
CSC 405 
Reverse Engineering,

Static Analysis

Alexandros Kapravelos
akaprav@ncsu.edu



Reverse Engineering
• Process of analyzing a system
• Understand its structure and functionality
• Used in different domains (e.g., consumer electronics)

Running Doom on A/UX (Apple's implementation of Unix)

https://katelibc.medium.com/porting-doom-to-a-ux-8cecab02b531


Software Reverse Engineering
• Understand architecture (from source code)
• Extract source code (from binary representation)
• Change code functionality (of proprietary program)
• Understand message exchange (of proprietary protocol)

Cracker for Total Video Converter HD

Someone(s) had to sit down 
and walk through the binary 

to find the serial checker

(no link for obvious reasons)



Software Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, C++,..

First generation language

Second generation language

Third generation language

Assemble

Compile



Software Reverse Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, C++,..

First generation language

Second generation language

Third generation language

Disassemble

De-compile



Software Reverse Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, C++,..

First generation language

Second generation language

Third generation language

Disassemble

De-compile

Incredibly 
Difficult!

● When is a binary digit an 
instruction vs part of a String?

● Likewise, what's code and 
what's data?



Going Back is Hard!
• Fully-automated disassemble/de-compilation of arbitrary machine-code is 

theoretically an undecidable problem
– Even if we know the assembly instructions

• Disassembling problems
– Hard to distinguish code (instructions) from data

• De-compilation problems
– Structure is lost

• data types are lost, names and labels are lost

– No one-to-one Mapping
• same code can be compiled into different (equivalent) assembler blocks

• assembler block can be the result of different pieces of code 

https://en.wikipedia.org/wiki/Undecidable_problem


Same Code, Different Assembly
int square(int number) {

    return number * number;

}

$gcc square.s

square:

  pushq %rbp

  movq  %rsp, %rbp

  movl  %edi, -4(%rbp)

  movl  -4(%rbp), %eax

  imull %eax, %eax

  popq  %rbp

  ret



Same Code, Different Assembly

$gcc square.s

square:

  pushq %rbp

  movq  %rsp, %rbp

  movl  %edi, -4(%rbp)

  movl  -4(%rbp), %eax

  imull %eax, %eax

  popq  %rbp

  ret

$gcc -O2 square.s

square:

  imull %edi, %edi

  movl  %edi, %eax

  ret

Same code, but -O2 will 
optimize the binary by removing 

unnecessary instructions

int square(int number) {

    return number * number;

}



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 

– OpenOffice/LibreOffice/OnlyOffice (MS Office document formats)  

PowerPoint File Renamed w/ .zip 
extension Slides are XML files



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 

– OpenOffice/LibreOffice/OnlyOffice (MS Office document formats)  

• Emulation 
– Wine (Windows API)  

– ReactOS (Windows OS) 



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 

– OpenOffice/LibreOffice/OnlyOffice (MS Office document formats)  

• Emulation 
– Wine (Windows API)  

– ReactOS (Windows OS) 

• Legacy software
– Onlive

– GOG.com



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 

– OpenOffice/LibreOffice/OnlyOffice (MS Office document formats)  

• Emulation 
– Wine (Windows API)  

– ReactOS (Windows OS) 

• Legacy software
– Onlive

– GOG.com

• Malware analysis 
Malicious
Word File

Hash of 
Malicious 
Functions



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 

– OpenOffice/LibreOffice/OnlyOffice (MS Office document formats)  

• Emulation 
– Wine (Windows API)  

– ReactOS (Windows OS) 

• Legacy software
– Onlive

– GOG.com

• Malware analysis 
• Program cracking 



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 
– OpenOffice/LibreOffice/OnlyOffice (MS Office document formats)  

• Emulation 
– Wine (Windows API)  
– ReactOS (Windows OS) 

• Legacy software
– Onlive
– GOG.com

• Malware analysis 
• Program cracking 
• Compiler validation

Who's checking if 
gcc compiled the 

code safely?



Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol) 

– OpenOffice (MS Office document formats)  

• Emulation 
– Wine (Windows API)  

– React-OS (Windows OS) 

• Legacy software
– Onlive

• Malware analysis 

• Program cracking 

• Compiler validation

Thinking Toward the Future…

How do you reverse engineer a machine learning model?

How do you design an LLM that doesn't expose training data:
● API Credentials
● Private user data



Analyzing a Binary - Static Analysis
• Identify the file type and its characteristics

– architecture, OS, executable format

• Extract strings
– commands, password, protocol keywords

• Identify libraries and imported symbols
– network calls, file system, crypto libraries

• Disassemble
– program overview
– finding and understanding important functions

• by locating interesting imports, calls, strings



Static Techniques

$ file example

example: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter 

/lib64/ld-linux-x86-64.so.2, BuildID[sha1]=d1d27ced7f64f472908eb61c7d279d2a3ea6e739, for 

GNU/Linux 3.2.0, not stripped

Get some rough idea about binary (file)



Static Techniques

$ file example

example: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter 

/lib64/ld-linux-x86-64.so.2, BuildID[sha1]=d1d27ced7f64f472908eb61c7d279d2a3ea6e739, for 

GNU/Linux 3.2.0, not stripped

$ strings example | head -n 5

/lib64/ld-linux-x86-64.so.2

__libc_start_main

atoi

puts

printf

Get some rough idea about binary (file)

Strings that the binary contains (strings)



Static Techniques

$ file example

example: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter 

/lib64/ld-linux-x86-64.so.2, BuildID[sha1]=d1d27ced7f64f472908eb61c7d279d2a3ea6e739, for 

GNU/Linux 3.2.0, not stripped

$ strings example | head -n 5

/lib64/ld-linux-x86-64.so.2

__libc_start_main

atoi

puts

printf

Get some rough idea about binary (file)

Strings that the binary contains (strings)

Okay, so the program starts 
and immediately converts 

something to an int



Static Techniques
• Examining the program (ELF) header (elfsh)
• readelf

$ readelf -h example

ELF Header:

  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

  Class:                             ELF64

  Data:                              2's complement, little endian

  Version:                           1 (current)

  OS/ABI:                            UNIX - System V

  ABI Version:                       0

  Type:                              EXEC (Executable file)

  Machine:                           Advanced Micro Devices X86-64

  Version:                           0x1

  Entry point address:               0x401090

  Start of program headers:          64 (bytes into file)

  Start of section headers:          14040 (bytes into file)

  Flags:                             0x0

  ...

Program 
entry point



Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd, does not map libraries, uses offset)

 

$ ldd example

linux-vdso.so.1 (0x00007ffc0aff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f603ba08000)

/lib64/ld-linux-x86-64.so.2 (0x00007f603bc39000)

Shows the memory 
address for this library



Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd, does not map libraries, uses offset)

 

$ ldd example

linux-vdso.so.1 (0x00007ffc0aff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f603ba08000)

/lib64/ld-linux-x86-64.so.2 (0x00007f603bc39000)

What's 
that do?



Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd, does not map libraries, uses offset)

 

$ ldd example

linux-vdso.so.1 (0x00007ffc0aff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f603ba08000)

/lib64/ld-linux-x86-64.so.2 (0x00007f603bc39000)

vdso man page description

https://www.man7.org/linux/man-pages/man7/vdso.7.html


Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd, does not map libraries, uses offset)

 

$ ldd example

linux-vdso.so.1 (0x00007ffc0aff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f603ba08000)

/lib64/ld-linux-x86-64.so.2 (0x00007f603bc39000)

…and there's your vulnerability

https://www.longterm.io/vdso_sidechannel.html


Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd, does not map libraries, uses offset)

– more difficult when program is statically linked (every library exist in the binary)
 

$ ldd example

linux-vdso.so.1 (0x00007ffc0aff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f603ba08000)

/lib64/ld-linux-x86-64.so.2 (0x00007f603bc39000)

$ gcc -static example.c -o example-static

$ ldd example-static

    not a dynamic executable

$ file example-static

example-static: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, 

BuildID[sha1]=9c409dc8cc7e067739fb399bd1d138fc770b296a, for GNU/Linux 3.2.0, not stripped



Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd, does not map libraries, uses offset)

– more difficult when program is statically linked (every library exist in the binary)
 

$ ldd example

linux-vdso.so.1 (0x00007ffc0aff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f603ba08000)

/lib64/ld-linux-x86-64.so.2 (0x00007f603bc39000)

$ gcc -static example.c -o example-static

$ ldd example-static

    not a dynamic executable

$ file example-static

example-static: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, 

BuildID[sha1]=9c409dc8cc7e067739fb399bd1d138fc770b296a, for GNU/Linux 3.2.0, not stripped

Increased difficulty because 
now we don't know what 

libraries are used



Static Techniques
Looking at linux-vsdo.so.1 

$ gdb -q ./example

Reading symbols from ./example...

(No debugging symbols found in ./example)

(gdb) b main

Breakpoint 1 at 0x40127d

(gdb) r

Starting program: /mnt/c/development/example

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, 0x000000000040127d in main ()

Let's load our binary 
in gdb...

http://espressoninja.com/2021/04/25/linux-mystery-vsdo.html


Static Techniques
Looking at linux-vsdo.so.1 
(gdb) info proc map

process 161

Mapped address spaces:

  Start Addr        End Addr     Size   Offset  Perms  objfile

    0x400000        0x401000     0x1000      0x0  r--p /mnt/c/development/example

    0x401000        0x402000     0x1000   0x1000  r-xp /mnt/c/development/example

    0x402000        0x403000     0x1000   0x2000  r--p /mnt/c/development/example

    0x403000        0x404000     0x1000   0x2000  r--p /mnt/c/development/example

    0x404000        0x405000     0x1000   0x3000  rw-p /mnt/c/development/example

...

0x7ffff7fbd000  0x7ffff7fc1000   0x4000      0x0  r--p [vvar]

0x7ffff7fc1000  0x7ffff7fc3000   0x2000      0x0  r-xp [vdso]

...

0x7ffffffdd000  0x7ffffffff000  0x22000      0x0  rw-p [stack]

(gdb) dump binary memory vsdo.so 0x7ffff7fc1000 0x7ffff7fc3000

(gdb) q

Find the address where 
this is loaded and dump 

it to vsdo.so

http://espressoninja.com/2021/04/25/linux-mystery-vsdo.html


Static Techniques
Looking at linux-vsdo.so.1 
$ file vsdo.so

vsdo.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, 

BuildID[sha1]=f9c569c14a5fc3f9dd99a98b78262277072b01f3, stripped

Oh hey, it's an ELF file

http://espressoninja.com/2021/04/25/linux-mystery-vsdo.html


Static Techniques
Looking at linux-vsdo.so.1 
$ objdump -d vsdo.so | head -n 11

vsdo.so:     file format elf64-x86-64

Disassembly of section .text:

0000000000000620 <__vdso_gettimeofday@@LINUX_2.6-0x60>:

 620:   83 ff 01                cmp    $0x1,%edi

 623:   75 0d                   jne    632 <LINUX_2.6@@LINUX_2.6+0x632>

 625:   0f 01 f9                rdtscp

 628:   66 90                   xchg   %ax,%ax

Oh look, it randomly can 
get time of day?

http://espressoninja.com/2021/04/25/linux-mystery-vsdo.html


Static Techniques
• Used library functions

– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked
 

$ nm -D example | tail -n 8

  w __gmon_start__

  U __libc_start_main@GLIBC_2.34

  U atoi@GLIBC_2.2.5

  U printf@GLIBC_2.2.5

  U puts@GLIBC_2.2.5

$ nm -D example-static

nm: example-static: no symbols

$ ls -la example*

-rwxrwxrwx 1 user user  16024 Feb  5 18:24 example

-rwxrwxrwx 1 user user 900496 Feb  5 22:00 example-static



Static Techniques
• Used library functions

– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked
 

$ nm -D example | tail -n 8

  w __gmon_start__

  U __libc_start_main@GLIBC_2.34

  U atoi@GLIBC_2.2.5

  U printf@GLIBC_2.2.5

  U puts@GLIBC_2.2.5

$ nm -D example-static

nm: example-static: no symbols

$ ls -la example*

-rwxrwxrwx 1 user user  16024 Feb  5 18:24 example

-rwxrwxrwx 1 user user 900496 Feb  5 22:00 example-static

U: The symbol is undefined
B: The symbol is in the 
uninitialized data section (.bss)



Static Techniques
• Used library functions

– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked
 

$ nm -D example | tail -n 8

  w __gmon_start__

  U __libc_start_main@GLIBC_2.34

  U atoi@GLIBC_2.2.5

  U printf@GLIBC_2.2.5

  U puts@GLIBC_2.2.5

$ nm -D example-static

nm: example-static: no symbols

$ ls -la example*

-rwxrwxrwx 1 user user  16024 Feb  5 18:24 example

-rwxrwxrwx 1 user user 900496 Feb  5 22:00 example-static

Why would attackers want 
smaller binary sizes?



Static Techniques
• Recognizing libraries in statically-linked programs
• Basic idea

– create a checksum (hash) for bytes in a library function



Static Techniques
• Recognizing libraries in statically-linked programs
• Basic idea

– create a checksum (hash) for bytes in a library function

Hash every function…
…that's a nontrivial problem



Static Techniques
• Recognizing libraries in statically-linked programs
• Basic idea

– create a checksum (hash) for bytes in a library function

• Problems
– many library functions (some of which are very short)
– variable bytes – due to dynamic linking, load-time patching, linker 

optimizations



Static Techniques
• Recognizing libraries in statically-linked programs
• Basic idea

– create a checksum (hash) for bytes in a library function

• Problems
– many library functions (some of which are very short)
– variable bytes – due to dynamic linking, load-time patching, linker 

optimizations

• Solution
– more complex pattern file
– uses checksums that take into account variable parts
– implemented in IDA Pro as Fast Library Identification and Recognition Technology 

(FLIRT)

example binary disassembled with IDA Free

https://hex-rays.com/ida-pro/


Static Techniques
• Function call trees

– draw a graph that shows which function calls which others

– get an idea of program structure Function tree for 
Subroutine sub_4010D0 of example



Static Techniques
• Program symbols

– used for debugging and linking

– function names (with start addresses)

– global variables

– use nm to display symbol information

– most symbols can be removed with strip



Static Techniques
Displaying program symbols
("T": The symbol is in the text (code) section)

$ nm example | grep " T"

00000000004010c0 T _dl_relocate_static_pie

00000000004012b0 T _fini

0000000000401000 T _init

0000000000401090 T _start

0000000000401176 T function

0000000000401275 T main

$ strip example

$ nm example | grep " T"

nm: example: no symbols



Static Techniques - Disassembly
• Disassembly

– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)



Static Techniques - Disassembly
• Disassembly

– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor
• RISC processors (SPARC, MIPS, ARM)

– variable length
• use less space for common instructions
• CISC processors (Intel x86)



Static Techniques - Disassembly
• Disassembly

– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor
• RISC processors (SPARC, MIPS, ARM)

– variable length
• use less space for common instructions
• CISC processors (Intel x86)

This will backfire 
in the future :)



Static Techniques
• Fixed length instructions

– easy to disassemble
– take each address that is multiple of instruction length as instruction start
– even if code contains data (or junk), all program instructions are found



Static Techniques
• Fixed length instructions

– easy to disassemble
– take each address that is multiple of instruction length as instruction start
– even if code contains data (or junk), all program instructions are found

• Variable length instructions
– more difficult to disassemble
– start addresses of instructions not known in advance
– different strategies

• linear sweep disassembler
• recursive traversal disassembler

– disassembler can be desynchronized with respect to actual code



Static Techniques
• Linear sweep disassembler

– start at beginning of code (.text) section

– disassemble one instruction after the other

– assume that well-behaved compiler tightly packs instructions

– objdump -d uses this approach



Let’s break LSD
#include <stdio.h>

int main() {

   printf("Hello, world!\n");

   return 0;

}

$ gcc hello.c -o hello

$ ./hello  

Hello, world!



Objdump disassembly
0000000000001149 <main>:
  1149:    f3 0f 1e fa            endbr64
  114d:    55                     push   %rbp
  114e:    48 89 e5               mov    %rsp,%rbp
  1151:    48 8d 05 ac 0e 00 00   lea    0xeac(%rip),%rax # 2004 <_IO_stdin_used+0x4>
  1158:    48 89 c7               mov    %rax,%rdi
  115b:    e8 f0 fe ff ff         call   1050 <puts@plt>
  1160:    b8 00 00 00 00         mov    $0x0,%eax
  1165:    5d                     pop    %rbp
  1166:    c3                     ret

$ objdump -D hello 



radare2 disassembly
[0x00001060]> pdf@main
            ; DATA XREF from entry0 @ 0x1078(r)
┌ 30: int main (int argc, char **argv, char **envp);
│           0x00001149      f30f1efa       endbr64
│           0x0000114d      55             push rbp
│           0x0000114e      4889e5         mov rbp, rsp
│           0x00001151      488d05ac0e..   lea rax, str.Hello__world_  ; 0x2004 ; "Hello, world!"
│           0x00001158      4889c7         mov rdi, rax                ; const char *s
│           0x0000115b      e8f0feffff     call sym.imp.puts           ; int puts(const char *s)
│           0x00001160      b800000000     mov eax, 0
│           0x00001165      5d             pop rbp
└           0x00001166      c3             ret



radare2 disassembly
[0x00001060]> pdf@main
            ; DATA XREF from entry0 @ 0x1078(r)
┌ 30: int main (int argc, char **argv, char **envp);
│           0x00001149      f30f1efa       endbr64
│           0x0000114d      55             push rbp
│           0x0000114e      4889e5         mov rbp, rsp
│           0x00001151      488d05ac0e..   lea rax, str.Hello__world_  ; 0x2004 ; "Hello, world!"
│           0x00001158      4889c7         mov rdi, rax                ; const char *s
│           0x0000115b      e8f0feffff     call sym.imp.puts           ; int puts(const char *s)
│           0x00001160      b800000000     mov eax, 0
│           0x00001165      5d             pop rbp
└           0x00001166      c3             ret

Print Disassemble 
Function



Let’s patch the program

$ radare2 -Aw hello 
[0x00401050]> 0x0000114e #(jump to 0x0000114e) 
[0x0000114e]> wx eb01    #(rewrite instruction to jump 1 byte ahead)



Let’s patch the program

We patched a 3-byte instruction with a 2-byte instruction. What 
is going to happen now with disassembly?!

$ radare2 -Aw hello 
[0x00401050]> 0x0000114e #(jump to 0x0000114e) 
[0x0000114e]> wx eb01    #(rewrite instruction to jump 1 byte ahead)

0x0000114e      4889e5         mov rbp, rsp



[0x0000114e]> pd@main
        ; DATA XREF from entry0 @ 0x1078
┌ 30: int main (int argc, char **argv, char **envp);
│       0x00001149  f30f1efa   endbr64
│       0x0000114d  55         push rbp
│   ┌─< 0x0000114e  eb01       jmp 0x1151
│   │   0x00001150  e548       in eax, 0x48
│       0x00001152  8d05ac0e0000   lea eax, str.Hello__world_  ; 0x2004 ; "Hello, world!"
│       0x00001158  4889c7     mov rdi, rax             ; const char *s
│       0x0000115b  e8f0feffff call sym.imp.puts        ; int puts(const char *s)
│       0x00001160  b800000000 mov eax, 0
│       0x00001165  5d         pop rbp
└       0x00001166  c3         ret

[0x00001060]> pdf@main
            ; DATA XREF from entry0 @ 0x1078(r)
┌ 30: int main (int argc, char **argv, char **envp);
│           0x00001149      f30f1efa       endbr64
│           0x0000114d      55             push rbp
│           0x0000114e      4889e5         mov rbp, rsp
│           0x00001151      488d05ac0e..   lea rax, str.Hello__world_  ; 0x2004 ; "Hello, world!"
│           0x00001158      4889c7         mov rdi, rax                ; const char *s
│           0x0000115b      e8f0feffff     call sym.imp.puts           ; int puts(const char *s)
│           0x00001160      b800000000     mov eax, 0
│           0x00001165      5d             pop rbp
└           0x00001166      c3             ret

Before

After



Static Techniques
• Recursive traversal disassembler

– aware of control flow

– start at program entry point (e.g., determined by ELF header)

– disassemble one instruction after the other, until branch or jump is found 

– recursively follow both (or single) branch (or jump) targets

– not all code regions can be reached
• indirect calls and indirect jumps

• use a register to calculate target during run-time

– for these regions, linear sweep is used

– IDA Pro uses this approach



[0x00001060]> pdf@main
            ; DATA XREF from entry0 @ 0x1078(r)
┌ 30: int main (int argc, char **argv, char **envp);
│           0x00401136      f30f1efa       endbr64
│           0x0040113a      55             push rbp
│       ┌─< 0x0040113b      eb01           jmp 0x40113e
..
│       └─> 0x0040113e      488d05bf0e..   lea rax, str.Hello__world_  ; 0x402004 ; "Hello, world!"
│           0x00401145      4889c7         mov rdi, rax                ; const char *s
│           0x00401148      e8f3feffff     call sym.imp.puts           ; int puts(const char *s)
│           0x0040114d      b800000000     mov eax, 0
│           0x00401152      5d             pop rbp
└           0x00401153      c3             ret

[0x00001060]> pdf@main
            ; DATA XREF from entry0 @ 0x1078(r)
┌ 30: int main (int argc, char **argv, char **envp);
│           0x00001149      f30f1efa       endbr64
│           0x0000114d      55             push rbp
│           0x0000114e      4889e5         mov rbp, rsp
│           0x00001151      488d05ac0e..   lea rax, str.Hello__world_  ; 0x2004 ; "Hello, world!"
│           0x00001158      4889c7         mov rdi, rax                ; const char *s
│           0x0000115b      e8f0feffff     call sym.imp.puts           ; int puts(const char *s)
│           0x00001160      b800000000     mov eax, 0
│           0x00001165      5d             pop rbp
└           0x00001166      c3             ret

Before

After



CSC 405 
Reverse Engineering,

Dynamic Analysis
We've exhausted all of our 

Static Analysis efforts, now it's 
time to actually run the binary



Analyzing a Binary - Dynamic Analysis
• Memory dump

– extract code after decryption, find passwords...

• Library/system call/instruction trace
– determine the flow of execution
– interaction with OS

• Debugging running process
– inspect variables, data received by the network, complex algorithms..

• Network sniffer
– find network activities
– understand the protocol



Dynamic Techniques
• General information about a process

– /proc file system
– /proc/<pid>/ for a process with pid <pid>
– interesting entries

• cmdline - shows command line
• environ - shows environment
• maps - shows memory map
• fd - file descriptor to program image

$ ls /proc/3077

attr      clear_refs      cpuset  fd      limits    mem        net       oom_score     personality schedstat stack  syscall wchan

autogroup cmdline         cwd     fdinfo  loginuid  mountinfo  ns        oom_score_adj projid_map  sessionid stat   task

auxv      comm            environ gid_map map_files mounts     numa_maps pagemap       root        setgroups statm  timers

cgroup    coredump_filter exe     io      maps      mountstats oom_adj   patch_state   sched       smaps     status uid_map

htop essentially parses 
the /proc/<pid> file 
system information



Dynamic Techniques
• Filesystem interaction

– lsof

– lists all open files associated with processes

• Windows Registry
– regmon (Sysinternals)

$ lsof | grep 3077

COMMAND PID  USER   FD   TYPE            DEVICE SIZE/OFF      NODE NAME

uwsgi  3077  user  cwd  DIR              253,0     4096 101554631 /www_dir/python36/typos

uwsgi  3077  user  rtd  DIR              253,0      260        64 /

uwsgi  3077  user  txt  REG              253,0    11336 101397508 /www_dir/python36/bin/python3.6

uwsgi  3077  user  mem  REG              253,0    37168    279004 /usr/lib64/libnss_sss.so.2

uwsgi  3077  user  mem  REG              253,0    61560    624453 /usr/lib64/libnss_files-2.17.so

...

uwsgi  3077  user   1u  REG              253,0  3313445  67570986 /www_dir/python36/typos/log/flask.log

...

uwsgi  3077  user   4u IPv4           25256411      0t0       TCP localhost:irdmi (LISTEN)

uwsgi  3077  user   5u unix 0xffff9e58f6312a80      0t0  25256469 socket



Network Interactions
• Check for open ports

– processes that listen for requests or that have active connections
– netstat

– also shows UNIX domain sockets used for IPC

• Check for actual network traffic
– tcpdump

– Wireshark

https://www.wireshark.org/


Network Interactions
• Check for open ports

– processes that listen for requests or that have active connections
– netstat

– also shows UNIX domain sockets used for IPC

• Check for actual network traffic
– tcpdump

– Wireshark

Fun 2nd Self-Practice
Run Wireshark in the library and 

see if you can extract the pictures 
from sites someone is visiting

https://www.wireshark.org/


Network Interactions
• Check for open ports

– processes that listen for requests or that have active connections
– netstat

– also shows UNIX domain sockets used for IPC

• Check for actual network traffic
– tcpdump

– Wireshark

Fun 2nd Self-Practice
Run Wireshark in the library and 

see if you can extract the pictures 
from sites someone is visiting

Just accept you might see somethin'...

https://www.wireshark.org/


Debugger
• Breakpoints to pause execution

– when execution reaches a certain point (address)
– when specified memory is access or modified

• Examine memory and CPU registers
• Modify memory and execution path

• Advanced features
– attach comments to code

– data structure and template naming

– track high level logic
• file descriptor tracking

– function fingerprinting

$ gdb example

(gdb) break main

Breakpoint 1 at 0x40127d

(gdb) run

Starting program: /path/to/example

[Thread debugging using libthread_db enabled]

Using host libthread_db library 

"/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, 0x000000000040127d in main ()

(gdb) info proc

process 169

cmdline = '/path/to/example'

cwd = '/path/to'

exe = '/path/to/example'



Breakpoints
• Software breakpoints

– debugger inserts (overwrites) target address with an int 0x03 instruction

– interrupt causes signal SIGTRAP to be sent to process

– debugger
• gets control and restores original instruction 

• single steps to next instruction

• re-inserts breakpoint



Breakpoints
• Software breakpoints

– debugger inserts (overwrites) target address with an int 0x03 instruction

– interrupt causes signal SIGTRAP to be sent to process

– debugger
• gets control and restores original instruction 

• single steps to next instruction

• re-inserts breakpoint

• Hardware breakpoints
– special debug registers (e.g., Intel x86)

– debug registers compared with PC at every instruction



System Tracing
• System calls

– are at the boundary between user space and kernel

– reveal much about a process’ operation

– strace

– powerful tool that can also 
• follow child processes

• decode more complex system call arguments

• show signals

– works via the ptrace interface (process may observe/control execution of another)

• Library functions
– similar to system calls, but dynamically linked libraries

– ltrace



Debugger on x86 / Linux
Uses the ptrace interface

• ptrace

– allows a process (parent) to monitor another process (child)

– whenever the child process receives a signal, the parent is notified

– parent can then
• access and modify memory image (peek and poke commands)

• access and modify registers

• deliver signals

– ptrace can also be used for system call monitoring



Debugger on x86 / Linux
Uses the ptrace interface

• ptrace

– allows a process (parent) to monitor another process (child)

– whenever the child process receives a signal, the parent is notified

– parent can then
• access and modify memory image (peek and poke commands)

• access and modify registers

• deliver signals

– ptrace can also be used for system call monitoring

$ sudo strace -p 3077

strace: Process 3077 attached

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

wait4(-1, 0x7ffd4b713618, WNOHANG, NULL) = 0

epoll_wait(27, [], 1, 1000)             = 0

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

strace uses ptrace calls to 
trace and log system calls a 

target process makes



Debugger on x86 / Linux
Uses the ptrace interface

• ptrace

– allows a process (parent) to monitor another process (child)

– whenever the child process receives a signal, the parent is notified

– parent can then
• access and modify memory image (peek and poke commands)

• access and modify registers

• deliver signals

– ptrace can also be used for system call monitoring

$ sudo strace -p 3077

strace: Process 3077 attached

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

wait4(-1, 0x7ffd4b713618, WNOHANG, NULL) = 0

epoll_wait(27, [], 1, 1000)             = 0

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

Update file offset of descriptor 2 to 0 and 
find 3320785 is the updated offset



Debugger on x86 / Linux
Uses the ptrace interface

• ptrace

– allows a process (parent) to monitor another process (child)

– whenever the child process receives a signal, the parent is notified

– parent can then
• access and modify memory image (peek and poke commands)

• access and modify registers

• deliver signals

– ptrace can also be used for system call monitoring

$ sudo strace -p 3077

strace: Process 3077 attached

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

wait4(-1, 0x7ffd4b713618, WNOHANG, NULL) = 0

epoll_wait(27, [], 1, 1000)             = 0

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

Grab information about the TCP socket



Debugger on x86 / Linux
Uses the ptrace interface

• ptrace

– allows a process (parent) to monitor another process (child)

– whenever the child process receives a signal, the parent is notified

– parent can then
• access and modify memory image (peek and poke commands)

• access and modify registers

• deliver signals

– ptrace can also be used for system call monitoring

$ sudo strace -p 3077

strace: Process 3077 attached

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

wait4(-1, 0x7ffd4b713618, WNOHANG, NULL) = 0

epoll_wait(27, [], 1, 1000)             = 0

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

Wait for a state change from any process



Debugger on x86 / Linux
Uses the ptrace interface

• ptrace

– allows a process (parent) to monitor another process (child)

– whenever the child process receives a signal, the parent is notified

– parent can then
• access and modify memory image (peek and poke commands)

• access and modify registers

• deliver signals

– ptrace can also be used for system call monitoring

$ sudo strace -p 3077

strace: Process 3077 attached

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0

wait4(-1, 0x7ffd4b713618, WNOHANG, NULL) = 0

epoll_wait(27, [], 1, 1000)             = 0

lseek(2, 0, SEEK_CUR)                   = 3320785

getsockopt(4, SOL_TCP, TCP_INFO, "\n\0\0\0\0\0\0\0@B\17\0\0\0\0\0\30\2\0\0\0\0\0\0\0\0\0\0\0\4\0\0"..., [104]) = 0
Rinse and repeat



Sandboxing

• Execute program in a controlled environment

• Advantages
– can inspect actual program behavior and data values

– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware

– anti-debugging mechanisms

– not all possible traces can be seen (logic/time bombs)

https://en.wikipedia.org/wiki/Logic_bomb


Sandboxing

• Execute program in a controlled environment

• Advantages
– can inspect actual program behavior and data values

– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware

– anti-debugging mechanisms

– not all possible traces can be seen (logic/time bombs)

We'll see how you can tackle 
this later in the semester

https://en.wikipedia.org/wiki/Logic_bomb


Sandboxing

• Execute program in a controlled environment

• Advantages
– can inspect actual program behavior and data values

– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware

– anti-debugging mechanisms

– not all possible traces can be seen (logic/time bombs)

https://en.wikipedia.org/wiki/Logic_bomb


Sandboxing

• Execute program in a controlled environment

• Advantages
– can inspect actual program behavior and data values

– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware

– anti-debugging mechanisms

– not all possible traces can be seen (logic/time bombs)

Imagine if the 2008 Financial 
Crisis also included 1000s of 

wiped servers

https://en.wikipedia.org/wiki/Logic_bomb
https://www.wired.com/2009/01/fannie/
https://www.wired.com/2009/01/fannie/


Making Disassembly Difficult - Static Analysis

Confusion Attacks
• Targets linear sweep disassembler

• Insert data (or junk) between 
instructions and let control flow 
jump over this garbage

• Disassembler gets desynchronized 
with true instructions

• Example: Get this program to 
execute secret_function

#include <stdio.h>

#include <string.h>

void secret_function() {

  printf("You've reached the secret function!\n");

}

void vulnerable_function(char *input) {

  char buffer[10];

  strcpy(buffer, input);

}

int main() {

  char input[20];

  printf("Enter your input: ");

  scanf("%s", input);

  vulnerable_function(input);

  return 0;

}



Advanced Confusion Attack
• Targets recursive traversal disassembler
• Replace direct jumps (calls) by indirect ones (branch functions)
• Force disassembler to revert to linear sweep, then use previous 

attack

• That was shelltest.c
#include <stdio.h>

#include <string.h>

int main() {

  unsigned char shellcode[] = "\xeb...\x00";

  int (*ret)() = (int(*)())shellcode;

  ret();

}



Making Disassembly Difficult - Dynamic Analysis
• Debugger Presence Detection Techniques

– API based
– thread/process information
– registry keys, process names

• Linux
– A process can be traced only once, meaning if your program fails to get the debugger, 

someone else is using it
if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)

      exit(1);

• Windows
– API calls - OutputDebugString() and IsDebuggerPresent()
– Thread control block

• read debugger present bit directly from process memory



Making Disassembly Difficult - Dynamic Analysis

• Exception-based Techniques

SetUnhandledExceptionFilter()
Enables an application to supersede the top-level exception handler of each thread of a 
process.
After calling this function, if an exception occurs in a process that is not being debugged, 
and the exception makes it to the unhandled exception filter, that filter will call the 
exception filter function specified by the lpTopLevelExceptionFilter parameter. 
[ source: learn.microsoft.com ]

• Idea
– Overwrite SetUnhandledExceptionFilter's pointer to a malicious address
– Raise an unhandled exception, triggering UnhandledExceptionFilter
– Attacker now has execution privileges

https://anti-debug.checkpoint.com/techniques/exceptions.html
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-setunhandledexceptionfilter


Making Disassembly Difficult - Breakpoint Detection
• Detect software breakpoints

– Scan yourself, if you have interrupts then exit
– look for int 0x03 instructions
– if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)

–   exit(1);

• Checksum the code
– Similar to finding malicious code blocks, if a particular segment of code has been 

changed, the checksum would change it
– if (checksum(text_segment) != valid_checksum)

–   exit(1);

• Detect hardware breakpoints
• Use the hardware breakpoint registers for computation



Reverse Engineering
• Goals

– focused exploration

– deep understanding

• Case study
– copy protection mechanism

– program expects name and serial number

– when serial number is incorrect, program exits

– otherwise, we are fine

• Changes in the binary
– can be done with hexedit or radare2



Reverse Engineering Goals
• Focused exploration

– bypass check routines
– locate the point where the failed check is reported
– find the routine that checks the serial number
– find the location where the results of this routine are used
– slightly modify the jump instruction

• Deep understanding
– key generation
– locate the checking routine
– analyze the disassembly
– run through a few different cases with the debugger
– understand what check code does and develop code that creates appropriate keys



Malicious Code Analysis
• Static Analysis

– code is not executed

– all possible branches can be examined (in theory)

– quite fast

• Problems of Static Analysis
– undecidable in general case, approximations necessary

– binary code typically contains very little information
• Malicious attackers will always hide information on functions, variables, type information

– disassembly difficult (particularly for Intel x86 architecture)

– obfuscated code, packed code

– self-modifying code



Malicious Code Analysis
• Dynamic Analysis

– code is executed

– sees instructions that are actually executed 

• Problems of dynamic analysis
– single path (execution trace) is examined, but program could have millions

– analysis environment possibly not invisible (sandboxes are extremely detectable)

– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program

– instrument operating system

– instrument hardware



Malicious Code Analysis
• Dynamic Analysis

– code is executed

– sees instructions that are actually executed 

• Problems of dynamic analysis
– single path (execution trace) is examined, but program could have millions

– analysis environment possibly not invisible (sandboxes are extremely detectable)

– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program

– instrument operating system

– instrument hardware

Configuring VirtualBox 
for Scambaiting

https://medium.com/nerd-for-tech/configuring-virtualbox-for-scambaiting-part-1-15da011adea0
https://medium.com/nerd-for-tech/configuring-virtualbox-for-scambaiting-part-1-15da011adea0


Instrumenting Programs
• Analysis operates in same address space as sample
• Manual analysis with debugger
• Detours (Windows API hooking mechanism)

• Binary under analysis is modified
– breakpoints are inserted

– functions are rewritten

– debug registers are used

• Not invisible, malware can detect analysis

• Can cause significant manual effort



Instrumenting Operating Systems

• Analysis operates in OS where sample is run
• Windows system call hooks

• Invisible to (user-mode) malware
• Can cause problems when malware runs in OS kernel
• Limited visibility of activity inside program

– cannot set function breakpoints

• Virtual machines
– allow to quickly restore analysis environment
– might be detectable (x86 virtualization problems)



Instrumenting Hardware
• Provide virtual hardware (processor) where sample can execute 

(sometimes including OS)
• Software emulation of executed instructions
• Analysis observes activity "from the outside"

• Completely transparent to sample (and guest OS)
• Operating system environment needs to be provided
• Limited environment could be detected
• Complete environment is comprehensive, but slower

– Malware can use latency to determine if they're on a VM

• Anubis (malware sandbox) used this approach



Stealthiness

• One obvious difference between machine and emulator
– time of execution

•  Time could be used to detect such system
– emulation allows to address these issues

– certain instructions can be dynamically modified to return innocently looking 
results

– for example, RTC (real-time clock) - RDTSC instruction 


