NC STATE UNIVERSITY

CSC 405
Control-Flow Integrity

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

ROP & return-to-libc reusing
existing code instead of injecting
malicious code...

How can we stop this?

NC STATE UNIVERSITY

for(A:B;C)

Program Control Flow

* Unconditional Jumps @

« Conditional Jumps)k

* Loops T

e Subroutines

 Unconditional Halts

Oj‘““

NC STATE UNIVERSITY

vuin.c

<stdio.h>
<stdlib.h>

// Same program from ROP lecture
void getinput(char *input) {
char buffer[32];

strcpy(buffer, input);
printf("You entered: %s\n", buffer);

int main(int argc, char **argv) {

getinput();
0;

Simple Call Graph

<stdio.h>
<stdlib.h>

main

// Same program from ROP lecture
void getinput(char *input) {
char buffer[32];

\ 4

getinput

strcpy(buffer, input);
printf("You entered: %s\n", buffer);

int main(int argc, char **argv) {

getinput(); strcpy printf

9;

NC STATE UNIVERSITY

Function Locations

$ gcc vuln.c -o vuln

$ radare2 -A ./vuln

[0x000010a0]> afl

©x00001070 1 sym.imp.strcpy
©x00001080 1 sym.imp. stack chk fail
©x00001090 1 sym.imp.printf

©x00001189 sym.getinput
©x000011ed main
©Xx00001000 sym. init
[0x000010a0 | >

NC STATE UNIVERSITY

Function Locations

$ gcc vuln.c -o vuln

$ radare2 -A ./VU].T Size of Function in Bytes
[0x000010a0]> afl

©x00001070 1 11 sym.imp.strcpy

of Basic Blocks Y chk_fail

Memory Address (code sequence with no branches in, Name of function
except to the entry, and no branches m (imp implies its imported)
out, except at the exit) y

©x00001189 3 100 sym.getinput
Px000011ed 1 45 main A
©Xx00001000 3 27 sym. _init

[@X@@@@l@a@] > } printf("%s\n", buffer);

void getinput(char *input) {

strcpy(buffer, input);

NOEXEC (W*X)

OXFFFFFF Stack

Heap
BSS

Data

0Xx000000 Code iy

RX

NC STATE UNIVERSITY

NOEXEC (WAX)

YYVV VVY VW VYVY

Code

valid code
locations

invalid code
locations

NC STATE UNIVERSITY

Fundamental problem with this execution model?

Code is not executed in the intended way!

NC STATE UNIVERSITY

How can we make sure that the program
Is executed in the intended way?

NC STATE UNIVERSITY

How can we make sure that the program
Is executed in the intended way?

Control-Flow Integrity (CFI)

Control-Flow Integrity

CFl is a security policy

Execution must follow a Control-Flow Graph

CFG can be pre-computed
— source-code analysis

— binary analysis

— execution profiling

But how can we enforce this extracted control-flow?

NC STATE UNIVERSITY

Building a Control-Flow Graph

1. Generate a .DOT file on compilation
$ gcc -fdump-tree-all-graph -o vuln_graph/vuln vuln.c

NC STATE UNIVERSITY

Building a Control-Flow Graph

1. Generate a .DOT file on compilation
$ gcc -fdump-tree-all-graph -o vuln_graph/vuln vuln.c

! getinput () | i main () i
2. Load the .DOT file into Graphviz or Edotor | P> ,@,
il !

| l I .
| ¥ !
L[<bb2>: [<bb2> !
i strepy (&buffer, input); i i _l=argv+8; i
g printf ("You entered: %s\n", &buffer); i i 2= i
i buffer = {CLOBBER}; i i getinput (_2); i
P | retum: i1 | D2s37=0; ||
| i | y 1
i i i <bb 3>: ;
| i i <L0>: |
| return D.2537; :
[}

]

]

1

1

I

]

1

|

https://graphviz.org/
https://edotor.net/

Enforcing CFl by Instrumentation

sort2(): sort(): 1t():
bool 1lt(int x, int y) { § o : § /a label 17
} IS, - 55 i call sort”| call 17,R < _ret§ 23
bool gt(int x, int y) { R '\\\ e :\-—
S 8 7| $ N\

call sort’ e ret 55 %< §
?OrtQ(lnt ALl Snblls e Jea) label 554~ \\\ret 23

sort(a, len, 1t); §

) sort(b, len, gt); ret ..

e LABEL ID - Defines ID for code segment
e CALL ID, DST - Designate the ID you're expecting
e RET ID - Defines ID for code segment to return to

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

Enforcing CFl by Instrumentation

sort2(): sort(): 1t():
bool 1lt(int x, int y) { § o : § /a label 17
} IS, - 55 i call sort”| call 17,R < _ret§ 23
bool gt(int x, int y) { R '\\\ e :\-—
S 8 7| $ N\

call sort’ e ret 55 %< §
?OrtQ(lnt ALl Snlblls e Jea) label 554~ \\\ret 23

sort(a, len,| 1t]); §

) sort(b, len,| gt]); ret ..

pointers to comparison functions

e LABEL ID - Defines ID for code segment
e CALL ID, DST - Designate the ID you're expecting
e RET ID - Defines ID for code segment to return to

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

NC STATE UNIVERSITY

CFIl Instrumentation Code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] ; dst

 The extra code checks that the destination code is the
iIntended jump location

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

NC STATE UNIVERSITY

CFIl Instrumentation Code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions

FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] ; dst

can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678h ; comp ID & dst 78 56 34 12 ; data 12345678h y LD
75 13 jne error_label ; if != fail 8B 44 24 04 mov eax, [esp+4] ; dst
8D 49 04 lea ecx, [ecx+4] ; skip ID at dst

FF E1l jmp ecx ; jump to dst

or, alternatively, instrumented as (b):

B8 77 56 34 12 mov eax, 12345677h ; load ID-1 3E OF 18 05 prefetchnta ; label
40 inc eax ; add 1 for ID 78 56 34 12 [12345678h] . ID
39 41 04 cmp [ecx+4], eax ; compare w/dst 8B 44 24 04 mov eax, [esp+4] ; dst
75 13 jne error_label ; if !'= fail % i

FF E1 jmp ecx ; jump to label

 The extra code checks that the destination code is the
iIntended jump location

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

NC STATE UNIVERSITY

CFIl Instrumentation Code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions

FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] ; dst

can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678h ; comp ID & dst 78 56 34 12 ; data 12345678h y LD
75 13 jne error_label ; if != fail 8B 44 24 04 mov eax, [esp+4] ; dst
8D 49 04 lea ecx, [ecx+4] ; skip ID at dst

FF E1l jmp ecx ; jump to dst

or, alternatively, instrumented as (b):

B8 77 56 34 12 mov eax, 12345677h ; load ID-1 3E OF 18 05 prefetchnta ; label
40 inc eax ; add 1 for ID 78 56 34 12 [12345678h] . ID
39 41 04 cmp [ecx+4], eax ; compare w/dst 8B 44 24 04 mov eax, [esp+4] ; dst
75 13 jne error_label ; if !'= fail % i

FF E1 jmp ecx ; jump to label

 The extra code checks that the destination code is the
intended jump location Still not implemented, but

would ensure code flow

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

NC STATE UNIVERSITY

CFl Assumptions

Unique IDs
— must not be present anywhere in the code memory
except in IDs and ID-checks

Non-Writable Code (NWC)
— must not be possible for the program to modify code
memory at runtime

Non-Executable Data (NXD)
— must not be possible for the program to execute data
as if it were code

Jumps cannot go into the middle of instructions

NC STATE UNIVERSITY

CFl Assumptions

Unique IDs
— must not be present anywhere in the

except in IDs and ID-checks AR Akl
everyday that would cause

Non-Writable Code (NWC) problems with this?
— must not be possible for the program to modify code
memory at runtime

Non-Executable Data (NXD)
— must not be possible for the program to execute data
as if it were code

Jumps cannot go into the middle of instructions

Attacker

* The paper assumes a powerful attacker model
— Arbitrary control of all data in memory
— Even hijack the execution flow of the program

« With CFlI, execution will always follow the Control-Flow
Graph
— Attacker can only execute the normal flow of the
program

CFl Enforcement Overhead

50% -

40% -

30% -

20% -

10% -

- = - []

I | T I I I I I I

CFIl enforcement overhead

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr AVG

CFl Enforcement Overhead

50% -

40% -

This Is bad.

30% +

20%

10% -

I | T I I I I I

CFIl enforcement overhead

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr AVG

NC STATE UNIVERSITY

Control-Flow Guard (semi-implemented)

 Windows 10 and Windows 8.1

* Microsoft Visual Studio 2015+

» Adds lightweight security checks to the compiled code

 |dentifies the set of functions in the application that are
valid targets for indirect calls

* The runtime support, provided by the Windows kernel:
— Efficiently maintains state that identifies valid indirect call

targets
— Implements the logic that verifies that an indirect call target is

valid

NC STATE UNIVERSITY

8)
Intel® Control-Flow Enforcement Technology (Intel CET)

INTEL — INDIRECT BRANCH + SHADOW
CET - TRACKING (IBT) STACK (SS)

INDIRECT BRANCH SHADOW STACK (SS)

TRACKING (IBT) SS delivers return address protection to defend against
return-oriented programming (ROP) attack methods.

IBT delivers indirect branch protection to defend against
jump/call oriented programming (JOP/COP) attack methods.

STACK

PROGRAM
IN MEMORY

<foo>:
endbranch

<main>:

add rax, rbx

A

v

Intel CET will help prevent
attackers from jumping to

arbitrary addresses Intel CET will help block call if return
addresses on both stacks don't match

movq $0x4004fb, -8(%rbp)
mov__-8(%rbp), %rdx

call *%rdx

Intel CET helps protect against ROP/JOP/COP malware

Intel CET is built into the hardware microarchitecture and available across the family of products with that core.
On Intel vPro® platforms with Intel® Hardware Shield, Intel CET further extends threat protection capabilities.

(Intel) No product or component can be absolutely secure. ® Intel Corporation. Intel, the Intel logo and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

A _4

NC STATE UNIVERSITY

Control-Flow Enforcement Technology

* Indirect Branch Tracking

ENDBRANCH -> new CPU instruction

marks valid indirect call/jmp targets in the program

the CPU implements a state machine that tracks indirect jmp and call
instructions

when one of these instructions is seen, the state machine moves from IDLE to
WAIT _FOR_ENDBRANCH state

if an ENDBRANCH is not seen the processor causes a control protection fault

e Shadow Stack

CALL instruction pushes the return address on both the data and shadow stack
RET instruction pops the return address from both stacks and compares them

if the return addresses from the two stacks do not match, the processor signals
a control protection exception (#CP)

NC STATE UNIVERSITY

Limitations of CFI?

NC STATE UNIVERSITY

Limitations of CFI?

What if your program has instructions that

could be maliciously used?

Fine-Grained CFI

Precise monitoring of indirect control-flow changes

Caller-Callee must match

High performance overhead (~21%)

Highest security

NC STATE UNIVERSITY

Coarse-Grained CFI
* Trades security for better performance

* Any valid call location is accepted

NC STATE UNIVERSITY

Coarse-Grained CFI

* Trades security for better performance

* Any valid call location is accepted

However, this creates vulnerabilities...

[1] N. Carlini and D. Wagner, "ROP is still dangerous: Breaking modern defenses"

[2] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, "Stitching the gadgets: On the
ineffectiveness of coarse grained control-flow integrity protection”

[3] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, "Out of control:
Overcoming control-flow integrity"

[4] E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis, "Size
does matter: Why using gadget chain length to prevent code-reuse attacks is hard"

NC STATE UNIVERSITY

Which type of CFIl did Intel choose to
implement in hardware?

NC STATE UNIVERSITY

Which type of CFIl did Intel choose to
implement in hardware?

Coarse-grained CFI... :

Code-Pointer Integrity

« Static Analysis
— all sensitive pointers

— all instructions that operate on them Data: Code:

struct A

HIEIE FunctionA

* Instrumentation
— store them in a separate, safe memory
region

struct B ’ FunctionB

* Instruction-level Isolation Mechanism
— prevents non-protected memory
operations from accessing the safe
region

Source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Code-Pointer Integrity

« Static Analysis
— all sensitive pointers
— all instructions that operate on them Data: Code:

struct A

 |Instrumentation
] IE] FunctionA

— store them in a separate, safe memory
region

struct| B Vadl FunctionB
* Instruction-level Isolation Mechanism Eng<-—t 51 Ol

— prevents non-protected memory
operations from accessing the safe - | .
region Sensitive Pointers

Source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Defense Overview and Overheads

NC STATE UNIVERSITY

Attack step Property Mechanism Stops all control-flow hijacks? Avg. overhead
v Memory Safety SoftBound+CETS [34, 35] Yes 116%
Corrupt data BBC [4], No: sub-objects, reads not protected 110%
pointer LBC [20], ASAN [43], No: protects red zones only 23%
WIT [3] No: over-approximate valid sets 7%
Modi Code-Pointer CPI Yes 8.4%
o lfy a Integrity CPS No: valid code ptrs. interchangeable 1.9%
code pointer ... (this work) Safe Stack No: precise return protection only ~0%
v Randomization =~ ASLR [40], ASLP [26] No: vulnerable to information leaks ~10%
... to address of Pgint?slljard [13] No: vu:neral;:e to in;ormation :eats ;82/0
DSR No: vulnerable to information leaks %
gatiet=NElionde NOP insertion [21] No: vulnerable to information leaks 2%
* * Control-Flow Stack cookies No: probabilistic return protection only ~2%
Use pointer by Use pointer by | |ntegrity CFI [1] No: over-approximate valid sets 20%
return instruction indirect call/jump WIT (CFlI part) [3] No: over-approximate valid sets 7%
L * ! DFI [10] No: over-approximate valid sets 104%
\ 2 L 4 :
3 = Non-Executable HW (NX bit) No: code reuse attacks 0%
EHEE, Avallble Fxecriieiiicccd Data SW (Exec Shield, PaX) No: code reuse attacks few %
gadgets/func.-s shellcode
[5 < J
High-level Sandboxing (SFI) Isolation only varies
Control-flow policies ACLs Isolation only varies
hijack Capabilities Isolation only varies

NC STATE UNIVERSITY

kBouncer

Detect abnormal control transfers that take place during ROP

code execution
— Reviews last few jump calls to see if the average number of instructions
execute is too small (gadgets are <10 instructions)

Transparent

— Applicable on third-party applications

— Compatible with code signing, self-modifying code, JIT, ...
Lightweight

— Up to 4% overhead when artificially stressed, practically zero
Effective

— Prevents real-world exploits

Source: https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper pappas.pdf

https://github.com/vpappas/kbouncer
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_pappas.pdf

ROP Code Runtime Properties

* |lllegal ret instructions that target locations not preceded

by call sites
— Abnormal condition for legitimate program code

« Sequences of relatively short code fragments "chained"

through any kind of indirect branch
— Always holds for any kind of ROP code

NC STATE UNIVERSITY

lllegal Returns

 Legitimate code:
— ret transfers control to the instruction right after the
corresponding call = legitimate call site

« ROP code:

— ret transfers control to the first instruction of the next gadget
=> arbitrary locations

* Main idea:
— Runtime monitoring of ret instructions’ targets

Gadget Chaining

« Advanced ROP code may avoid illegal returns
— Rely only on call-preceded gadgets
(6% of all ret gadgets in the experiments)
— "Jump-Oriented" Programming (non-ret gadgets)

* Look for a second ROP attribute:
— Several short instruction sequences chained through
iIndirect branches

Gadget Chaining

mov eax,ebx
add ebx,100
ret

« Look for consecutive indirect \)

branch targets that point to pop sai
gadget locations nov estedl
 Conservative gadget definition: sub esi,8 /

push esi

up to 20 instructions call esi

—Typically 1-5 \)
pop edi

pop esi
ret

Last Branch Record (LBR)

* Introduced in the Intel Nehalem (i5 and i7) architecture

« Stores the last 16 executed branches in a set of
model-specific registers (MSR)
— Can filter certain types of branches (relative/indirect calls/jumps,
returns, ...)

* Multiple advantages
— Zero overhead for recording the branches
— Fully transparent to the running application
— Does not require source code or debug symbols
— Can be dynamically enabled for any running application

https://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf

NC STATE UNIVERSITY

Monitoring Granularity

* Non-zero overhead for reading the LBR stack

(accessible only from kernel level)
— Lower frequency -> |ower overhead
— Higher frequency = higher overhead

 ROP code can run at any point
— Higher frequency => higher accuracy

NC STATE UNIVERSITY

Monitoring Granularity

* Meaningful ROP code will eventually interact with t

through system calls
— Check for abnormal control transfers on system call entry

LBR check
kernel
e = !
space

he OS

time system call

>

Gadget Chaining: Legitimate Code

LBR stack instances (%)

- Protected API calls
All function calls

N
o

—

- detection

> | threshold

0.01 =

10-3 ;

o4l LT NN |

[[[[[[[[[[[[[[[[
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gadget chain length

Dataset from: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office

NC STATE UNIVERSITY

Effectiveness

« Successfully prevented real-world exploits in...
— Adobe Reader Xl (zero-day!)
— Adobe Reader 9
— Mplayer Lite
— Internet Explorer 9
— Adobe Flash 11.3
— ...and more!

has d ing

Windows can check online for a solution to the problem.

- Check online for a solution and close the program N3

| - Close the program I

w | View problem details

EM Error (Not Respon

g)

{ \ kBouncer detected a bad branch!
e From: 7c346c0b [MSVCR71.dll: 27659]
To: 7c3415a2 [MSVCR71.dll: 5538]
Dump of destination bytes:
7C341590: 40fffffe f472c63b 84ee458a e885c6c)
7C3415A0: 20fffffe 67af850f 00620000 b2d435ff
7C3415B0: 858d7c38 fffffae8 b2e035ff 56507c38

@ C\Users\test\Desktop\cve-2012-4792.htm - Windows Internet Explorer

| @\/v £ C:\Users\test\Desktop\cve-2012-4792.htm ~| <

Y Favorites | 35 &S

£ C:\Users\test\Desktop\cve-2012-4792.htm =2

ted Sites v @] Web Slice Gallery +

kBouncer detected malicious activity!

‘8‘ Iilegal Branch

From: 28027b60 [SKYPE4~1.DLL:16265
To: 2802471 [SKYPE4~1.DLL:151409]
Dump of destination bytes:

28024F60: 8310247 c d5004c3 SFfffffe
28024F70: ccc358c4 ccccccce cecccec)
28024F80: 8b565553 d4b58bed 3b0000(

MPlayer

‘8‘ kBouncer detected a bad branch!

= From: 6ad79cad [avcodec-52.dl:236717]
To: 6ad79cac [avcodec-52.dll: 236716]
Dump of destination bytes:
B6AD79C90: 8d602454 4c89384b 4c8b7024 548b4c24
6AD79CAO: 44c74024 00003c24 05d90000 6b0fc348
B6AD79CB0: 3c247c8b 8906e7c1 8b50247c 8b702444

Playlist
gl 3b9663a01a73cSecasd6h = =10y =) COEEECEED
File Edit View Window Help *
‘ 4 Tools Sign Comment Extended
Find
0 o I
e TR

From: 4a80cb3f [icuenv36.dll:52031]

To: 4a82a714 [icucnv36.dll: 173844]

Dump of destination bytes:

4AB2A700: f60850ff fecO1ad8 0004c2c0 006a018b
4AB2A710: 50ff006a 018bc35c 006a026a c35c50fF
4AB2A720: c310418b 042474ff 00132ae8 1ad8f600

J

kBouncer detected malicious activity!

Tllegal Branch

From: 76521569 [CLBCatQ.DLL:202089]

To: 765714eb [CLBCatQ.DLL:5355]

Dump of destination bytes:

765714D0: f6335676 840fc63b 000014b4 96703539
765714E0: 840f765e 0000 14fe c35ec68b 90909090
765714F0: f40d3bS0 0f765e81 04fa6585 S0S0c300

File name:

Files of type:

| Adobe PDF Fies (" pdf)

ws\detour>root\bin.X86
rogram \

withd11. exe:

kBouncer detected a bad branch! blore. exe
(x86)\Interrn

From: 7c346c0b [MSVCR71.dll: 27659]
To: 7c3415a2 [MSVCR71.dll: 5538]
Dump of destination bytes:

7C341590: 40fffffe f472c63b 84ee458a e885c6c0
7C3415A0: 20fffffe 67af850f 006a0000 b2d435ff
7C3415B0: 858d7c38 fffffae8 b2e035ff 56507c38

\detour\root\
bat

withdl1. exe
plore. exe”

s (x86)\Interr

\detour\root\

NC STATE UNIVERSITY

Limitations
* Indirect branch tracing only checks the last

16 gadgets, up to 20 instructions

 Still possible to find longer call-preceded
or non-return gadgets

