
CSC 405
Web Intro

Alexandros Kapravelos
akaprav@ncsu.edu

The US Dept of Defense wanted a redundant, networked
communication system for the military

Dr. Larry Roberts designed ARPAnet in Dec 1969 for $3.4m

Birth of the Internet

Willis H. Ware chairs RAND R-609, identifying all of
ARPAnet's vulnerabilities

Birth of the Internet

http://www.rand.org/pubs/reports/R609-1/index2.html

In 1983, ARPAnet adopted TCP/IP
and the Internet was born

Sir Tim Burners-Lee developed
HTML and the World Wide Web

World Wide Web Project (the first
webpage)

Birth of the Internet

ACM Turing Award 2016

http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html

Birth of the Web

• Created by Tim Berners-Lee while he was working at
CERN
– First CERN proposal in 1989
– Finished first website end of 1990

• Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Web, Tim Berners-Lee

https://www.amazon.com/Weaving-Web-Original-Ultimate-Destiny/dp/006251587X
https://www.amazon.com/Weaving-Web-Original-Ultimate-Destiny/dp/006251587X

Design
• Originally envisioned as a way to share research results

and information at CERN

• Combined multiple emerging technologies
– Hypertext
– Internet (TCP/IP)

• Idea grew into "universal access to a large universe of
documents"

8

Workflow

Workflow

Binary
Converts to Unicode

Which Builds HTML
Which Renders

Three Central Questions

How to name a resource?
– Uniform Resource Identifier (URI/URL)

How to request and serve a resource?
– Hypertext Transfer Protocol (HTTP)

How to create hypertext?
– Hypertext Markup Language (HTML)

Three Central Questions

How to name a resource?
– Uniform Resource Identifier (URI/URL)

How to request and serve a resource?
– Hypertext Transfer Protocol (HTTP)

How to create hypertext?
– Hypertext Markup Language (HTML)

Uniform Resource Identifier

• Essential metadata to reach/find a resource

• Answers the following questions:
– Which server has it?
– How do I ask?
– How can the server locate the resource?

• Latest definition in RFC 3986 (January 2005)

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>

• path
– Usually a hierarchical pathname composed of "/" separated strings

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>

• path
– Usually a hierarchical pathname composed of "/" separated strings

• query
– Used to pass non-hierarchical data

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>

• path
– Usually a hierarchical pathname composed of "/" separated strings

• query
– Used to pass non-hierarchical data

• fragment
– Used to identify a subsection or subresource of the resource

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

Examples:
foo://example.com:8042/over/there?test=bar#nose

ftp://ftp.ietf.org/rfc/rfc1808.txt

mailto:classtech@ncsu.edu

https://example.com/test/example:1.html?/hello

URI – Reserved Characters

:
/
?
#
[
]
@
!
$

&
‘
(
)
*
+
,
;
=

URI – Percent Encoding
Must be used to encode anything that is not of the following:

Alpha [a-zA-Z]
Numeric [0-9]
Dash -
Period .
Underscore _
Tilde ~

URI – Percent Encoding
Encode a byte outside of the previous list with percent sign
(%) followed by hexadecimal representation of byte
• & -> %26
• % -> %25
• <space> -> %20
• ...

Let’s fix our previous example:
https://example.com/test/example:1.html?/hello

↓
https://example.com/test/example%3A1.html?%2Fhello

HTTP – Overview
• Client

– Opens TCP connection to the server
– Sends request to the server

• Server
– Listens for incoming TCP connections
– Reads request
– Sends response

Demo

25

GET / HTTP/1.1
User-Agent: curl/7.37.1
Host: neverssl.com
Accept: */*

HTTP/1.1 200 OK
Date: Thu, 09 Mar 2024 03:22:05 GMT
Server: Apache/2.4.54 ()
Upgrade: h2,h2c
Connection: Upgrade
Last-Modified: Wed, 29 Jun 2022 00:23:33 GMT
ETag: "f79-5e28b29d38e93"
Accept-Ranges: bytes
Content-Length: 3961
Vary: Accept-Encoding
Content-Type: text/html; charset=UTF-8

<html>
<head>
<title>NeverSSL - Connecting ... </title>
<style>
body {
font-family: Montserrat, helvetica,
…

Request by Client

Demo

26

GET / HTTP/1.1
User-Agent: curl/7.37.1
Host: neverssl.com
Accept: */*

HTTP/1.1 200 OK
Date: Thu, 09 Mar 2024 03:22:05 GMT
Server: Apache/2.4.54 ()
Upgrade: h2,h2c
Connection: Upgrade
Last-Modified: Wed, 29 Jun 2022 00:23:33 GMT
ETag: "f79-5e28b29d38e93"
Accept-Ranges: bytes
Content-Length: 3961
Vary: Accept-Encoding
Content-Type: text/html; charset=UTF-8

<html>
<head>
<title>NeverSSL - Connecting ... </title>
<style>
body {
font-family: Montserrat, helvetica,
…

Response by Server

Request by Client

Requests

• An HTTP request consists of:
– method
– resource (derived from the URI)
– protocol version
– header fields
– body (optional)

GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: neverssl.com

Accept: */*

Requests

• An HTTP request consists of:
– method
– resource (derived from the URI)
– protocol version
– header fields
– body (optional)

GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: neverssl.com

Accept: */*

Requests – Methods

The method that that client wants applied to the resource

• GET – request transfer of the entity referred to by the URI
• POST – ask the server to process the included body as

"data" associated with the resource identified by the URI
• PUT – request that the enclosed entity be stored under

the supplied URI
• HEAD – identical to GET except server must not return a

body

Requests – Methods

• OPTIONS – request information about the communication
options available on the request/response chain identified
by the URL

• DELETE – request the server deletes the resource identified
by the URI

• TRACE – invoke a remote, application-layer loop-back of the
request message and the server should reflect the
message received back to the client in its body

• CONNECT – used with proxies

Web servers can also define arbitrary methods

Requests

• An HTTP request consists of:
– method
– resource (derived from the URI)
– protocol version
– header fields
– body (optional)

GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: neverssl.com

Accept: */*

Requests – Resources
• URI can specify the absolute location of the resource

– https://example.com/test/help.html

• Or the URI can specify a location relative to the current resource
– //example.com/example/demo.html

• Relative to the current network-path (scheme)
– /test/help.html

• Relative to the current authority
– ../../people.html

• Relative to the current authority and path
• Context important in all cases

– http://localhost:8080/test 32

Endpoint Attacks

• Distributed Denial of Service (DDOS) attacks are one of the most
common web attacks

https://venturebeat.com/security/defining-endpoint-security-in-a-zero-trust-world/

URL Endpoint Scans from
https://typos.csc.ncsu.edu

Common DDOS Web Attacks

• Computationally Expensive Operations
– Database Lookups
– PDF Generation
– Large file uploads
– ZIP Bombing

• Operations that take time to process result in taking up
– memory
– server connections
– etc.

https://en.wikipedia.org/wiki/Zip_bomb

Requests

• An HTTP request consists of:
– method
– resource (derived from the URI)
– protocol version
– header fields
– body (optional)

GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: neverssl.com

Accept: */*

Requests - Protocol
Based on TCP, uses port 80 by default

• HTTP/1.0
– Defined in RFC 1945 (May 1996)

• HTTP/1.1
– Defined in RFC 2616 (June 1999)

• HTTP/2.0
– Based on SPDY, still under discussion

• HTTPS/2 and HTTPS/3 (Port 443)
– Creates private encryption to strengthen communication

Requests

• An HTTP request consists of:
– method
– resource (derived from the URI)
– protocol version
– header fields
– body (optional)

GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: neverssl.com

Accept: */*

Requests - Header Fields
• Defines information about the client

– Key-Value Pairs transmitted in clear-text
– Separated by CR-LF

• Accept: text/html

– Define the media type client is expecting
• User-Agent: Googlebot/2.1

(+http://www.google.com/bot.html)

– Identifies the software the client is using to access the
server

• Full List 39

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Modern Requests

GET / HTTP/1.1
Host: www.google.com
Accept-Encoding: deflate, gzip
Accept:
text/html,application/xhtml+xml,applicati
on/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_10_1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.95
Safari/537.36

Modern Requests

• Mozilla/5.0
– Indicates compatibility with Mozilla rendering

engine
• (Macintosh; Intel Mac OS X 10_10_1)

– System browser is running
• AppleWebKit/537.36

– Platform browser uses
• (KHTML, like Gecko)

– Additional details
• Chrome/39.0.2171.95 Safari/537.36

– Additional details

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac
OS X 10_10_1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/39.0.2171.95 Safari/537.36

Header Attacks
• Slow Header Attacks (SlowLoris)

– Establish multiple HTTP connections in parallel
– However, never complete the requests, only sending partial

headers
• Server will assume the requests are genuine and wait for them

to complete
– To continue the attack, new HTTP headers get added to the attack

• "Oh, the user is on an unreliable network, we can wait"

• Slow POST Attacks
– Similar to Header Attacks, but partial POST data is sent
– The Content-Length header tells the server how much to expect,

but the attacker delays sending the entire payload

https://github.com/gkbrk/slowloris

Header Attacks
• Slow Header Attacks (SlowLoris)

– Establish multiple HTTP connections in parallel
– However, never complete the requests, only sending partial

headers
• Server will assume the requests are genuine and wait for them

to complete
– To continue the attack, new HTTP headers get added to the attack

• "Oh, the user is on an unreliable network, we can wait"

• Slow POST Attacks
– Similar to Header Attacks, but partial POST data is sent
– The Content-Length header tells the server how much to expect,

but the attacker delays sending the entire payload

https://github.com/gkbrk/slowloris

SlowLoris Demo

Managing Header Attacks

• Increase maximum concurrent connections
– Load Balancers to evenly distribute connections between servers

• Limit concurrent connections by a single IP address
– fail2ban malicious IP addresses

• Limit time span a client request can stay alive
– Apache: mod_reqtimeout, mod_qos
– Nginx: client_header_timeout, client_body_timeout

Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body

HTTP/1.1 200 OK
Date: Thu, 09 Mar 2024 03:22:05 GMT
Server: Apache/2.4.54 ()
Upgrade: h2,h2c
Connection: Upgrade
Last-Modified: Wed, 29 Jun 2022 00:23:33 GMT
ETag: "f79-5e28b29d38e93"
Accept-Ranges: bytes
Content-Length: 3961
Vary: Accept-Encoding
Content-Type: text/html; charset=UTF-8

<html>
<head>
<title>NeverSSL - Connecting ... </title>
<style>
body {
font-family: Montserrat, helvetica,
…

Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body

HTTP/1.1 200 OK
Date: Thu, 09 Mar 2024 03:22:05 GMT
Server: Apache/2.4.54 ()
Upgrade: h2,h2c
Connection: Upgrade
Last-Modified: Wed, 29 Jun 2022 00:23:33 GMT
ETag: "f79-5e28b29d38e93"
Accept-Ranges: bytes
Content-Length: 3961
Vary: Accept-Encoding
Content-Type: text/html; charset=UTF-8

<html>
<head>
<title>NeverSSL - Connecting ... </title>
<style>
body {
font-family: Montserrat, helvetica,
…

Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body

HTTP/1.1 200 OK
Date: Thu, 09 Mar 2024 03:22:05 GMT
Server: Apache/2.4.54 ()
Upgrade: h2,h2c
Connection: Upgrade
Last-Modified: Wed, 29 Jun 2022 00:23:33 GMT
ETag: "f79-5e28b29d38e93"
Accept-Ranges: bytes
Content-Length: 3961
Vary: Accept-Encoding
Content-Type: text/html; charset=UTF-8

<html>
<head>
<title>NeverSSL - Connecting ... </title>
<style>
body {
font-family: Montserrat, helvetica,
…

Responses – Status Codes
• 1XX – Informational: request received, continuing to process

• 2XX – Successful: request received, understood, and
accepted

• 3XX – Redirection: user agent needs to take further action to
fulfill the request

• 4XX – Client error: request cannot be fulfilled or error in
request

• 5XX – Server error: the server is aware that it has erred or is
incapable of performing the request

Responses – Short Reason

• "200" -> OK
• "201" -> Created
• "202" -> Accepted
• "204" -> No Content
• "301" -> Moved Permanently
• "307" -> Temporary Redirect

Responses – Status Codes

• "400" -> Bad Request
• "401" -> Unauthorized
• "403" -> Forbidden
• "404" -> Not Found
• "500" -> Internal Server Error
• "501" -> Not Implemented
• "502" -> Bad Gateway
• "503" -> Service Unavailable

http.cat

HTTP Authentication
• Based on a simple challenge-response scheme

• The challenge is returned by the server as part of
a 401 (unauthorized) reply message and specifies
the authentication schema to be used

• An authentication request refers to a realm, that is,
a set of resources on the server

• The client must include an Authorization header
field with the required (valid) credentials

HTTP Basic Authentication

• The server replies to an unauthorized request with
a 401 message containing the header field
WWW-Authenticate: Basic realm="ReservedDocs"

• The client retries the access including in the header
a field containing a cookie composed of a base64
encoded username and password (RFC 2045)
Authorization: Basic UmFscGllOkRyaW5rTW9yZU92YWx0aW5l==

• Can you crack the username/password?

HTTP 1.1 Authentication

• Defines an additional authentication scheme
based on cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the username,

the password, the given nonce value, the HTTP
method, and the requested URL

• To authenticate the users, the server needs
access to clear-text user passwords

https://datatracker.ietf.org/doc/html/rfc2617

Monitoring and Modifying HTTP Traffic
• HTTP traffic can be analyzed in different ways

– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the content received

from a server
– Client-side/server-side proxies can be used to analyze the

traffic without having to modify the target environment

• Client-side proxies are especially effective in
performing vulnerability analysis because they allow
one to examine and modify each request and reply
– Firefox extensions: LiveHTTPHeaders, Tamper Data
– Burp Proxy

Hypertext Markup Language
• A markup language designed to 'present' data in a

certain format with the ability to 'link' to other resources

• Based on Standard Generalized Markup Language
(SGML) (ISO 8879:1986)

• HTML is a specialized version of a Document Object
Model (DOM) for the web

– Microsoft Office formats all of its files w/ a DOM

https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language

Tags

HTML contains tags that explain what the content is

suppose to be

Most tags have an opening and closing tag (with a

handful of exceptions)

Every HTML file starts with an <html> tag and ends

with an </html> tag

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

Informs the application of the specific
DOM format used

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

Contains metadata about the document

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

Like the resource's title

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 <link rel="stylesheet" href="stylesheets/main.css">

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

Or resources the page
needs to import

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

The body contains the actual
contents of the resource

HTML – Tags
<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <div>

 <p>I am the example text</p>

 </div>

 </body>

</html>

And tags like <div> and <p> inform the
application about how the content should be

organized (and formatted)

HTML – Tags

● html // Document Language

● head // Metadata

●title
● "Hello World"

● body // Contents

●div // Section
● p // Paragraph

● "I am the example text"

HTML – Tags
• Tags can have "attributes" that provide metadata about

the tag

• Attributes live inside the start tag after the tag name

• <input type="text" name="email" disabled>
• input is the tag name with…
• type as an attribute with the value "text"
• name as an attribute with the value "email"
• disabled as an attribute with no value
• input also does not need a closing </input>

HTML – Hyperlink

• anchor tag is used to create a hyperlink
• href attribute is used provide the URI
• Text inside the anchor tag is the text of the

hyperlink

• Example

Example

http://google.com

HTML – Browsers

• User agent is responsible for parsing and
interpreting the HTML and displaying it to
the user

HTML – Character References
• How to include HTML special characters as text/data?

< > ' " & =

• Encode the character reference
• Also referred to in HTML < 5.0 as "entity reference" or

"entity encoding"

• Three variations, each starts with & and ends with ;
– Named character reference

• &<predefined_name>;
– Decimal numeric character reference

• &#<decimal_unicode>;
– Hexadecimal numeric character reference

• &#x<hexadecimal_unicode>;

• Note: This will be the root of a significant number of
vulnerabilities and is critical to understand

HTML – Character References

• Three variations, each start with & and end with ;
– Named character reference

• &<predefined_name>;
– Decimal numeric character reference

• &#<decimal_unicode>;
– Hexadecimal numeric character reference

• &#x<hexadecimal_unicode>;

• Note: This will be the root of a significant number of
vulnerabilities and is critical to understand

HTML – Character References Example

• The ampersand (&) is used to start a
character reference, so it needs to
be encoded as a character reference

HTML – Character References Example

• The ampersand (&) is used to start a
character reference, so it needs to
be encoded as a character reference
– & ⇒ &

– & ⇒ & in ASCII

– & ⇒ & in HEX

– & ⇒ & in longer form HEX

HTML – Character References Example

é
• é
• é
• é

Modern browsers can handle files with special characters, but these standards
come from a time when they did not

HTML – Character References Example

🐛
• 🐛
• 🐛

HTML – Character References Example

• Why must ‘<’ be encoded as a character
reference?
● <
● <

● 0

● 0

Web Scrapers / Crawlers / Spiders
• Because HTML is highly structured, it leaves it very susceptible to

programs that extract information from the webpage
– Can then render phishing pages to appear authentic
– Or host other people's content with injected affiliate links
– Or be genuine web indexing companies

– Good rule of thumb is to include a robots.txt file in the root directory to
inform "good" bots what to not index
• https://www.robotstxt.org/
• User-agent: *

Disallow: /cgi-bin/
Disallow: /~csc405/
Disallow: *.gif
Disallow: /flag/challengeXX.txt

https://www.robotstxt.org/

Web Scrapers / Crawlers / Spiders
• Because HTML is highly structured, it leaves it very susceptible to

programs that extract information from the webpage
– Can then render phishing pages to appear authentic
– Or host other people's content with injected affiliate links
– Or be genuine web indexing companies

• Good rule of thumb is to include a robots.txt file in the root directory to
inform "good" bots what to not index
– https://www.robotstxt.org/
– User-agent: *

Disallow: /cgi-bin/
Disallow: /~csc405/
Disallow: *.gif
Disallow: /flag/challengeXX.txt

https://www.robotstxt.org/

Web Scrapers / Crawlers / Spiders
• Because HTML is highly structured, it leaves it very susceptible to

programs that extract information from the webpage
– Can then render phishing pages to appear authentic
– Or host other people's content with injected affiliate links
– Or be genuine web indexing companies

• Good rule of thumb is to include a robots.txt file in the root directory to
inform "good" bots what to not index
– https://www.robotstxt.org/
– User-agent: *

Disallow: /cgi-bin/
Disallow: /~csc405/
Disallow: *.gif
Disallow: /flag/challengeXX.txt

Any robot

https://www.robotstxt.org/

Web Scrapers / Crawlers / Spiders
• Because HTML is highly structured, it leaves it very susceptible to

programs that extract information from the webpage
– Can then render phishing pages to appear authentic
– Or host other people's content with injected affiliate links
– Or be genuine web indexing companies

• Good rule of thumb is to include a robots.txt file in the root directory to
inform "good" bots what to not index
– https://www.robotstxt.org/
– User-agent: *

Disallow: /cgi-bin/
Disallow: /~csc405/
Disallow: *.gif
Disallow: /flag/challengeXX.txt

Do not index /cgi-bin/, /~csc405/, any gifs, or
explicitly do not index specific files

https://www.robotstxt.org/

What about Bad Bots?

What about Bad Bots?

• Honeypots
– Include Disallow: <location> in robots.txt but

include a link to it in your webpage
– Grab the IP address of the malicious bot for

processing later

robots.txt
User-agent: *
Disallow: /honeypot/trap/

What about Bad Bots?

• Honeypots
– Include Disallow: <location> in robots.txt but

include a link to it in your webpage
– Grab the IP address of the malicious bot for

processing later

Website

robots.txt
User-agent: *
Disallow: /honeypot/trap/

What about Bad Bots?

• Honeypots
– Include Disallow: <location> in robots.txt but

include a link to it in your webpage
– Grab the IP address of the malicious bot for

processing later

Website

robots.txt
User-agent: *
Disallow: /honeypot/trap/

/honeypot/trap/index.php

file_put_contents('bad-bots.txt', GetIp() . "rn", FILE_APPEND);

What about Bad Bots?

• Frequently change the HTML structure
– Auto generate random attribute values for tags with

id and class attributes

– Instead of
<div class="article-content" id="main">

use

<div class="U2ARCQs4oH" id="91JpNLuG51">

What about Bad Bots?

• Frequently change the HTML structure
– Regularly change the nesting structure of the page
– Instead of

<div class="article-content" id="main">
 …content…
</div>

use
<div class="U2ARCQs4oH" id="91JpNLuG51">
 <div class="rhG7k8p7q091JpNLuG51">
 …content…
 </div>
</div>

What about Bad Bots?

• Frequently change the HTML structure
– Regularly change the nesting structure of the page
– Instead of

<div class="article-content" id="main">
 …content…
</div>

use
<div class="U2ARCQs4oH" id="91JpNLuG51">
 <div class="rhG7k8p7q091JpNLuG51">
 …content…
 </div>
</div>

