
CSC 405
Dynamic Web Pages

Alexandros Kapravelos
akaprav@ncsu.edu

In the beginning…

In the beginning…

HTML was static!

3

Source: https://web.archive.org/web/19961017235908/http://www2.yahoo.com/

https://web.archive.org/web/19961017235908/http:/www2.yahoo.com/

Source: https://web.archive.org/web/19981202230410/http://www.google.com/

https://web.archive.org/web/19981202230410/http:/www.google.com/

Dynamic HTML

• However, people soon realized that we
could have websites interact with users
based on inputs

JavaScript

• Client-Side scripting language for interacting and manipulating HTML

• Created by Brendan Eich at Netscape Navigator 2.0 in September 1995
as "LiveScript"

• Renamed to "JavaScript" in December 1995

• By August 1996, Microsoft added support for JavaScript to Internet
Explorer
– Microsoft later changed the name to JScript to avoid Sun's Java trademark

• Submitted to ECMA International for standardization on November 1996

• ECMA-262, on June 1997, standardized first version of ECMAScript

https://262.ecma-international.org/14.0/

JavaScript

• Lingua franca of the web
– bridge language allowing users to execute code

• Eventually supported by all browsers
• Language organically evolved along the way

https://blog.codinghorror.com/javascript-the-lingua-franca-of-the-web/

JavaScript
• Code can be embedded into HTML pages using the script element

and (optionally storing the code in HTML comments)

<script>
var name = prompt('Please enter your name below.', '');
if (name == null) {
 document.write('Welcome to my site!');
} else {
 document.write('Welcome to my site ' + name + '!');
}
</script>

<script type="text/javascript">
<script language="javascript">
<script src="js/html2canvas.js">

Alternative Implementations

WOLFPACK|

JavaScript
• You can also include external JavaScript files in your

HTML
– As opposed to the inline JavaScript that we saw in the previous

example

• <script src="js/html2canvas.js">

• When the browser parses this HTML element, it
automatically fetches and executes the JavaScript before
continuing to parse the rest of the HTML
– Can also place at the end of HTML in case you want to render

content, then execute off it
– Placement of JS matters

DOM Example
<html>

 <head>

 <meta charset="UTF-8">

 <title>DOM Example</title>

 </head>

 <body>

 <h1>DOM Example</h1>

 <hr>

 <div id='insert_here'>Original Text</div>

 </body>

 <script>

 document.getElementById('insert_here').innerText = "New Text";

 </script>

</html>

DOM Example
<html>

 <head>

 <meta charset="UTF-8">

 <title>DOM Example</title>

 </head>

 <body>

 <h1>DOM Example</h1>

 <hr>

 <div id='insert_here'>Original Text</div>

 </body>

 <script>

 document.getElementById('insert_here').innerText = "New Text";

 </script>

</html>

HTML is first
rendered...

THEN JavaScript
is executed

The <div> had "Original Text" when the page loaded.

But as soon as the JavaScript executed, the
innerText variable changed the value to "New Text"

DOM Example
<html>

 <head>

 <meta charset="UTF-8">

 <title>DOM Example</title>

 </head>

 <body>

 <h1>DOM Example</h1>

 <hr>

 <div id='insert_here'>Original Text</div>

 </body>

 <script>

 var x = document.getElementById('insert_here');

 x.innerText = "<iframe src='evilsite.html'> </iframe>";

 </script>

</html>

We can place anything
for the browser to render

DOM Example
<html>

 <head>

 <meta charset="UTF-8">

 <title>DOM Example</title>

 </head>

 <body>

 <h1>DOM Example</h1>

 <hr>

 <div id='insert_here'>Original Text</div>

 </body>

 <script>

 var x = document.getElementById('insert_here');

 x.innerHTML = "<iframe src='evilsite.html'> </iframe>";

 </script>

</html>

But it does need to
render...

HTML Injection is similar to Cross-Site Scripting
(more on that in another lecture)

https://0xn3va.gitbook.io/cheat-sheets/web-application/html-injection

Preventing HTML Injection

• NEVER let raw user input be rendered
• Escape HTML special characters to &equivalent;

Converts < to < so when it is displayed it renders
as text instead of legitimate HTML

Python

PHP

Using the DOM
• Coding proper DOM access in a cross-browser

world is a nightmare

• Some highlights from
http://stackoverflow.com/questions/565641/what-cross-browser-issues-have-you-faced

– Internet Explorer does not replace or HTML char
code 160, you need to replace it w/ its Unicode equivalent
\u00a0

– In Firefox, a dynamically created input field inside a form
(created using document.createElement) does not pass its
value on form submission

– document.getElementById in Internet Explorer will return
an element even if the name attribute matches.

• Mozilla only returns element if id matches

http://stackoverflow.com/questions/565641/what-cross-browser-issues-have-you-faced

Browser Object Model (BOM)

• Programmatic interface to everything outside
the document (aka the browser)

• No complete standard

• Examples
 window.name = "New name"

 window.close()

 window.location = "http://example.com"

JavaScript vs. DOM and BOM
• JavaScript the language is defined separate from the DOM and

BOM
– DOM has its own specification, and much of the BOM is specified in

HTML5 spec

• In the web context, these are often confused, because they are
used together so often

• However, with JavaScript appearing everywhere, it's an important
distinction
– Server-side code using Node.js
– Database queries (MongoDB)
– Flash (dated has its own DOM-like capabilities)
– Java applications (javax.script)
– Windows applications (WinRT)

JavaScript – Object-based
• Almost everything in JavaScript is an object

– Objects are associative arrays (hash tables), and the
properties and values can be added and deleted at
run-time

var object = {test: "foo", num: 50};

object['foo'] = object;

console.log(object[object['test']]);

object.num = 1000;

console.log(object['num']);

JavaScript – Anonymous Functions and Closures
var createFunction = function() {

 var count = 0;

 return function () {

 return ++count;

 };

};

var inc = createFunction();

inc();

inc();

inc();

var inc2 = createFunction();

inc2();

...

JavaScript – Runtime Evaluation
• JavaScript contains features to interpret a string as code and

execute it
– eval
– Function
– setTimeout
– setInterval
– execScript (deprecated since IE11)

var foo = "bar";

eval("foo = 'admin';");

console.log(foo);

var x = "console.log('hello');";

var test = new Function(x);

test();

JavaScript Uses – Form Validation

• How to validate user input on HTML
forms?

• Traditionally requires a round-trip to the
server, where the server checks if the
input is valid

JavaScript Uses – Form Validation
<?php

if ($_GET['submit']) {

 $student = $_GET['student'];

 $class = $_GET['class'];

 $grade = $_GET['grade'];

 if (empty($student) || empty($class) || empty($grade)) {

 echo "Error, did not fill out all the forms";

 }

 else if (!($grade == 'A' || $grade == 'B' || $grade == 'C' ||

 $grade == 'D' || $grade == 'F')) {

 echo "Error, grade must be one of A, B, C, D, or F";

 }

 else { echo "Grade successfully submitted!";

 }

} ?>

<form>

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

Inputs needed to go to the server to evaluate
the user inputs, then render this error message

Notice that GET parameters are passed via
the address bar

Insecure when dealing with network sniffers

Solution: USE HTTPS!
https://letsencrypt.org/

https://letsencrypt.org/

grades.php

empty class field

wrong grade format

correct submission

JavaScript Uses – Form Validation

• How to validate user input on HTML
forms?

• Traditionally requires a round-trip to the
server, where the server can check the
input to make sure that it is valid
– But we can also do it client-side

JavaScript Uses – Form Validation
<script>

function check_form() {

 var form = document.getElementById("the_form");

 if (form.student.value == "" || form.class.value == "" || form["grade"].value == ""){

 alert("Error, must fill out all the form");

 return false;

 }

 var grade = form["grade"].value;

 if (!(grade == 'A' || grade == 'B' || grade == 'C' ||

 grade == 'D' || grade == 'F')) {

 alert("Error, grade must be one of A, B, C, D, or F");

 return false;

 }

 return true;

}

</script>

<form id="the_form" onsubmit="return check_form()">

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

JavaScript Uses – Form Validation
<script>

function check_form() {

 var form = document.getElementById("the_form");

 if (form.student.value == "" || form.class.value == "" || form["grade"].value == ""){

 alert("Error, must fill out all the form");

 return false;

 }

 var grade = form["grade"].value;

 if (!(grade == 'A' || grade == 'B' || grade == 'C' ||

 grade == 'D' || grade == 'F')) {

 alert("Error, grade must be one of A, B, C, D, or F");

 return false;

 }

 return true;

}

</script>

<form id="the_form" onsubmit="return check_form()">

 Student: <input type="text" name="student">

 Class: <input type="text" name="class">

 Grade: <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

Clicking Submit triggers check_form
and only if it returns true do we send
the data to the server

grades_client.php

correct submission

check_form

Client-Side Validation
• Now that we're doing validation on the client, can we get rid of all

those checks in our server-side code?
– No!
– No guarantee that client-side validation is performed

• User disables JavaScript
• Command-line clients

• Users could enter arbitrary data that does not conform to your
validation
– Could lead to a security compromise or not

• So the validation must remain on the server-side and the
client-side
– Brings up another problem, how to perform consistent validation when

server-side and client-side written in different languages
Source: https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/AJAX_Security_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/AJAX_Security_Cheat_Sheet.md

Client-Side Validation
• Now that we're doing validation on the client, can we get rid of all

those checks in our server-side code?
– No!
– No guarantee that client-side validation is performed

• User disables JavaScript
• Command-line clients

• Users could enter arbitrary data that does not conform to your
validation
– Could lead to a security compromise or not

• So the validation must remain on the server-side and the
client-side
– Brings up another problem, how to perform consistent validation when

server-side and client-side written in different languages
Source: https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/AJAX_Security_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/AJAX_Security_Cheat_Sheet.md

Client-Side Validation
• Now that we're doing validation on the client, can we get rid of all

those checks in our server-side code?
– No!
– No guarantee that client-side validation is performed

• User disables JavaScript
• Command-line clients

• Users could enter arbitrary data that does not conform to your
validation
– Could lead to a security compromise or not

• So the validation must remain on the server-side and the
client-side
– Brings up another problem, how to perform consistent validation when

server-side and client-side written in different languages
Source: https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/AJAX_Security_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/AJAX_Security_Cheat_Sheet.md

