
CSC 405
Session Hijacking

Alexandros Kapravelos
akaprav@ncsu.edu

Cookies
A cookie is an item of data that a web server saves to your computer's hard
disk via a web browser
Cookies allow web servers to store and track information about users

Store almost any alphanumeric information (under 4KB)
Due to privacy, can only be read from the issuing domain

Cookies stored by GitHub.com

Setting Cookies

Request

Client Server
GET / HTTP/1.1

Host: www.github.com

User-Agent: Mozilla/5.0 ...

Accept: text/html, ...

Setting Cookies

Request

HTTP/1.1 200 OK

Server: GitHub.com

Date: Mon, 10 Apr 2023 ...

Content-Type: text/html

Set-Cookie: logged_in=no

...

Response

Client Server

Setting Cookies

Request

Response

GET /url HTTP/2

Host: www.github.com

Cookie: preferred_color_mode=light;

tz=America%2FNew_York; color_mode=...;

logged_in=yes; dotcom_user=amgaweda;

...

New Request

Client Server

Setting Cookies

Request

Response

GET /url HTTP/2

Host: www.github.com

Cookie: preferred_color_mode=light;

tz=America%2FNew_York; color_mode=...;

logged_in=yes; dotcom_user=amgaweda;

...

New Request

Client Server
Not malicious, but
cookies can leak

things like Dr. Gaweda
prefers light mode
when on GitHub

Setting Cookies

Request

Response

GET /url HTTP/2

Host: www.github.com

Cookie: preferred_color_mode=light;

tz=America%2FNew_York; color_mode=...;

logged_in=yes; dotcom_user=amgaweda;

...

New Request

Client Server
If websites blindly

accept cookie data,
then we've got a

vulnerability

PHP Cookies
setcookie(name, value, expire, path, domain, secure, httponly);

Parameter Description Example

name Name of the cookie, so the server knows what to grab; like a variable dotcom_user

value Value of the cookie amgaweda

expire (Optional) The Unix timestamp of the expiration date.

Generally, you'd use time() + some number of seconds.

If not set, cookie expires when the browser closes

time() + 60 * 60 * 24 * 7
(Expire in 1 Week)

path (Optional) Path of the cookie; if it is / it is available over the entire domain /

domain (Optional) Internet domain of cookie; if it is example.com, it is available across all domains, like

images.example.com and www.example.com
github.com

secure (Optional) Whether the cookie must use a secure connection (https://); true or false FALSE

httponly (Optional) Whether the cookie can only be access via HTTP; if TRUE, JavaScript cannot access it FALSE

PHP Cookies
Since websites do not inherently maintain a "state", cookies allow the server to
pass information from one page to another

if (isset($_COOKIE['username'])) {

 $username = $_COOKIE['username'];

}

PHP Cookies
Since websites do not inherently maintain a "state", cookies allow the server to
pass information from one page to another

if (isset($_COOKIE['username'])) {

 $username = $_COOKIE['username'];

}

Where's the
vulnerability?

PHP Sessions
Since cookie data is vulnerable to XSS attacks, it may be more appropriate to
store the information on the server

Frameworks like PHP manage this by creating a single cookie PHPSESSID that
contains a numeric value and links to some temporary file

start_session()

Creates Session on Server
Sets a Cookie PHPSESSID

$_SESSION["key"] = value

Sets a key-value pair for this session

PHP Sessions
Since cookie data is vulnerable to XSS attacks, it may be more appropriate to
store the information on the server

Frameworks like PHP manage this by creating a single cookie PHPSESSID that
contains a numeric value and links to some temporary file

Since the PHPSESSID is already set
when PHP starts the session, the saved
variables are still saved until the session
cookie expires

PHP Sessions
Since cookie data is vulnerable to XSS attacks, it may be more appropriate to
store the information on the server

Frameworks like PHP manage this by creating a single cookie PHPSESSID that
contains a numeric value and links to some temporary file

Since the PHPSESSID is already set
when PHP starts the session, the saved
variables are still saved until the session
cookie expires Where's the

vulnerability?

Session Fixation

Attacker visits the target location
like a regular user

Session Fixation

Server treats attacker as a
normal user and issues them a
session ID

Session Fixation

Attacker convinces a user to
click on a link with the session
ID added in

Session Fixation

User clicks on the link…

Session Fixation

…logs into the website…

Session Fixation

If the server stores some
information about being logged
in, attacker now has access to
the user's account

Session Fixation
• If the application blindly accepts an existing Session

ID, then the initial setup phase is not necessary

• Session IDs should always be regenerated after login
and never allowed to be "inherited"

• Session fixation can be compromised with cross-site
scripting to achieve Session ID initialization (e.g., by
setting the cookie value)

• M. Kolsek, "Session Fixation Vulnerability in
Web-based Applications"

https://acrossecurity.com/papers/session_fixation.pdf
https://acrossecurity.com/papers/session_fixation.pdf

Stopping Session Fixations

• Additionally, you can track the address the user
originally uses when they log in and check to
ensure it is still the same address during use

$_SESSION['ip'] = $_SERVER['REMOTE_ADD'];
if ($_SESSION['ip'] != $_SERVER['REMOTE_ADDR'])
 // Man-in-the-Middle Attack

Stopping Session Fixations

• Likewise, sessions should be destroyed
(deleted) as soon as possible

$_SESSION = array();

setcookie(

 session_name(),

 '',

 time() - 60 * 60 * 24 * 365,

 '/');

session_destroy();

Wipe the $_SESSION array

Stopping Session Fixations

• Likewise, sessions should be destroyed
(deleted) as soon as possible

$_SESSION = array();

setcookie(

 session_name(),

 '',

 time() - 60 * 60 * 24 * 365,

 '/');

session_destroy();

Wipe the $_SESSION array

…and have its cookie
expire last year

Stopping Session Fixations

• Likewise, sessions should be destroyed
(deleted) as soon as possible

$_SESSION = array();

setcookie(

 session_name(),

 '',

 time() - 60 * 60 * 24 * 365,

 '/');

session_destroy();

Wipe the $_SESSION array

…and have its cookie
expire last year

…and delete the
session tmp file

PHP Sessions
Since cookie data is vulnerable to XSS attacks, it may be more appropriate to
store the information on the server

Frameworks like PHP manage this by creating a single cookie PHPSESSID that
contains a numeric value and links to some temporary file

But this has to get saved somewhere
...right?

phpinfo();
Session data gets stored in a tmp folder on the server, typically specified by
PHP or via configuration files

The PHPSESSID
from the last slide

phpinfo();
Session data gets stored in a tmp folder on the server, typically specified by
PHP or via configuration files

If we look inside, it's
just a plaintext file

phpinfo();
Session data gets stored in a tmp folder on the server, typically specified by
PHP or via configuration files

If we look inside, it's
just a plaintext file

Where's the
vulnerability?

Parameter Attacks
• Parameter manipulation

– The resources accessible are determined by the parameters
to a query

– If client-side information is blindly accepted, one can simply
modify the parameter of a legitimate request to access
additional information

• GET /cgi-bin/profile?userid=1229&type=medical
• GET /cgi-bin/profile?userid=1230&type=medical

• Parameter creation
– If parameters from the URL are imported into the application,

can be used to modify the behavior
• GET /cgi-bin/profile?userid=1229&type=medical&admin=1

Parameter Attacks
• Parameter manipulation

– The resources accessible are determined by the parameters
to a query

– If client-side information is blindly accepted, one can simply
modify the parameter of a legitimate request to access
additional information

• GET /cgi-bin/profile?userid=1229&type=medical
• GET /cgi-bin/profile?userid=1230&type=medical

• Parameter creation
– If parameters from the URL are imported into the application,

can be used to modify the behavior
• GET /cgi-bin/profile?userid=1229&type=medical&admin=1

PHP register_global

• The register_global directive makes
request information, such as the GET/POST
variables and cookie information, available as
global variables

• Variables can be provided so that particular,
unexpected execution paths are followed

Server (Mis)Configuration
• FTP servers and web servers often run on the same host

• If data can be uploaded using FTP and then requested
using the web server it is possible to
– Execute programs using CGI (upload to cgi-bin)
– Execute programs as web application
– …

• If a web site allows uploaded files (e.g., images) it might
be possible to upload content that is then requested as a
code component (e.g., a PHP file)

Server (Mis)Configuration
• FTP servers and web servers often run on the same host

• If data can be uploaded using FTP and then requested
using the web server it is possible to
– Execute programs using CGI (upload to cgi-bin)
– Execute programs as web application
– …

• If a web site allows uploaded files (e.g., images) it might
be possible to upload content that is then requested as a
code component (e.g., a PHP file)

Server (Mis)Configuration
• FTP servers and web servers often run on the same host

• If data can be uploaded using FTP and then requested
using the web server it is possible to
– Execute programs using CGI (upload to cgi-bin)
– Execute programs as web application
– …

• If a web site allows uploaded files (e.g., images) it might
be possible to upload content that is then requested as a
code component (e.g., a PHP file)

Server (Mis)Configuration
• Numerous areas where Code and Data are mixed

in Web Applications

• Anywhere that strings are concatenated to produce
output for another program/parser creates possible
problems
– HTTP
– HTML
– SQL
– Command Line
– SMTP
– …

OS Command Injection Attacks
• Main Issue: Incorrect (or complete lack of) validation /

sanitation of user input that results in the execution of OS
commands on the server

• Strings that are passed to a function can evaluate code or
include code from a file (language-specific)
– system()

– eval()

– popen()

– include()

– require()

OS Command Injection Attacks
• Main Issue: Incorrect (or complete lack of) validation /

sanitation of user input that results in the execution of OS
commands on the server

• Strings that are passed to a function can evaluate code or
include code from a file (language-specific)
– system() - run OS commands

– eval() - interpret String and execute

– popen() - execute a file

– include() - load a PHP file

– require() - load a PHP file (crash if not found)

OS Command Injection Attacks
• Example: CGI program executes a grep command over a server file

using the user input as parameter
– Implementation 1:

system("grep $exp phonebook.txt");

• By providing:
foo; echo '1024 35 1386...' > ~/.ssh/authorized_keys; rm
one can obtain interactive access and delete the text file

– Implementation 2:
system("grep \"$exp\" phonebook.txt");

• By providing
\"foo; echo '1024 35 1386...' > ~/.ssh/authorized_keys; rm \"
one can steal the password file and delete the text file

– Implementation 3:
system("grep", "-e", $exp, "phonebook.txt");

• In this case the execution is similar to an execve() and therefore more secure (no shell
parsing involved)

OS Command Injection Attacks
• Example: CGI program executes a grep command over a server file

using the user input as parameter
– Implementation 1:

system("grep $exp phonebook.txt");

• By providing:
foo; echo '1024 35 1386...' > ~/.ssh/authorized_keys; rm
one can obtain interactive access and delete the text file

– Implementation 2:
system("grep \"$exp\" phonebook.txt");

• By providing
\"foo; echo '1024 35 1386...' > ~/.ssh/authorized_keys; rm \"
one can steal the password file and delete the text file

– Implementation 3:
system("grep", "-e", $exp, "phonebook.txt");

• In this case the execution is similar to an execve() and therefore more secure (no shell
parsing involved)

OS Command Injection Attacks
• Example: CGI program executes a grep command over a server file

using the user input as parameter
– Implementation 1:

system("grep $exp phonebook.txt");

• By providing:
foo; echo '1024 35 1386...' > ~/.ssh/authorized_keys; rm
one can obtain interactive access and delete the text file

– Implementation 2:
system("grep \"$exp\" phonebook.txt");

• By providing
\"foo; echo '1024 35 1386...' > ~/.ssh/authorized_keys; rm \"
one can steal the password file and delete the text file

– Implementation 3:
system("grep", "-e", $exp, "phonebook.txt");

• In this case the execution is similar to an execve() and therefore more secure (no shell
parsing involved)

Preventing OS Command Injection
• Command injection is a sanitization problem

– Never trust outside input when composing a command string

• Many languages provide built-in sanitization routines
– PHP escapeshellarg($str): escapes any existing single quotes allowing

one to pass a string directly to a shell function and having it be treated as a
single safe argument

– PHP escapeshellcmd($str): escapes any characters in a string that might
be used to trick a shell command into executing arbitrary commands
(#&;`|*?~<>^()[]{}$\, \x0A and \xFF. ' and " are escaped only if
they are not paired)

