of Standard TLS Trust

e Standard TLS/SSL: Relies on a chain of trust rooted in Certificate
Authorities (CAs).

e Trust Model: Your device/browser trusts hundreds of CAs globally.

e The Weak Link: What if a trusted CA is compromised or tricked into
issuing a fraudulent certificate for a legitimate domain?

e The Threat: A Man-in-the-Middle (MitM) attacker could present this
fraudulent (but technically valid) certificate.

e Result: Standard validation would succeed, allowing interception of
sensitive data, even over HTTPS.

NC STATE UNIVERSITY

What is Certificate Pinning?

e Definition: A security technique where an application associates a specific
host directly with its expected X.509 certificate or public key.

e Mechanism: Instead of trusting any certificate signed by a trusted CA, the
application only trusts the specific certificate(s) or public key(s) it has
"pinned".

e Implementation: Usually done within the client application (e.g., mobile
apps, specific software).

e What's Pinned?:

o The hash of the entire certificate.
o The hash of the certificate's Subject Public Key Info (SPKI) - often

preferred for flexibility.

NC STATE UNIVERSITY

How Pinning Works & Benefits

1. Connection Attempt: Application connects to a host (e.g.,
secure.service.com).
Server Responds: Server presents its TLS certificate chain.
Pin Check: Application extracts the certificate/public key from the server's
response.
4. Comparison: It compares the extracted info against its stored ("pinned")
values for that specific host.
5. Decision:
o Match: Connection proceeds securely.
o Mismatch: Connection is ABORTED, even if the certificate chain
validates against the device's trusted CAs.

w N

Primary Benefit: Drastically reduces the attack surface for MitM attacks using
compromised or fraudulent CA certificates.

NC STATE UNIVERSITY

Drawbacks & Considerations

e Maintenance Burden:
o Pinned certificates expire! The application must be updated before the
server certificate changes.
o Requires careful coordination between server administration and app
development/release cycles.
e Risk of "Bricking": If the server certificate changes unexpectedly (e.g.,
emergency rotation, mistake) before the app is updated with the new pin, the app

will refuse to connect, locking users out.

e Inflexibility: Can break connections when users are behind corporate web
proxies that intercept TLS traffic using their own certificates (a legitimate form of
MitM in that context).

e Alternatives/Complements: Certificate Transparency (CT) logs help detect
mis-issued certificates publicly.

e When to Use: Best suited for applications with high-security requirements (e.g.,
banking, finance) where the extra operational complexity is justified. Pinning
public keys offers more flexibility than pinning full certificates.

NC STATE UNIVERSITY

Certificate Search

* Certificates are public and searchable
* Based on Certificate Transparency (CT) Logs

* https://crt.sh/?g=hackpack.club
* https://crt.sh/?g=tiktok

https://crt.sh/?q=hackpack.club
https://crt.sh/?q=tiktok

NC STATE UNIVERSITY

Certificates

crt.sh ID
17721946043
17699899850
17704975693
17678265848
16889605665
16946546654
16533113853
16567379158
16279192702
15922743004
15989430383
15642145351
15144259955
15135140773
14368161238
14368157635
13596295233

13590664890

13372835855
13372838587
13372839322
13372838332
13372838146
13372835636
13372838570

Logged At {> Not Before Not After

Common Name

2025-04-07 2025-04-07 2025-07-06 ctf2025.hackpack.club
2025-04-07 2025-04-07 2025-07-06 ctf2025.hackpack.club
2025-04-06 2025-04-06 2025-07-05 acsac24-hotcrp.hackpack.club
2025-04-06 2025-04-06 2025-07-05 acsac24-hotcrp.hackpack.club
2025-02-27 2025-02-27 2025-05-28 hackpack.club

2025-02-27 2025-02-27 2025-05-28 hackpack.club

2025-02-05 2025-02-05 2025-05-06 acsac24-hotcrp.hackpack.club
2025-02-05 2025-02-05 2025-05-06 acsac24-hotcrp.hackpack.club
2024-12-29 2024-12-29 2025-03-29 hackpack.club

2024-12-29 2024-12-29 2025-03-29 hackpack.club

2024-12-06 2024-12-06 2025-03-06 acsac24-hotcrp.hackpack.club
2024-12-06 2024-12-06 2025-03-06 acsac24-hotcrp.hackpack.club
2024-10-30 2024-10-29 2025-01-27 hackpack.club

2024-10-30 2024-10-29 2025-01-27 hackpack.club

2024-08-31 2024-08-30 2024-11-28 hackpack.club

2024-08-31 2024-08-30 2024-11-28 hackpack.club

2024-07-02 2024-07-02 2024-09-30 hackpack.club

2024-07-02 2024-07-02 2024-09-30 hackpack.club

2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11
2024-06-13 2024-06-13 2024-09-11

ask-me-a-question.cha.hackpack.club
ask-me-a-question.cha.hackpack.club
murdermystery.cha.hackpack.club
murdermystery.cha.hackpack.club
yellowdog2.cha.hackpack.club
yellowdog2.cha.hackpack.club
codesanitize.cha.hackpack.club
codesanitize.cha.hackpack.club
limrunner.cha.hackpack.club
longhorn2.cha.hackpack.club
longhorn2.cha.hackpack.club
llpm.cha.hackpack.club

Matching Identities
ctf2025.hackpack.club
ctf2025.hackpack.club
acsac24-hotcrp.hackpack.club
acsac24-hotcrp.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
acsac24-hotcrp.hackpack.club
acsac24-hotcrp.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
acsac24-hoterp.hackpack.club
acsac24-hoterp.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
hackpack.club
www.hackpack.club
ask-me-a-question.cha.hackpack.club
ask-me-a-question.cha.hackpack.club
murdermystery.cha.hackpack.club
murdermystery.cha.hackpack.club
yellowdog2.cha.hackpack.club
yellowdog2.cha.hackpack.club
codesanitize.cha.hackpack.club
codesanitize.cha.hackpack.club
limrunner.cha.hackpack.club
longhorn2.cha.hackpack.club
longhorn2.cha.hackpack.club
llpm.cha.hackpack.club

Issuer Name
O=Let's Encrypt, CN=R11

O=Let's Encrypt, CN=R11

O=Let's Encrypt, CN=R11

OOOOO

us,
us,
US, O=Let's Encrypt, CN=R11
us,
=US,

O=Let's Encrypt, CN=R11

C=US, O=Let's Encrypt, CN=R11

US, O=Let's Encrypt, CN=R11
US, O=Let's Encrypt, CN=R11
US, O=Let's Encrypt, CN=R10

c
c
c

C=US, O=Let's Encrypt, CN=R10

US, O=Let's Encrypt, CN=R11
US, O=Let's Encrypt, CN=R11
US, O=Let's Encrypt, CN=R11

c
c
C=

C=US, O=Let's Encrypt, CN=R11

C=US, O=Let's Encrypt, CN=R11

C=US, O=Let's Encrypt, CN=R11

C=US, O=Let's Encrypt, CN=R11

C=US, O=Let's Encrypt, CN=R11

Encrvpt C R1 1

, O=Let's Encrypt, CN=R11
O=Let's Encrypt, CN=R11
O=Let's Encrypt, CN=R10
, O=Let's Encrypt, CN=R10
, O=Let's Encrypt, CN=R11
, O=Let's Encrypt, CN=R11

O=Let's Encrypt, CN=R10
, O=Let's Encrypt, CN=R10
O=Let's Encrypt, CN=R10
, O=Let's Encrypt, CN=R11

NC STATE UNIVERSITY

The State of https Adoption on the Web

Workshop on Measurements, Attacks, and Defenses for the Web
(MADWeb) 2025 link

90%

80%

http 2.7% http 2.1% http 3.1% http 5.4%
70%
local 6.0% local 1.3% local 10.5% local 0.8%
60%
’ I - N —

50%

https https https Ltins
40% 91.3% 96.6% e 93.8%

30%

g =
‘ N [¢ A "W

Windows mac0S Linux Android

10%

Fig. 3: Adoption of ht tps on the different Operating Systems:
Windows, macOS, Linux and Android.

0%,
2014 2016 2018 2020 2022 2024

https://research.mozilla.org/files/2025/03/the_state_of_https_adoption_on_the_web.pdf

NC STATE UNIVERSITY

Let’s Encrypt

* Let’s Encrypt issued its first certificate in 2015
* It democratized web security

* Let's Encrypt is funded entirely through charitable contributions, primarily
from corporate sponsorships and individual donations

* Grew from serving a few thousand domains to nearly 600 million between
2015-2025

* Currently issues more than 6 million TLS certificates daily
* Serves more than 550 million websites worldwide

* Has become the world's largest certificate authority, providing more HTTPS
certificates than all other certificate authorities combined

* |t's operating budget is ~$3m/year (!)

https://letsencrypt.org/stats/ n Let ’S E ncrypt

https://letsencrypt.org/stats/

