
CSC 405
Control-Flow Integrity

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

ROP & return-to-libc reusing
existing code instead of injecting

malicious code...

How can we stop this?

• Unconditional Jumps

• Conditional Jumps

• Loops

• Subroutines

• Unconditional Halts

Program Control Flow

vuln.c
#include <stdio.h>

#include <stdlib.h>

// Same program from ROP lecture

void getinput(char *input) {

 char buffer[32];

 strcpy(buffer, input);

 printf("You entered: %s\n", buffer);

}

int main(int argc, char **argv) {

 getinput();

 return 0;

}

Simple Call Graph
#include <stdio.h>

#include <stdlib.h>

// Same program from ROP lecture

void getinput(char *input) {

 char buffer[32];

 strcpy(buffer, input);

 printf("You entered: %s\n", buffer);

}

int main(int argc, char **argv) {

 getinput();

 return 0;

}

main

getinput

strcpy printf

Function Locations
$ gcc vuln.c -o vuln
$ radare2 -A ./vuln
[0x000010a0]> afl
 0x00001070 1 11 sym.imp.strcpy
 0x00001080 1 11 sym.imp.__stack_chk_fail
 0x00001090 1 11 sym.imp.printf
 ...
 0x00001189 3 100 sym.getinput
 0x000011ed 1 45 main
 0x00001000 3 27 sym._init
[0x000010a0]>

Function Locations
$ gcc vuln.c -o vuln
$ radare2 -A ./vuln
[0x000010a0]> afl
 0x00001070 1 11 sym.imp.strcpy
 0x00001080 1 11 sym.imp.__stack_chk_fail
 0x00001090 1 11 sym.imp.printf
 ...
 0x00001189 3 100 sym.getinput
 0x000011ed 1 45 main
 0x00001000 3 27 sym._init
[0x000010a0]>

Memory Address
of Basic Blocks

(code sequence with no branches in,
except to the entry, and no branches

out, except at the exit)

Size of Function in Bytes

Name of function
(imp implies its imported)

void getinput(char *input) {

 char buffer[32];

 strcpy(buffer, input);

 printf("%s\n", buffer);

}

NOEXEC (W^X)

RW

RX

0xFFFFFF Stack

Heap

BSS

Data

0x000000 Code

NOEXEC (W^X)

Code

valid code
locations

invalid code
locations

Fundamental problem with this execution model?

Code is not executed in the intended way!

How can we make sure that the program
is executed in the intended way?

Control-Flow Integrity (CFI)

How can we make sure that the program
is executed in the intended way?

Control-Flow Integrity (CFI)

• CFI is a security policy

• Execution must follow a Control-Flow Graph

• CFG can be pre-computed
– source-code analysis
– binary analysis
– execution profiling

• But how can we enforce this extracted control-flow?

Control-Flow Integrity

Building a Control-Flow Graph
1. Generate a .DOT file on compilation
$ gcc -fdump-tree-all-graph -o vuln_graph/vuln vuln.c

Building a Control-Flow Graph
1. Generate a .DOT file on compilation
$ gcc -fdump-tree-all-graph -o vuln_graph/vuln vuln.c

2. Load the .DOT file into Graphviz or Edotor

https://graphviz.org/
https://edotor.net/

Enforcing CFI by Instrumentation

Source: Control-Flow Integrity

• LABEL ID - Defines ID for code segment
• CALL ID, DST - Designate the ID you're expecting
• RET ID - Defines ID for code segment to return to

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

Enforcing CFI by Instrumentation

Source: Control-Flow Integrity

pointers to comparison functions

• LABEL ID - Defines ID for code segment
• CALL ID, DST - Designate the ID you're expecting
• RET ID - Defines ID for code segment to return to

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

CFI Instrumentation Code

• The extra code checks that the destination code is the
intended jump location

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

CFI Instrumentation Code

• The extra code checks that the destination code is the
intended jump location

Source: Control-Flow Integrity

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

CFI Instrumentation Code

• The extra code checks that the destination code is the
intended jump location

Source: Control-Flow Integrity

Still not implemented, but
would ensure code flow

https://kapravelos.com/teaching/csc591-f17/readings/controlflowintegrity.pdf

CFI Assumptions
• Unique IDs

– must not be present anywhere in the code memory
except in IDs and ID-checks

• Non-Writable Code (NWC)
– must not be possible for the program to modify code

memory at runtime
• Non-Executable Data (NXD)

– must not be possible for the program to execute data
as if it were code

• Jumps cannot go into the middle of instructions

CFI Assumptions
• Unique IDs

– must not be present anywhere in the code memory
except in IDs and ID-checks

• Non-Writable Code (NWC)
– must not be possible for the program to modify code

memory at runtime
• Non-Executable Data (NXD)

– must not be possible for the program to execute data
as if it were code

• Jumps cannot go into the middle of instructions

What code do you compile
everyday that would cause

problems with this?

Attacker

• The paper assumes a powerful attacker model
– Arbitrary control of all data in memory
– Even hijack the execution flow of the program

• With CFI, execution will always follow the Control-Flow
Graph
– Attacker can only execute the normal flow of the

program

CFI Enforcement Overhead

CFI Enforcement Overhead

This is bad.

• Windows 10 and Windows 8.1
• Microsoft Visual Studio 2015+
• Adds lightweight security checks to the compiled code
• Identifies the set of functions in the application that are

valid targets for indirect calls
• The runtime support, provided by the Windows kernel:

– Efficiently maintains state that identifies valid indirect call
targets

– Implements the logic that verifies that an indirect call target is
valid

Control-Flow Guard (semi-implemented)

Control-Flow Enforcement Technology
• Indirect Branch Tracking

– ENDBRANCH -> new CPU instruction
– marks valid indirect call/jmp targets in the program
– the CPU implements a state machine that tracks indirect jmp and call

instructions
– when one of these instructions is seen, the state machine moves from IDLE to

WAIT_FOR_ENDBRANCH state
– if an ENDBRANCH is not seen the processor causes a control protection fault

• Shadow Stack
– CALL instruction pushes the return address on both the data and shadow stack
– RET instruction pops the return address from both stacks and compares them
– if the return addresses from the two stacks do not match, the processor signals

a control protection exception (#CP)

Limitations of CFI?

Limitations of CFI?

What if your program has instructions that
could be maliciously used?

• Precise monitoring of indirect control-flow changes

• Caller-Callee must match

• High performance overhead (~21%)

• Highest security

Fine-Grained CFI

Coarse-Grained CFI
• Trades security for better performance

• Any valid call location is accepted

Coarse-Grained CFI
• Trades security for better performance

• Any valid call location is accepted

[1] N. Carlini and D. Wagner, "ROP is still dangerous: Breaking modern defenses"
[2] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, "Stitching the gadgets: On the
ineffectiveness of coarse grained control-flow integrity protection"
[3] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, "Out of control:
Overcoming control-flow integrity"
[4] E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis, "Size
does matter: Why using gadget chain length to prevent code-reuse attacks is hard"

However, this creates vulnerabilities…

Which type of CFI did Intel choose to
implement in hardware?

Coarse-grained CFI...

Which type of CFI did Intel choose to
implement in hardware?

Coarse-grained CFI...

• Static Analysis
– all sensitive pointers
– all instructions that operate on them

• Instrumentation
– store them in a separate, safe memory

region

• Instruction-level Isolation Mechanism
– prevents non-protected memory

operations from accessing the safe
region

Code-Pointer Integrity

Source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

• Static Analysis
– all sensitive pointers
– all instructions that operate on them

• Instrumentation
– store them in a separate, safe memory

region

• Instruction-level Isolation Mechanism
– prevents non-protected memory

operations from accessing the safe
region

Code-Pointer Integrity

Source: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Sensitive Pointers

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Defense Overview and Overheads

kBouncer
• Detect abnormal control transfers that take place during ROP

code execution
– Reviews last few jump calls to see if the average number of instructions

execute is too small (gadgets are <10 instructions)

• Transparent
– Applicable on third-party applications
– Compatible with code signing, self-modifying code, JIT, …

• Lightweight
– Up to 4% overhead when artificially stressed, practically zero

• Effective
– Prevents real-world exploits

Source: https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_pappas.pdf

https://github.com/vpappas/kbouncer
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_pappas.pdf

ROP Code Runtime Properties

• Illegal ret instructions that target locations not preceded
by call sites

– Abnormal condition for legitimate program code

• Sequences of relatively short code fragments "chained"
through any kind of indirect branch

– Always holds for any kind of ROP code

Illegal Returns

• Legitimate code:
– ret transfers control to the instruction right after the

corresponding call ➔ legitimate call site

• ROP code:
– ret transfers control to the first instruction of the next gadget
➔ arbitrary locations

• Main idea:
– Runtime monitoring of ret instructions’ targets

Gadget Chaining

• Advanced ROP code may avoid illegal returns
– Rely only on call-preceded gadgets

(6% of all ret gadgets in the experiments)
– "Jump-Oriented" Programming (non-ret gadgets)

• Look for a second ROP attribute:
– Several short instruction sequences chained through

indirect branches

Gadget Chaining
mov eax,ebx
add ebx,100
ret

pop edi
mov esi,edi
ret

sub esi,8
push esi
call esi

pop edi
pop esi
ret

• Look for consecutive indirect
branch targets that point to
gadget locations

• Conservative gadget definition:
up to 20 instructions
– Typically 1-5

Last Branch Record (LBR)
• Introduced in the Intel Nehalem (i5 and i7) architecture

• Stores the last 16 executed branches in a set of
model-specific registers (MSR)

– Can filter certain types of branches (relative/indirect calls/jumps,
returns, ...)

• Multiple advantages
– Zero overhead for recording the branches
– Fully transparent to the running application
– Does not require source code or debug symbols
– Can be dynamically enabled for any running application

https://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf

Monitoring Granularity

• Non-zero overhead for reading the LBR stack
(accessible only from kernel level)
– Lower frequency ➔ lower overhead
– Higher frequency ➔ higher overhead

• ROP code can run at any point
– Higher frequency ➔ higher accuracy

Monitoring Granularity
• Meaningful ROP code will eventually interact with the OS

through system calls
– Check for abnormal control transfers on system call entry

Gadget Chaining: Legitimate Code

detection
threshold

Dataset from: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office

Effectiveness

• Successfully prevented real-world exploits in...
– Adobe Reader XI (zero-day!)
– Adobe Reader 9
– Mplayer Lite
– Internet Explorer 9
– Adobe Flash 11.3
– ...and more!

Limitations

• Indirect branch tracing only checks the last
16 gadgets, up to 20 instructions

• Still possible to find longer call-preceded
or non-return gadgets

