
CSC 405
Password Security

Alexandros Kapravelos
akaprav@ncsu.edu

CSC 405
How to

NOT
Store Passwords

Alexandros Kapravelos
akaprav@ncsu.edu

The Naive Approach - Just Store Them!

• Nothing stopping you
– Except you clearly know better…

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com password

Nancy Edwards nancy@chinookcorp.com password1

Jane Peacock jane@chinookcorp.com hunter22

Robert King robert@chinookcorp.com robert123!@#

The Naive Approach - Just Store Them!

• Nothing stopping you
– Except you clearly know better…

But there are still companies that use this approach!

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com password

Nancy Edwards nancy@chinookcorp.com password1

Jane Peacock jane@chinookcorp.com hunter22

Robert King robert@chinookcorp.com robert123!@#

A few years old, but password was clearly plaintexted

Storing Password in Plaintext is BAD

• So… never do it.

Less Naive Approach - Encrypt It

• Good intentions… bad execution

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com cGFzc3dvcmQ=

Nancy Edwards nancy@chinookcorp.com cGFzc3dvcmQx

Jane Peacock jane@chinookcorp.com aHVudGVyMjI=

Robert King robert@chinookcorp.com cm9iZXJ0MTIzIUAj

Base64

Less Naive Approach - Encrypt It

• Good intentions… bad execution
• Similar passwords will have similar encryptions

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com cGFzc3dvcmQ= (password)

Nancy Edwards nancy@chinookcorp.com cGFzc3dvcmQx (password1)

Jane Peacock jane@chinookcorp.com aHVudGVyMjI=

Robert King robert@chinookcorp.com cm9iZXJ0MTIzIUAj

Base64

Less Naive Approach - Encrypt It

• Good intentions… bad execution
• Similar passwords will have similar encryptions
• Also, common encryptions have decoders online

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com cGFzc3dvcmQ= (password)

Nancy Edwards nancy@chinookcorp.com cGFzc3dvcmQx (password1)

Jane Peacock jane@chinookcorp.com aHVudGVyMjI=

Robert King robert@chinookcorp.com cm9iZXJ0MTIzIUAj

Base64

https://www.base64decode.org/

Less Naive Approach - Encrypt It
• Good intentions… bad execution
• Similar passwords will have similar encryptions
• Also, common encryptions have decoders online

• Another way to think about it: Encryption = Reversible

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com cGFzc3dvcmQ= (password)

Nancy Edwards nancy@chinookcorp.com cGFzc3dvcmQx (password1)

Jane Peacock jane@chinookcorp.com aHVudGVyMjI=

Robert King robert@chinookcorp.com cm9iZXJ0MTIzIUAj

https://www.base64decode.org/

Still Naive Approach - Hash It

• Better…
• Hashing = Irreversible*

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com 5f4dcc3b5aa7...

Nancy Edwards nancy@chinookcorp.com 7c6a180b3689...

Jane Peacock jane@chinookcorp.com cb95015a436f...

Robert King robert@chinookcorp.com 3f94b11a9f70...

MD5

Password Cracking - Hashcat
$ hashcat --potfile-disable -m 0 pw.txt
 /usr/share/wordlists/rockyou.txt

hashcat (v6.2.6) starting
...
Dictionary cache hit:
* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385
* Bytes.....: 139921507
...
5f4dcc3b5aa765d61d8327deb882cf99:password
7c6a180b36896a0a8c02787eeafb0e4c:password1
cb95015a436fe976eb38e45455372032:hunter22

derived from a data breach of the
RockYou website in 2009. This
breach exposed millions of plaintext
passwords.

Password Cracking - Hashcat
$ hashcat --potfile-disable -m 0 pw.txt
 /usr/share/wordlists/rockyou.txt

hashcat (v6.2.6) starting
...
Dictionary cache hit:
* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385
* Bytes.....: 139921507
...
5f4dcc3b5aa765d61d8327deb882cf99:password
7c6a180b36896a0a8c02787eeafb0e4c:password1
cb95015a436fe976eb38e45455372032:hunter22

Didn't catch robert123!@# but you
can add rules to append numbers/
symbols to common words

MD5 = BAD

https://www.youtube.com/watch?v=qi10gDfeoU4

MD5 is vulnerable to Collision Attacks
Even if we can't decrypt, we exploit it to find
something that also hashes to it

https://www.youtube.com/watch?v=qi10gDfeoU4

Still Naive Approach - Hash It

• Obviously the issue was I used MD5 instead something like SHA-128 or
SHA-256!

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com 5e884898da28...

Nancy Edwards nancy@chinookcorp.com 0b14d501a594...

Jane Peacock jane@chinookcorp.com 20d2fe5e369d...

Robert King robert@chinookcorp.com 2feb713a06cd...

SHA-256

Still Naive Approach - Hash It

• Obviously the issue was I used MD5 instead something like SHA-128 or
SHA-256!

FirstName LastName Email Password

Andrew Adams andrew@chinookcorp.com 5e884898da28...

Nancy Edwards nancy@chinookcorp.com 0b14d501a594...

Jane Peacock jane@chinookcorp.com 20d2fe5e369d...

Robert King robert@chinookcorp.com 2feb713a06cd...

SHA-256

SHA-1 vs SHA-2

• The same but different (block ciphers)

• SHA-1
– 160-bit hash
– Can have a collision with 110 years of GPU time

• Not super feasible for most entities, but possible

• SHA-2
– Bit size can range from 256 to 512
– Varying codes (SHA-224, SHA-256, SHA-384, SHA-512) refer to their output bit size

https://www.thesslstore.com/blog/sha-1-collision-created/

SHA-1 vs SHA-2
• The same but different (block ciphers)

• SHA-1
– 160-bit hash
– Can have a collision with 110 years of GPU time

• Not super feasible for most entities, but possible
– officially deprecated by NIST in 2011

• SHA-2
– Bit size can range from 256 to 512
– Varying codes (SHA-224, SHA-256, SHA-384, SHA-512) refer to their output bit size

• SHA-3 is now available

https://www.thesslstore.com/blog/sha-1-collision-created/
https://en.wikipedia.org/wiki/SHA-3

Dictionary Attacks FTW
$ hashcat --potfile-disable -m 1400
 pw_sha256.txt /usr/share/wordlists/rockyou.txt

hashcat (v6.2.6) starting
...
Dictionary cache hit:
* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385
* Bytes.....: 139921507
...
5e884898da28...42d8:password
0b14d501a594...c94e:password1
20d2fe5e369d...eb0b:hunter22

Common Passwords are
super easy to attack

Rainbow Tables

• However, passwords like robert123!@# can still avoid cracking…
• Unless Robert uses it somewhere else that was hacked.

Rainbow Tables

• However, passwords like robert123!@# can still avoid cracking…
• Unless Robert uses it somewhere else that was hacked.

• Rainbow Tables are stored hash decryptions done on other passwords
and stored
– Trades computational time for hard disk space
– LARGE file sizes

Rainbow Tables

• However, passwords like robert123!@# can still avoid cracking…
• Unless Robert uses it somewhere else that was hacked.

• Rainbow Tables are stored hash decryptions done on other passwords
and stored
– Trades computational time for hard disk space
– LARGE file sizes

But no one would ever reuse a password,
…right?

Rainbow Tables

• However, passwords like robert123!@# can still avoid cracking…
• Unless Robert uses it somewhere else that was hacked.

• Rainbow Tables are stored hash decryptions done on other passwords
and stored
– Trades computational time for hard disk space
– LARGE file sizes

But no one would ever reuse a password,
…right?

haveibeenpwned.com

https://haveibeenpwned.com/
https://haveibeenpwned.com/

Current Best Approach - Salted Hash It

• Since SHA-256 will always encrypt robert123!@# to 2feb713a06…, we can
mitigate this be adding in some extra text

• Storing the salt in the database is "fine"
– Having the attacker know the salt does not make the task easier and still protects

"robert123!@#" from other attacks

FirstName LastName Email Password Salt

Andrew Adams andrew... ae69caf5f4b4... cxwnzrgwos

Nancy Edwards nancy... c7bc75baf50a... lgocdjosyn

Jane Peacock jane... 511dec4125ee... bqkxuuqmbj

Robert King robert... 7ae0cd4700a3... ctkwwudnyx

Current Best Approach - Salted Hash It

• Since SHA-256 will always encrypt robert123!@# to 2feb713a06…, we can
mitigate this be adding in some extra text

• Storing the salt in the database is "fine"
– Having the attacker know the salt does not make the task easier and still protects

"robert123!@#" from other attacks

FirstName LastName Email Password Salt

Andrew Adams andrew... ae69caf5f4b4... cxwnzrgwos

Nancy Edwards nancy... c7bc75baf50a... lgocdjosyn

Jane Peacock jane... 511dec4125ee... bqkxuuqmbj

Robert King robert... 7ae0cd4700a3... ctkwwudnyx

Current Best Approach - Salted Hash It

• Since SHA-256 will always encrypt robert123!@# to 2feb713a06…, we can
mitigate this be adding in some extra text

• Storing the salt in the database is "fine"
– Having the attacker know the salt does not make the task easier and still protects

"robert123!@#" from other attacks

FirstName LastName Email Password Salt

Andrew Adams andrew... ae69caf5f4b4... cxwnzrgwos

Nancy Edwards nancy... c7bc75baf50a... lgocdjosyn

Jane Peacock jane... 511dec4125ee... bqkxuuqmbj

Robert King robert... 7ae0cd4700a3... ctkwwudnyx

Instead of hashing "robert123!@#",
you hash "ctkwwudnyxrobert123!@#"

Making Salted Passwords
import hashlib, random, string

def make_salt(length=120):
 salt = ''
 for i in range(length):
 salt += random.choice(string.ascii_letters)
 return salt

def make_pw_hash(name, pw):
 salt = make_salt()
 to_encode = str(pw + salt).encode('utf-8')
 hashed = hashlib.sha256(to_encode).hexdigest()
 return hashed

Validating Salted Passwords
def valid_user(email, password):
 user = User.query.filter_by(email=email).first()
 salt = user.salt
 hashed_pw = make_pw_hash(password, salt)

 if (user.password == hashed_pw):
 return user
 return False

Fine to store salt in DB, since we still
need the user's input to make the hash

If the hashed password doesn't equal the
stored, hashed password, then invalid login

Clear Takeaways

• Salt passwords
– Maybe add a little pepper

• Length > Complexity
– Possibilities = complexity length

– 6 character password with a-z, A-Z, 0-9 =
626 = 56,800,235,584 possibilities

– 10 character password with only a-z =
2610 = 141,167,095,653,376 possibilities

https://en.wikipedia.org/wiki/Pepper_(cryptography)

Clear Takeaways

• Salt passwords
– Maybe add a little pepper

• Length > Complexity
– Possibilities = complexity length

– 6 character password with a-z, A-Z, 0-9 characters
626 = 56,800,235,584 possibilities

– 10 character password with only a-z =
2610 = 141,167,095,653,376 possibilities

https://en.wikipedia.org/wiki/Pepper_(cryptography)

Clear Takeaways

• Salt passwords
– Maybe add a little pepper

• Length > Complexity
– Possibilities = complexity length

– 6 character password with a-z, A-Z, 0-9 characters
626 = 56,800,235,584 possibilities

– 10 character password with only a-z characters
2610 = 141,167,095,653,376 possibilities

https://en.wikipedia.org/wiki/Pepper_(cryptography)

Clear Takeaways

• Salt passwords
– Maybe add a little pepper

• Length > Complexity
– Possibilities = complexity length

– 6 character password with a-z, A-Z, 0-9 =
626 = 56,800,235,584 possibilities

– 10 character password with only a-z =
2610 = 141,167,095,653,376 possibilities

https://xkcd.com/936/

https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://xkcd.com/936/

