
NC STATE UNIVERSITY

CSC 405 Password Security

Alexandros Kapravelos akaprav@ncsu.edu

NC STATE UNIVERSITY

CSC 405 How to NOT Store Passwords

Alexandros Kapravelos akaprav@ncsu.edu

The Naive Approach - Just Store Them!

- Nothing stopping you
 - Except you clearly know better...

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	password
Nancy	Edwards	nancy@chinookcorp.com	password1
Jane	Peacock	jane@chinookcorp.com	hunter22
Robert	King	robert@chinookcorp.com	robert123!@#

The Naive Approach - Just Store Them!

- Nothing stopping you
 - Except you clearly know better...

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	password
Nancy	Edwards	nancy@chinookcorp.com	password1
Jane	Peacock	jane@chinookcorp.com	hunter22
Robert	King	robert@chinookcorp.com	robert123!@#

But there are still companies that use this approach!

Your Registration Information for

.com@corporate.

to me 🔻

Welcome Adam Gaweda,

Thank you for registering to take **EXECUTE** Soline Questionnaire!

Your username is: AMGaweda Your password is:

A few years old, but password was clearly plaintexted

You may use your username and password to return to the system at any time to check the status of your application. To return directly to

https://

If you would like to apply for another job with **management**, click here: <u>http://www.management.careers.com/</u>.

The Human Resources Team

Storing Password in Plaintext is BAD

• So... never do it.

Name: Adams Composer: andrew@chinookcorp.com Unit Price: password1

Name: Edwards Composer: nancy@chinookcorp.com Unit Price: password

Name: Peacock Composer: jane@chinookcorp.com Unit Price: hunter22

Name: Park Composer: margaret@chinookcorp.com Unit Price: drowssap Name: Johnson Composer: steve@chinookcorp.com Unit Price: qwertyuiop

Name: Mitchell Composer: michael@chinookcorp.com Unit Price: michaelchinookcorpcom

Name: King Composer: robert@chinookcorp.com Unit Price: robert123!@#

Name: Callahan Composer: laura@chinookcorp.com Unit Price: S3cur3P4\$\$w0rd

• Good intentions... bad execution

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	cGFzc3dvcmQ=
Nancy	Edwards	nancy@chinookcorp.com	cGFzc3dvcmQx
Jane	Peacock	jane@chinookcorp.com	aHVudGVyMjI=
Robert	King	robert@chinookcorp.com	cm9iZXJ0MTIzIUAj

Base64

- Good intentions... bad execution
- Similar passwords will have similar encryptions

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	CGFzc3d∨cmQ= (password)
Nancy	Edwards	nancy@chinookcorp.com	cGFzc3dvcmQx (password1)
Jane	Peacock	jane@chinookcorp.com	aHVudGVyMjI=
Robert	King	robert@chinookcorp.com	cm9iZXJ0MTIzIUAj

Base64

- Good intentions... bad execution
- Similar passwords will have similar encryptions
- Also, common encryptions have <u>decoders</u> online

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	CGFzc3d∨cmQ= (password)
Nancy	Edwards	nancy@chinookcorp.com	cGFzc3dvcmQx (password1)
Jane	Peacock	jane@chinookcorp.com	aHVudGVyMjI=
Robert	King	robert@chinookcorp.com	cm9iZXJ0MTIzIUAj

Base64

- Good intentions... bad execution
- Similar passwords will have similar encryptions
- Also, common encryptions have <u>decoders</u> online

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	CGFzc3d∨cmQ= (password)
Nancy	Edwards	nancy@chinookcorp.com	cGFzc3dvcmQx (password1)
Jane	Peacock	jane@chinookcorp.com	aHVudGVyMjI=
Robert	King	robert@chinookcorp.com	cm9iZXJ0MTIzIUAj

• Another way to think about it: **Encryption = Reversible**

Still Naive Approach - Hash It

- Better...
- Hashing = Irreversible*

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	5f4dcc3b5aa7
Nancy	Edwards	nancy@chinookcorp.com	7c6a180b3689
Jane	Peacock	jane@chinookcorp.com	cb95015a436f
Robert	King	robert@chinookcorp.com	3f94b11a9f70

MD5

Password Cracking - Hashcat

```
$ hashcat --potfile-disable -m 0 pw.txt
          /usr/share/wordlists/rockyou.txt ----> RockYou website in 2009. This
hashcat (v6.2.6) starting
. . .
Dictionary cache hit:
* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385
* Bytes....: 139921507
```

derived from a data breach of the breach exposed millions of plaintext passwords.

. . .

5f4dcc3b5aa765d61d8327deb882cf99:password 7c6a180b36896a0a8c02787eeafb0e4c:password1 cb95015a436fe976eb38e45455372032:hunter22

Password Cracking - Hashcat

```
$ hashcat --potfile-disable -m 0 pw.txt
    /usr/share/wordlists/rockyou.txt
```

```
hashcat (v6.2.6) starting
Dictionary cache hit:
* Filename..: /usr/share/wordlist Didn't catch robert123!@# but you
* Passwords.: 14344385
                                  can add rules to append numbers/
* Bytes....: 139921507
                                  symbols to common words
. . .
5f4dcc3b5aa765d61d8327deb882cf99:password
7c6a180b36896a0a8c02787eeafb0e4c: password1
cb95015a436fe976eb38e45455372032: hunter22
```

MD5 = BAD

• • •	Seed Labs Attacker [Running]		
	it View Search Terminal Help	🏌 En 💷 🗤) 2:21 PM 🛟	
🥝 uffix.txt	seed@santiagotaboadapatino:~/Desktop		
	seed@santiagotaboadapatino:~/Desktop utl class long.bin	o\$ cat out1_class.bin suff	
	seed@santiagotaboadapatino:~/Desktop ut2 class long.bin	o\$ cat out2_class.bin suff	
[11/11/19]	seed@santiagotaboadapatino:~/Desktop ss long.bin	<pre>b\$ diff out1_class_long.bi</pre>	
Binary file	es out1_class_long.bin and out2_clas seed@santiagotaboadapatino:~/Desktop		
🚍 bin	1f40da200c9459d0bf2345 out1 class l		
	seed@santiagotaboadapatino:~/Desktop		
ab94c4923f	1f40da200c9459d0bf2345out2_class_l		
	seed@santiagotaboadap/Desktop)\$	
2	MD5 is vulnerable to	Collision Attac	cks
· P •	Even if we can't dec	rypt, we exploit	it to find
	something that also		
	8:43 / 29:22		
		0 0 0 0 0 0 0 0 Left #	

Seed Labs: MD5 Collision Attack

https://www.youtube.com/watch?v=gi10gDfeoU4

Still Naive Approach - Hash It

 Obviously the issue was I used MD5 instead something like SHA-128 or SHA-256!

FirstName	LastName	Email	Password
Andrew	Adams	andrew@chinookcorp.com	5e884898da28
Nancy	Edwards	nancy@chinookcorp.com	0b14d501a594
Jane	Peacock	jane@chinookcorp.com	20d2fe5e369d
Robert	King	robert@chinookcorp.com	2feb713a06cd

SHA-256

NC STATE UNIVERSITY

Still Naive Approach - Hash It

SHA-1 vs SHA-2

- The same but different (block ciphers)
- SHA-1
 - 160-bit hash
 - Can have a collision with 110 years of GPU time
 - Not super feasible for most entities, but possible
- SHA-2
 - Bit size can range from 256 to 512
 - Varying codes (SHA-224, SHA-256, SHA-384, SHA-512) refer to their output bit size

SHA-1 vs SHA-2

- The same but different (block ciphers)
- SHA-1
 - 160-bit hash
 - Can have a collision with 110 years of GPU time
 - Not super feasible for most entities, but possible
 - officially deprecated by NIST in 2011
- SHA-2
 - Bit size can range from 256 to 512
 - Varying codes (SHA-224, SHA-256, SHA-384, SHA-512) refer to their output bit size
- <u>SHA-3</u> is now available

Dictionary Attacks FTW

```
$ hashcat --potfile-disable -m 1400
     pw_sha256.txt /usr/share/wordlists/rockyou.txt
```

```
hashcat (v6.2.6) starting
...
Dictionary cache hit:
* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385
* Bytes....: 139921507
...
```

5e884898da28...42d8:password 0b14d501a594...c94e:password1 20d2fe5e369d...eb0b:hunter22

Common Passwords are super easy to attack

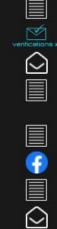
Rainbow Tables

- However, passwords like robert123!@# can still avoid cracking...
- Unless Robert uses it somewhere else that was hacked.

Rainbow Tables

- However, passwords like robert123!@# can still avoid cracking...
- Unless Robert uses it somewhere else that was hacked.
- **Rainbow Tables** are stored hash decryptions done on other passwords and stored
 - Trades computational time for hard disk space
 - LARGE file sizes

Algorithm	Table ID	Charset	Plaintext Length	Key Space	Success Rate	Table Size	Files
LM	Im_ascii-32-65-123-4#1-7	ascii-32-65-123-4	1 to 7	7,555,858,447,479 ≈ 2 ^{42.8}	99.9 %	27 GB	Files
NTLM	2 ntlm_ascii-32-95#1-7	ascii-32-95	1 to 7	70,576,641,626,495 ≈ 2 ^{46.0}	99.9 %	52 GB	Files
NTLM	1 ntlm_ascii-32-95#1-8	ascii-32-95	1 to 8	6,704,780,954,517,120 ≈ 2 ^{52.6}	96.8 %	460 GB	Files
NTLM	1 ntlm_mixalpha-numeric#1-8	mixalpha-numeric	1 to 8	221,919,451,578,090 ≈ 2 ^{47.7}	99.9 %	127 GB	Files
NTLM	ntlm_mixalpha-numeric#1-9	mixalpha-numeric	1 to 9	$13,759,005,997,841,642 \approx 2^{53.6}$	96.8 %	690 GB	Files
NTLM	# ntlm_loweralpha-numeric#1-9	loweralpha-numeric	1 to 9	104,461,669,716,084 ≈ 2 ^{46.6}	99.9 %	65 GB	Files
NTLM	ntlm_loweralpha-numeric#1-10	loweralpha-numeric	1 to 10	3,760,620,109,779,060 ≈ 2 ^{51.7}	96.8 %	316 GB	Files


Rainbow Table Specification

Rainbow Tables

- However, passwords like robert123!@# can still avoid cracking...
- Unless Robert uses it somewhere else that was hacked.
- **Rainbow Tables** are stored hash decryptions done on other passwords and stored
 - Trades computational time for hard disk space
 - LARGE file sizes

NC STATE (

Largest breaches

772,904,991 Collection #1 accounts 763,117,241 Verifications.io accounts

- 711,477,622 Onliner Spambot accounts
- 622,161,052 Data Enrichment Exposure From PDL Customer accounts

593,427,119 Exploit.In accounts

509,458,528 Facebook accounts

457,962,538 Anti Public Combo List accounts

393,430,309 River City Media Spam List accounts

myspace 359,420,698 MySpace accounts 268,765,495 Wattpad accounts **Recently added breaches**

1,348,407 Pandabuy accounts

- 1,594,305 Washington State Food Worker Card accounts
 - 43,299 England Cricket accounts
- 2,121,789 Exvagos accounts
- 2,607,440 GSM Hosting accounts
- 2,690,657 SwordFantasy accounts
- 162,710 MediaWorks accounts
- 49,102,176 AT&T accounts
 - 3,262,980 ClickASnap accounts
 - 552,094 Flipkart accounts

S

';--have i been pwned?

 \sim

111 E

X

ARA FORMA

SWORDX

FANTASY

0

\$

haveibeenpwned.com

Current Best Approach - Salted Hash It

• Since SHA-256 will always encrypt robert123!@# to 2feb713a06..., we can mitigate this be **adding in some extra text**

FirstName	LastName	Email	Password	Salt
Andrew	Adams	andrew	ae69caf5f4b4	cxwnzrgwos
Nancy	Edwards	nancy	c7bc75baf50a	lgocdjosyn
Jane	Peacock	jane	511dec4125ee	bqkxuuqmbj
Robert	King	robert	7ae0cd4700a3	ctkwwudnyx

Current Best Approach - Salted Hash It

- Since SHA-256 will always encrypt robert123!@# to 2feb713a06..., we can mitigate this be **adding in some extra text**
- Storing the salt in the database is "fine"
 - Having the attacker know the salt does not make the task easier and still protects "robert123!@#" from other attacks

FirstName	LastName	Email	Password	Salt
Andrew	Adams	andrew	ae69caf5f4b4	cxwnzrgwos
Nancy	Edwards	nancy	c7bc75baf50a	lgocdjosyn
Jane	Peacock	jane	511dec4125ee	bqkxuuqmbj
Robert	King	robert	7ae0cd4700a3	ctkwwudnyx

Current Best Approach - Salted Hash It

- Since SHA-256 will always encrypt robert123!@# to 2feb713a06..., we can mitigate this be **adding in some extra text**
- Storing the salt in the database is "fine"
 - Having the attacker know the salt does not make the task easier and still protects "robert123!@#" from other attacks

FirstName	LastName	Email		Password	Salt
Andrew	Adams	andrew	Instead of hashing "robert123!@#", you hash "ctkwwudnyxrobert123!@#"		
Nancy	Edwards	nancy			
Jane	Peacock	jane			
Robert	King	robert		7ae0cd4700a3	ctkwwudnyx

Making Salted Passwords

import hashlib, random, string

```
def make_salt(length=120):
    salt = ''
    for i in range(length):
        salt += random.choice(string.ascii_letters)
        return salt
```

```
def make_pw_hash(name, pw):
    salt = make_salt()
    to_encode = str(pw + salt).encode('utf-8')
    hashed = hashlib.sha256(to_encode).hexdigest()
    return hashed
```

Validating Salted Passwords

def valid_user(email, password):
 user = User.query.filter_by(email=email).first()
 salt = user.salt
 hashed pw = make pw hash(password, salt)

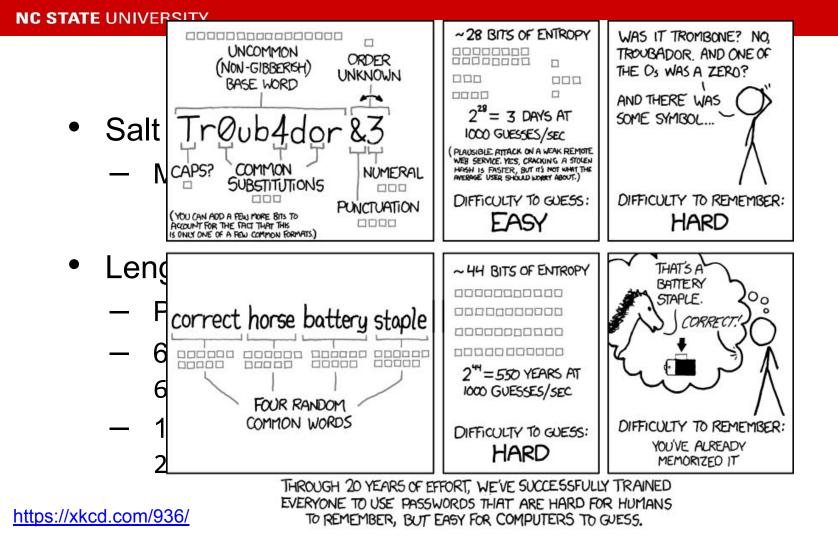
Fine to store **salt** in DB, since we still need the user's input to make the hash

if (user.password == hashed_pw):
 return user
return False
 If the hashed password doesn't equal the
 stored, hashed password, then invalid login

Clear Takeaways

- Salt passwords
 - Maybe add a little pepper

Clear Takeaways


- Salt passwords
 - Maybe add a little pepper

- Length > Complexity
 - Possibilities = complexity ^{length}
 - 6 character password with a-z, A-Z, 0-9 characters $62^6 = 56,800,235,584$ possibilities

Clear Takeaways

- Salt passwords
 - Maybe add a little pepper

- Length > Complexity
 - Possibilities = complexity ^{length}
 - 6 character password with a-z, A-Z, 0-9 characters 62^6 = 56,800,235,584 possibilities
 - 10 character password with only a-z characters
 26¹⁰ = 141,167,095,653,376 possibilities

