
NC STATE UNIVERSITY

CSC 405 Linux Security

Adam Gaweda agaweda@ncsu.edu

Alexandros Kapravelos akaprav@ncsu.edu

We are done with machine code!

We are done with machine code!

for now...

NC STATE UNIVERSITY

Reason

Having access to the shell means you have full control over the system

NC STATE UNIVERSITY

Reason

And it means we have access to all the tools available to Linux

\$1s

And it means we have access to all the tools available to Linux

\$cd ls

And it means we have access to <u>all the tools</u> available to Linux

And it means we have access to <u>all the tools</u> available to Linux

This is also a friendly reminder that some of the control we gain in this class can break a system

Havir (please remember to always test things out on your VMs) e system

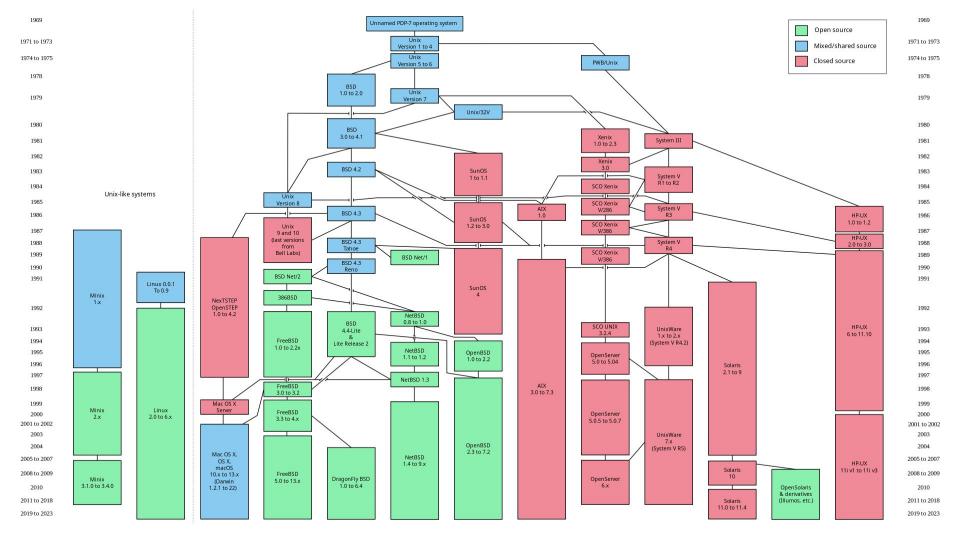
Linux

The most deployed operating system in the world

What are three devices that explain why?

Linux

The most deployed operating system in the world


What are three devices that explain why?

NC STATE UNIVERSITY

A History of Linux

In the beginning, there was UNIX®

Unix

- Started in 1969 at AT&T / Bell Labs
- Split into a number of popular branches
 - BSD, System V (commercial, AT&T), Solaris, HP-UX, AIX
- Inspired a number of Unix-like systems
 - Linux, Minix, macOS
- Standardization attempts
 - POSIX, Single Unix Specification (SUS), Filesystem Hierarchy Standard (FHS), Linux Standard Base (LSB), ELF

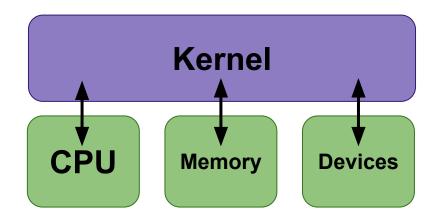
NC STATE UNIVERSITY

A History of Linux

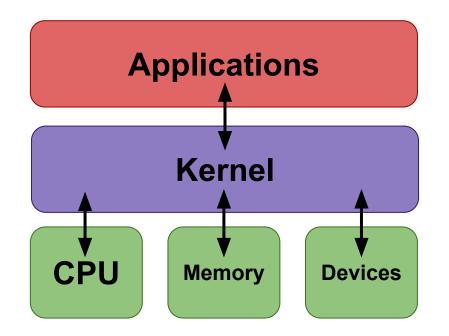
Linus Torvalds

A History of Linux

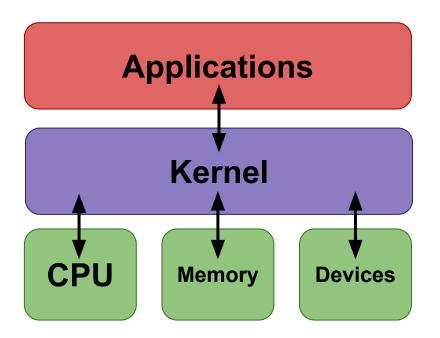
Linus developed the first iteration of Linux while in college (~1987) coding in Minix and thought...


"there must be a better way"

Core component to the operating system

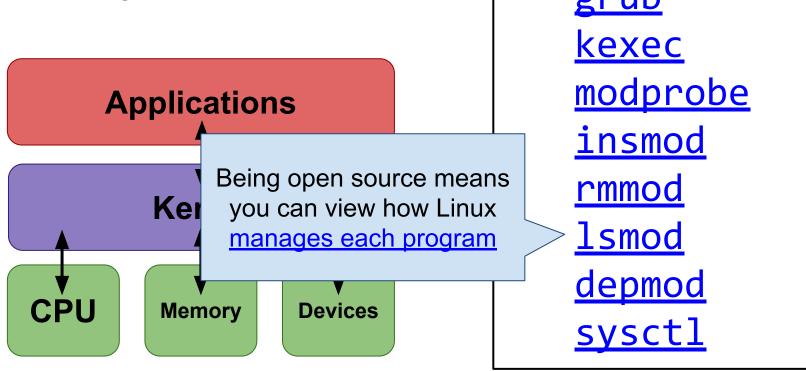

Manages system resources

Provides essential services like scheduling, drivers, memory management, and **system calls**

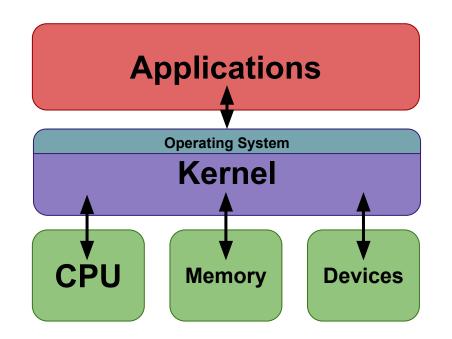


Serves as the bridge between software and hardware

Facilitates communication between them



Linux for example is a collection of C binaries for handling the kernel



Linux for example is a collection of C binaries for handling the kernel grub

The Operating System

The operating system, on the other hand, is essentially built around the kernel to provide a user-friendly interface

NC STATE UNIVERSITY

Kernel vulnerabilities

#	CVE ID	CWE ID	# of Exploits	Vulnerability Type(s)	Publish Date	Update Date	Score	Gained Access Level	Access	Complexity	Authentication	Conf.	Integ.	Avail.
1 <u>CVE</u>	-2017-12762	<u>119</u>		Overflow	2017-08-09	2017-08-25	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
	s/isdn/i4l/isdn_ stable tree.	net.c: A user	-controlled buffer	is copied into a local buffer o	f constant size usin	g strcpy without a le	ength check	which can cause a buffer ov	erflow. This	affects the Linux	kernel 4.9-stable tree	e, 4.12-stable	e tree, 3.18-s	table tree,
2 <u>CVE</u>	-2017-11176	<u>416</u>		DoS	2017-07-11	2017-08-07	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
	notify function		ernel through 4.1	1.9 does not set the sock poi	nter to NULL upon	entry into the retry I	ogic. During	g a user-space close of a Net	link socket, i	t allows attackers	s to cause a denial of	f service (use	-after-free) c	or possibly
3 <u>CVE</u>	-2017-8890	<u>415</u>		DoS	2017-05-10	2017-05-24	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
he inet_	_csk_clone_loc	ck function in	net/ipv4/inet_con	nection_sock.c in the Linux k	ernel through 4.10.1	5 allows attackers	to cause a	denial of service (double free) or possibly	have unspecified	d other impact by lev	eraging use o	of the accept	system cal
4 <u>CVE</u>	-2017-7895	189			2017-04-28	2017-05-11	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
			mentations in the and fs/nfsd/nfsx0	5	lack certain checks	for the end of a bu	Iffer, which	allows remote attackers to tri	gger pointer	arithmetic errors	or possibly have uns	specified othe	er impact via	crafted
5 <u>CVE</u>	-2017-0648	264		Exec Code	2017-06-14	2017-07-07	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
	1 0			debugger could enable a loc ng system to repair the devic				within the context of the kern id ID: A-36101220.	el. This issue	e is rated as High	due to the possibilit	y of a local p	ermanent de	vice
6 <u>CVE</u>	-2017-0605	<u>264</u>		Exec Code	2017-05-12	2017-05-19	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
	1 0							de within the context of the ke I-3.18. Android ID: A-3539970			a bac nasar sa a bi garasa	sibility of a lo	cal permaner	nt device
7 <u>CVE</u>	-2017-0564	<u>264</u>		Exec Code	2017-04-07	2017-07-10	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
								e within the context of the ker I-3.18. Android ID: A-3427620		ue is rated as Cri	tical due to the possi	ibility of a loc	al permanen	t device
8 <u>CVE</u>	-2017-0563	264		Exec Code	2017-04-07	2017-07-10	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
	1 0			screen driver could enable a ng system to repair the devic			,	de within the context of the k id ID: A-32089409.	ernel. This is	sue is rated as C	critical due to the pos	sibility of a lo	cal permane	ent device
9 <u>CVE</u>	-2017-0561	264		Exec Code	2017-04-07	2017-08-15	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
			,	n Wi-Fi firmware could enable Kernel-3.10, Kernel-3.18. An		,		n the context of the Wi-Fi So	C. This issue	is rated as Critic	al due to the possibi	lity of remote	code execut	tion in the
0 <u>CVE</u>	-2017-0528	<u>264</u>		Exec Code Bypass	2017-03-07	2017-07-17	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
								n the context of a privileged p						

defense in depth or exploit mitigation technology. Product: Android. Versions: Kernel-3.18. Android ID: A-33351919.

Kernel vulnerabilities

#	CVE ID	CWE ID	# of Exploits	Vulnerability Type(s)	Publish Date	Update Date	Score	Gained Access Level	Access	Complexity	Authentication	Conf.	Integ.	Avail.
1 <u>CV</u>	<u>E-2018-20961</u>	<u>415</u>		DoS	2019-08-07	2019-08-27	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
	Linux kernel befor ified other impact		double free	vulnerability in the	_midi_set_alt fu	nction of drivers/u	usb/gadget,	/function/f_midi.c	c in the f_mi	li driver may allo	w attackers to caus	se a denial of	service or po	ssibly have
2 <u>CV</u>	E-2019-10125	94			2019-03-27	2019-06-14	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
	<pre>was discovered of vfs_poll(), and</pre>			in the Linux kernel t er-free.	hrough 5.0.4. A	ile may be releas	sed by aio_p	poll_wake() if an	expected eve	ent is triggered ir	nmediately (e.g., b	y the close of	a pair of pipe	es) after the
3 <u>CV</u>	<u>E-2019-11683</u>	<u>399</u>		DoS Mem. Corr.	2019-05-02	2019-06-14	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
	•		· · · · · · · · · · · · · · · · · · ·	ad.c in the Linux ke because of mishand					al of service	(slab-out-of-bou	nds memory corrup	ition) or possi	bly have unsp	pecified
4 <u>CV</u>	E-2019-11811	416			2019-05-07	2019-05-31	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
				ore 5.0.4. There is a s/char/ipmi/ipmi_si_	100000000 NULLIONO000 LINEORODO.	on attempted rea	ad access to	o /proc/ioports af	ter the ipmi_	si module is rem	oved, related to dr	vers/char/ipn	ni/ipmi_si_int	f.c,
5 <u>CV</u>	<u>E-2019-15292</u>	416			2019-08-21	2019-09-02	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
An issu	ie was discovered	in the Linu	x kernel befo	ore 5.0.9. There is a	use-after-free in	atalk_proc_exit,	related to r	net/appletalk/atal	lk_proc.c, ne	t/appletalk/ddp.c	c, and net/appletalk	/sysctl_net_a	talk.c.	
6 <u>CV</u>	E-2019-15504	415			2019-08-23	2019-09-04	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
drivers	/net/wireless/rsi/	rsi_91x_usl	b.c in the Lin	ux kernel through 5	.2.9 has a Double	Free via crafted	USB device	e traffic (which ma	ay be remote	e via usbip or usb	oredir).			
7 <u>CV</u>	E-2019-15505	125			2019-08-23	2019-09-04	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
drivers	/media/usb/dvb-u	usb/technis	at-usb2.c in t	the Linux kernel thro	ough 5.2.9 has ar	out-of-bounds r	ead via cra	fted USB device t	raffic (which	may be remote v	via usbip or usbred	ir).		
8 <u>CV</u>	<u>E-2019-15926</u>	<u>125</u>			2019-09-04	2019-09-14	9.4	None	Remote	Low	Not required	Complete	None	Complete
An issu /wmi.c		in the Linu	x kernel befo	ore 5.2.3. Out of bou	inds access exists	in the functions	ath6kl_wm	i_pstream_timeo	ut_event_rx	and ath6kl_wmi_	_cac_event_rx in th	e file drivers/	'net/wireless/	ath/ath6kl
9 <u>CV</u>	<u>E-2018-20836</u>	<u>416</u>			2019-05-07	2019-05-08	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An issu	ie was discovered	in the Linu	x kernel befo	ore 4.20. There is a	race condition in	smp_task_timedo	out() and sr	mp_task_done() i	n drivers/sc	i/libsas/sas_expa	ander.c, leading to	a use-after-fr	ee.	
10 <u>CV</u>	E-2019-11815	362			2019-05-08	2019-06-07	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
n issu	ie was discovered	in rds_tcp_	_kill_sock in r	net/rds/tcp.c in the	Linux kernel befo	re 5.0.8. There is	a race con	dition leading to	a use-after-f	ree, related to ne	et namespace clean	up.		

Kernel Security Research is Active

Papers from USENIX Security 2023

- PhyAuth: Physical-Layer Message Authentication for ZigBee Networks
- Auditory Eyesight: Demystifying µs-Precision Keystroke
 <u>Tracking Attacks on Unconstrained Keyboard Inputs</u>
- Improving Logging to Reduce Permission Over-Granting
 <u>Mistakes</u>
- <u>Know Your Cybercriminal: Evaluating Attacker Preferences by</u>
 <u>Measuring Profile Sales on an Active, Leading Criminal Market</u>
 <u>for User Impersonation at Scale</u>

source: <u>https://www.usenix.org/conference/usenixsecurity23/technical-sessions</u>

Kernel Security is also Rapidly Changing

Rust will be added to Linux v6.1

- Compiles to machine code via rustc
- Provides stronger memory safety guarantees
- Performs comparable to C and C++

Aka, a lot of the most basic attacks may change

Unix is **user-centric**

no roles

Running code is **always linked** to a certain identity

 security checks and access control decisions are based on user identity

User

- identified by username (UID), group name (GID)

amgaweda	amgaweda	4.0K	Jan	29	21:04	
amgaweda	amgaweda	4.0K	Jan	29	21:03	· · ·
amgaweda	amgaweda	0	Jan	29	21:04	<pre>example.txt</pre>

User

identified by username (UID), group name (GID)

amgaweda	amgaweda	4.0K	Jan	29	21:04	
amgaweda	amgaweda	4.0K	Jan	29	21:03	· · ·
amgaweda	amgaweda	0	Jan	29	21:04	<pre>example.txt</pre>

- typically authenticated by password (stored encrypted)

sudo cat /etc/shadow

• • •

amgaweda:\$y\$notOnYourLifeBubYoullNeverGuessBubbles:0:99999:7:::

User

- identified by username (UID), group name (GID)
- typically authenticated by password (stored encrypted)

User **root**

root root 4.0K Apr 18 2022 boot

- superuser, system administrator
- special privileges (access resources, modify OS)
- cannot decrypt user passwords

Process (PID)

- implements user-activity
- entity that executes a given piece of code
- has its own execution stack, memory pages, and file descriptors table
- separated from other processes using the virtual memory abstraction

htop

· ·											
PID	USER	PRI	NI	VIRT	RES	SHR	S	CPU%2	MEM%	TIME+	Command
1	root	20	0	2456	1864	1756	S	0.0	0.0	0:00.01	/init
4	root	20	0	2456	932	896	S	0.0	0.0	0:00.00	plan9
9	amgaweda	20	0	6180	5156	3396	S	0.0	0.0	0:00.11	-bash
163	amgaweda		0	5364	3780	3116	R	0.0	0.0	0:00.01	htop

Thread

- separate stack and program counter
- share memory pages and file descriptor table
- processes are also executed through threads and have their own thread ids (LWP) and count (NLWP)

\$ ps -eLf						,			
UID	PID	PPID	LWP	С	NLWP	STIME	TTY	TIME	CMD
root	1	0	1	0	2	21:02	hvc0	00:00:00	/init
amgaweda	9	8	9	0	1	21:02	pts/0	00:00:00	-bash
amgaweda	164	9	164	0	1	21:24	pts/0	00:00:00	ps -eLf

Process Attributes

- process ID (PID)
 - uniquely identified process
- user ID (UID)
 - ID of owner of process
- effective user ID (EUID)
 - ID used for permission checks (e.g., to access resources)
- saved user ID (SUID)
 - to temporarily drop and restore privileges
- lots of management information
 - scheduling, memory management, resource management

Switching between IDs

- uid-setting system calls
- int setuid(uid_t uid)
- int seteuid(uid_t uid)
- int setresuid(uid_t ruid, uid_t euid, uid_t suid)

Can be tricky

- POSIX 1003.1

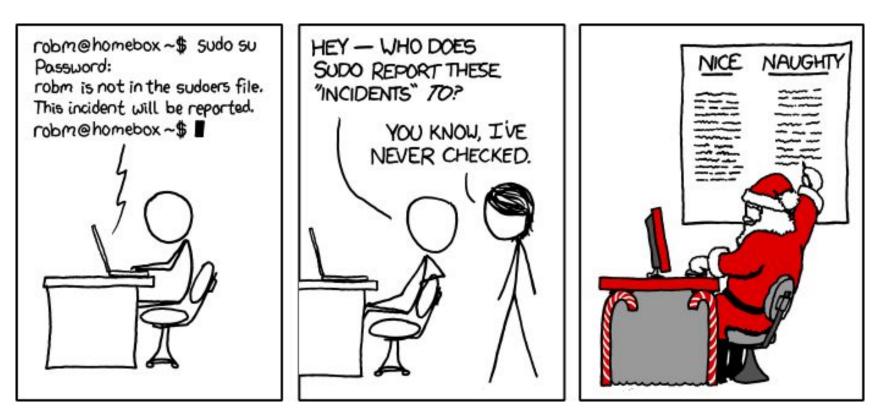
If the process has appropriate privileges, the setuid(newuid) function sets the real user ID, effective user ID, and the [saved user ID] to newuid.

– what are appropriate privileges?

Solaris: EUID = 0; FreeBSD: newuid = EUID; Linux: SETUID capability

Sudo Change Time

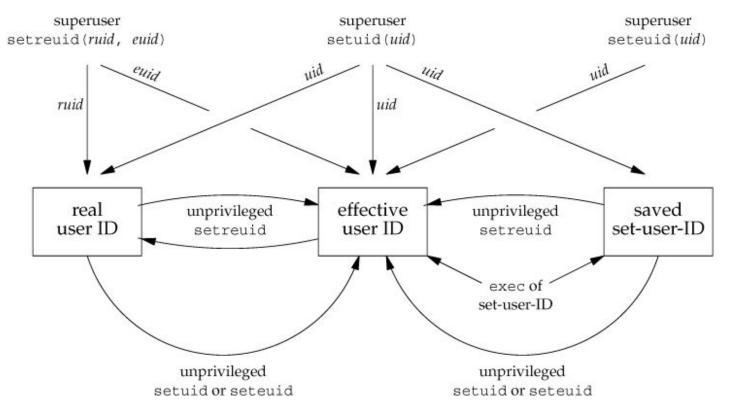
- **user** logs in
 - their UID is set to a non-root value, indicating they have regular user permissions


Sudo Change Time

- **user** logs in
 - their UID is set to a non-root value, indicating they have regular user permissions
- user runs date to change the system time
 - Doing this requires escalated privileges (**root**)
 - date is executed but the kernel checks the EUID of the process to see if it matches the users UID
 - Since it doesn't, the process is halted

Sudo Change Time

- **user** logs in
 - their **UID** is set to a non-root value, indicating they have regular user permissions
- user runs date to change the system time
 - Doing this requires escalated privileges (root)
 - date is executed but the kernel checks the EUID of the process to see if it matches the users UID
 - Since it doesn't, the process is halted
- user runs sudo date
 - sudo elevates the EUID of date to root temporarily, allowing it to change the time


Obligatory XKCD

Obligatory alt-text:

https://xkcd.com/838/

Summary of all the Functions that Set the User IDs

source: http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi knjige/pomocno/apue/APUE/0201433079/ch08lev1sec11.html

Early Example of Privilege Escalation

Bug in **sendmail** 8.10.1:

- call to **setuid(getuid())** to clear privileges (effective **UID** is **root**)
- on Linux, attacker could clear **SETUID** capability
- call clears EUID, but SUID remains root

Further reading

<u>Setuid Demystified</u>, Hao Chen, David Wagner, and Drew Dean 11th USENIX Security Symposium, 2002

NC STATE UNIVERSITY

User Authentication

How does a process get a user ID?

NC STATE UNIVERSITY

User Authentication

How does a process get a user ID? Authentication

User

User Authentication

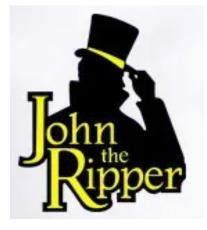
Passwords

- user passwords are used as keys for crypt() function
- uses SHA-512
- 8-byte "salt"
 - chosen from date, not secret
 - prevent same passwords to map onto same string
 - make dictionary attacks more difficult

sudo cat /etc/shadow
kali:\$y\$j9T\$lR7REZ4XgU56yXN19PFiN/\$oI3B/OeQGXOoTb7opQ.azBMOgG2IM0neRj4MN3HCqQ.:19331:0:99999:7:::

SHA-512 encryption of "kali"

More on salting passwords in our Web Security lectures


User Authentication

Password Cracking

- dictionary attacks (try common passwords)
- rainbow tables (efficiently try common passwords)
- simple brute force (inefficiently try all passwords)

Password Crackers

- Crack
- JohnTheRipper

User Authentication

Shadow passwords

- password file is needed by many applications to map user ID to user names
- encrypted passwords are not

kali:\$y\$j9T\$lR7REZ4XgU56yXN19PFiN/\$oI3B/OeQGXOoTb7opQ.azBMOgG2IM0neRj4MN3HCqQ.:**19331:0:99999:7:::**

/etc/shadow

- holds encrypted passwords
- account information
 - last change date (19331)
 - minimum change frequency (0, 99999)
 - number of days before expiration (7) –
- readable only by superuser and privileged programs
- SHA-512 hashed passwords (default on Ubuntu) to slow down guessing

User Authentication

Shadow passwords

- a number of other encryption / hashing algorithms were proposed
- blowfish, SHA-1, ...

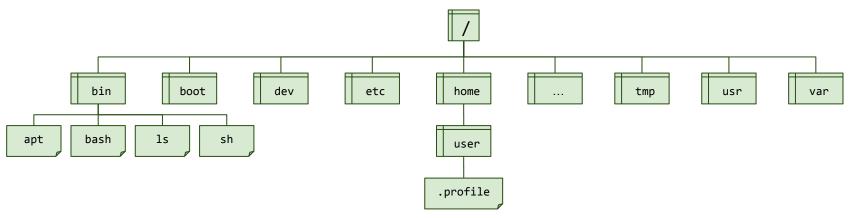
Other authentication means possible

- Linux PAM (pluggable authentication modules)
- Kerberos
- Active directory (Windows)

Group Model

Users belong to one or more groups

- primary group (stored in /etc/passwd)
- additional groups (stored in /etc/group)
- become group member with newgrp
- can also to set group password (none by default)


```
/etc/grOup (groupname : password : group id : additional users)
  root:x:0:root
  bin:x:1:root,bin,daemon
  users:x:100:akaprav
```

Special group wheel/sudo (like on Ubuntu)

• protect root account by limiting user accounts that can perform su

File System

- File Hierarchy Tree primary repository of information
 - directories contain file system objects (FSO)

- File system object
 - files, directories, symbolic links (shortcuts), sockets, device files
 - referenced by **inode** (index node)

Denial of Service through Inodes

```
#!/bin/bash
```

```
# Directory to create files in
target_dir="/tmp/exhaust_inodes"
mkdir -p $target dir
```

Do exercise **caution**, this is one of those "attack" scripts

We aren't responsible if you break your machine

Could DOS processes waiting to creating files on the system # if the script exhausts all available inodes, even if there # is still disk space on the drive read -p "Press any key to delete files and clean up..." -n 1 -r

Clean up: Remove files and directory
rm -rf \$target_dir
echo "Cleanup complete."

df -i to see how many inodes your system has

File Permissions

Access Control

- permission bits
- chmod, chown, chgrp, umask
- permission structure:

	-	rwx	rwx	rwx	-
(file	type)	(user)	(group)	(other)	(sticky)

Туре	r	W	Х	S	t
File	read access	write access	execute	suid / sgid inherit id	sticky bit
Directory	list files	insert and remove files	stat / execute files, chdir	new files have dir-gid	files/dirs only delete-able by owner

File Permissions

Access Control

- permission bits
- chmod, chown, chgrp, umask
- permission structure:

s inherits the permissions of the binary owner rwy rwx rwx (file type) (user) (group) (othe When you execute passwd, it inherits root permissions Type Χ S W suid / sgid File read access write access sticky bit execute inherit id Find files w/ root setuid Directory lis find / -type f -perm /4000 -exec stat -c "%U %n" {} + grep root Find available binaries on the system dpkg -get-resources

Sticky bit

No effect on files (on Linux) When used on a directory, all the files in that directory will be modifiable **only by their owners**

What's a very common directory with sticky bit?

Sticky bit

No effect on files (on Linux) When used on a directory, all the files in that directory will be modifiable **only by their owners**

What's a very common directory with sticky bit?

```
$ ls -ld /tmp
drwxrwxrwt 26 root root 69632 Sep 7 15:24 /tmp
$ ls -l
-rw-rw-r-- 1 username username 0 Sep 7 15:29 test
$ chmod +t test; ls -l
-rw-rw-r-t 1 username username 0 Sep 7 15:29 test
```

SUID Programs

Each process has real and effective user / group ID

- usually identical
- real IDs
 - determined by current user
 - authentication (login, **su**)
- effective IDs
 - determine the "rights" of a process
 - system calls (e.g., setuid())
- **suid** / **sgid** bits
 - to start process with effective ID different from real ID
 - attractive target for attacker

Never use suid shell scripts (multiplying problems)

- many operating systems ignore the setuid attribute when applied to executable shell scripts
- you need to patch the kernel to enable it

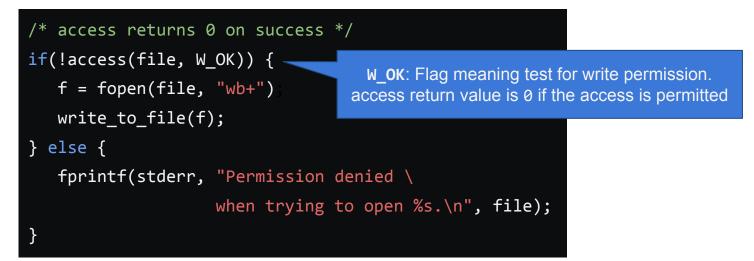
File System

Shared resource

- susceptible to race condition problems

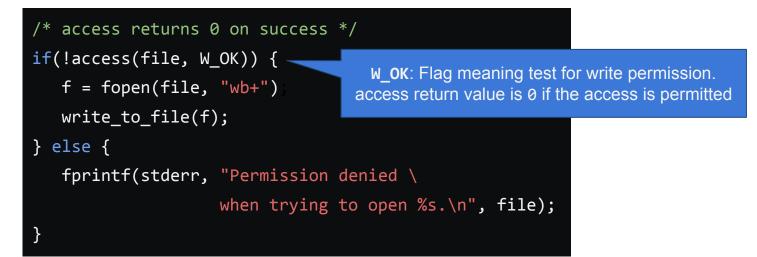
Time-of-Check, Time-of-Use (**TOCTOU**)

- common race condition problem
- problem:
 - Time-Of-Check (t₁): validity of assumption A on entity E is checked
 - Time-Of-Use (t_2) : assuming **A** is still valid, **E** is used
 - Time-Of-Attack (t_3) : assumption **A** is invalidated


$$t_1 < t_3 < t_2$$

тостои

- Steps to access a resource
 - obtain reference to resource
 - query resource to obtain characteristics
 - analyze query results
 - if resource is fit, access it
- Often occurs in Unix file system accesses
 - check permissions for a certain file name (e.g., using <u>access(2)</u>)
 - open the file, using the file name (e.g., using <u>fopen(3)</u>)
 - four levels of indirection (symbolic link hard link **inode** file descriptor)
- Windows uses file handles and includes checks in the API <u>open</u> call



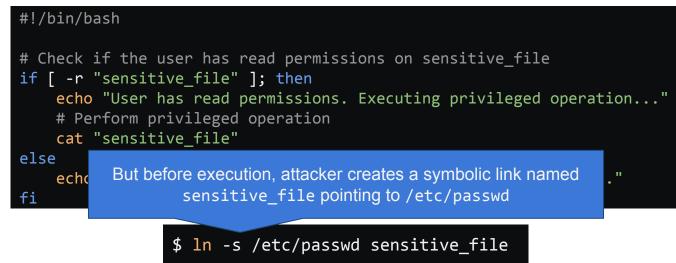
Application checks if a file is safe to write to, if so then writes to it.

Application checks if a file is safe to write to, if so then writes to it.

\$ touch dummy; ln -s dummy pointer \$ rm pointer; ln -s /etc/passwd pointer Attack creates symbolic link to **dummy** Application makes **access()** call on **dummy** System says **dummy** is okay to write to

Application checks if a file is safe to write to, if so then writes to it.

\$ touch dummy; ln -s dummy pointer \$ rm pointer; ln -s /etc/passwd pointer Attack creates symbolic link to dummy Application makes access() call on dummy System says dummy is okay to write to Before fopen() operation occurs, attacker deletes the symbolic link on dummy and creates it on /etc/passwd


- **setuid** Scripts
 - exec() system call invokes seteuid() call prior to executing program
 - program is a script, so command interpreter is loaded first
 - program interpreted (with **root** privileges) is invoked on script name
 - attacker can replace script content between step 2 and 3

```
#!/bin/bash
# Check if the user has read permissions on sensitive_file
if [ -r "sensitive_file" ]; then
    echo "User has read permissions. Executing privileged operation..."
    # Perform privileged operation
    cat "sensitive_file"
else
    echo "User does not have read permissions. Operation aborted."
fi
```

- **setuid** Scripts
 - exec() system call invokes seteuid() call prior to executing program
 - program is a script, so command interpreter is loaded first
 - program interpreted (with **root** privileges) is invoked on script name
 - attacker can replace script content between step 2 and 3

```
#!/bin/bash
# Check if the user has read permissions on sensitive_file
if [ -r "sensitive_file" ]; then
    echo "User has read permissions. Executing privileged operation..."
    # Perform privileged operation
    cat "sensitive_file"
else
    echo "User
    User triggers execution of script...
borted."
```

- **setuid** Scripts
 - exec() system call invokes seteuid() call prior to executing program
 - program is a script, so command interpreter is loaded first
 - program interpreted (with **root** privileges) is invoked on script name
 - attacker can replace script content between step 2 and 3

• Directory operations

- rm can remove directory trees, traverses directories depth-first
- issues chdir("...") to go one level up after removing a directory branch
- by relocating subdirectory to another directory, arbitrary files can be deleted

#!/bin/bash

```
# Create a temporary file
touch /tmp/example
```

```
# Check if the directory exists
if [ -f "/tmp/example" ]; then
  # Prompt the user before removing
  echo "File exists. Are you sure? (y/n)"
  read answer
  if [ "$answer" == "y" ]; then
   # Remove the file
    rm -rf /tmp/example
    echo "File removed."
  else
    echo "File not removed."
  fi
else
    echo "File does not exist."
fi
```

Directory operations

 by relocating subdirectory to another directory, arbitrary files can be deleted

#!/bin/bash

Create a temporary file
touch /tmp/example

```
# Check if the directory exists
if [ -f "/tmp/example" ]; then
  # Prompt the user before removing
  echo "File exists. Are you sure? (y/n)"
  read answer
  if [ "$answer" == "y" ]; then
    # Remove the file
    rm -rf /tmp/example
    echo "File removed."
  else
    echo "File not removed."
  fi
else
    echo "File does not exist."
fi
```

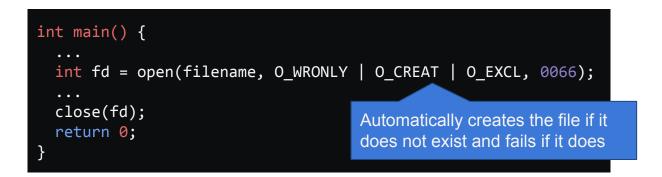
- Temporary files
 - commonly opened in /tmp or /var/tmp
 - often guessable file names
 - if the attacker can intercept the process between permission check and operation, and the /tmp file is trivially named, they may be able to manipulate it

Common Trivial Names:

- cache.dat
- temp_file
- data.txt
- apache2.pid
- sshd.pid

Temporary Files

- "Secure" procedure for creating temporary files
 - pick a prefix for your filename
 - generate at least 64 bits of high-quality randomness
 - base64 encode the random bits
 - concatenate the prefix with the encoded random data
 - set umask appropriately (0066 is usually good, readable/writable only by you)
 - use <u>fopen(3)</u> to create the file, opening it in the proper mode
 - delete the file immediately using <u>unlink(2)</u> (deletes file after you're done with it)
 - perform reads, writes, and seeks on the file as necessary
 - finally, close the file


Prevention

- Immutable bindings
 - rather than using the file's variable, operate on file descriptors (<u>fstat</u>)

```
int main() {
    ...
    int fd = open(filename, O_RDONLY);
    ...
    struct stat st;
    fstat(fd, &st)
    ...
    if (!S_ISREG(st.st_mode)) { ... }
    ...
    printf("File size: %ld bytes\n", st.st_size);
    close(fd);
    return 0;
}
```

Prevention

- Use the O_CREAT | O_EXCL flags to create a new file with <u>open(2)</u>
 - be prepared to have the open call fail

Prevention

Series of papers on the access system call

Fixing races for fun and profit: how to use access(2) D. Dean and A. Hu Usenix Security Symposium, 2004

Fixing races for fun and profit: how to abuse atime

N. Borisov, R. Johnson, N. Sastry, and D. Wagner Usenix Security Symposium, 2005

Portably Solving File TOCTTOU Races with Hardness Amplification D. Tsafrir, T. Hertz, D. Wagner, and D.Da Silva Usenix Conference on File and Storage Technologies (FAST), 2008

Locking

- Ensures exclusive access to a certain resource
- Used to circumvent accidental race conditions
 - advisory locking (processes need to cooperate)
 - not mandatory, therefore not secure
- Often, files are used for locking
 - portable (files can be created nearly everywhere)
 - "stuck" locks can be easily removed
- Simple method
 - create file using the O_EXCL flag

struct flock lock;

```
// Prepare lock structure
lock.l_type = F_WRLCK; // Write lock
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0; // Lock entire file
```

```
// Try to acquire the lock
if (fcntl(fd, F_SETLK, &lock) == -1) {
    // error
}
// Do some operations
// Unlock the file
lock.l type = F UNLCK;
```

Shell

- Shell
 - one of the core Unix application
 - both a command language and programming language
 - provides an interface to the Unix operating system
 - rich features such as control-flow primitives, parameter passing, variables, and string substitution
 - communication between shell and spawned programs via redirection and pipes
 - different flavors
 - bash and sh, tcsh and csh, ksh, zsh

Shell Attacks

- Environment Variables
 - **\$HOME** and **\$PATH** can modify behavior of programs that operate with relative path names
 - **\$IFS** internal field separator
 - used to parse tokens
 - usually set to [\t\n] but can be changed to "/"
 - "/bin/ls" is parsed as "bin ls" calling bin locally
 - IFS now only used to split expanded variables
 - preserve attack (/usr/lib/preserve is SUID)
 - called "/bin/mail" when vi crashes to preserve file
 - change IFS, create bin as link to /bin/sh, kill vi

Used to be super common but IFS has been removed since actual use is rare

\$ IFS=';' ./vulnerable_script.sh
Enter a filename:
 /tmp/secret_file; ls /

IFS=\$'\n'
ln -s /bin/sh
/usr/lib/preserve/bin
<pre>vi /usr/lib/preserve/some_file</pre>

Shell Attacks

- Control and escape characters
 - can be injected into command string
 - modify or extend shell behavior
 - user input used for shell commands has to be rigorously sanitized
 - easy to make mistakes
 - classic examples are ';' and '&'

find /some_path -name "filename.txt; ls /"

- Applications that are invoked via shell can be targets as well
 - increased vulnerability surface
- Restricted shell
 - invoked with -r or rbash
 - more controlled environment

Shell Attacks

- system(char *cmd)
 - function called by programs to execute other commands
 - invokes shell
 - executes string argument by calling /bin/sh -c string
 - makes binary program vulnerable to shell attacks
 - especially when user input is utilized
- popen(char *cmd, char *type)
 - forks a process, opens a pipe and invokes shell for cmd

File Descriptor Attacks

- SUID program (everyone uses, root permissions) opens file
- forks external process
 - sometimes under user control
- on-execute flag
 - if **close-on-exec** flag is not set, then new process inherits file descriptor
 - malicious attacker might exploit such weakness
- Linux Perl 5.6.0
 - getpwuid() leaves /etc/shadow opened (June 2002)
 - could attack this with Apache or mod_perl
 - web browsers and flash

Resource Limits

- File system limits
 - quotas
 - restrict storage blocks and number of inodes
 - hard limit
 - can never be exceeded (operation fails)
 - soft limit
 - can be exceeded temporarily
 - can be defined per mount-point
 - defend against resource exhaustion (denial of service)
- Process resource limits
 - number of child processes, open file descriptors

#!/bin/bash

```
# Limit CPU time to 10 seconds
ulimit -t 10
# Limit virtual memory to 100 MB
ulimit -v 100000
# Infinite loop consumes CPU and memory
while true; do
    :
done
```

Signals

Signal

- asynchronous notification; simple form of interrupt
- can happen anywhere for process in user space
- used to deliver segmentation faults, reload commands, ...
- kill command

Signal handling

- process can install signal handlers
- when no handler is present, default behavior is used
 - ignore or kill process
- possible to catch all signals except SIGKILL (-9)

#!/bin/bash

Start the vulnerable script in the background
./vulnerable_script.sh &

Obtain the PID of the vulnerable script
pid=\$!

Wait for a few seconds to ensure the vulnerable script is running sleep 2

```
# Send a SIGINT signal to the vulnerable script
echo "Sending SIGINT signal to PID $pid..."
kill -2 $pid
```

Signals

- Security issues
 - code has to be re-entrant (code running, signal jump, then come back)
 - atomic modifications
 - no global data structures
 - race conditions
 - unsafe library calls, system calls
 - examples
 - wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006
- Secure signals
 - write handler as simple as possible
 - block signals in handler

Shared Libraries

- Library
 - collection of object files
 - included into (linked) program as needed
 - code reuse
- Shared library
 - multiple processes share a single library copy
 - save disk space (program size is reduced)
 - save memory space (only a single copy in memory)
 - used by virtually all Unix applications (at least libc.so)
 - check binaries with 1dd

Shared Libraries

- Static shared library
 - address binding at link-time
 - not very flexible when library changes
 - code is fast
- Dynamic shared library
 - address binding at load-time
 - uses procedure linkage table (PLT) and global offset table (GOT) to hold references to code
 - code is slower (redirection)
 - loading is slow (binding has to be done at run-time)
 - classic .so or .dll libraries
- PLT and GOT entries are very popular attack targets
 - buffer overflows

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

Shared Libraries

- Management
 - stored in special directories (listed in /etc/ld.so.conf)
 - manage cache with ldconfig
- Preload
 - override (substitute) with other version
 - use/etc/ld.so.preload
 - can also use environment variables for override
 - possible security hazard
 - now disabled for SUID programs (old Solaris vulnerability)

Advanced Security Features

- Address space protection
 - address space layout randomization (ASLR)
 - non-executable stack (based on NX bit or PAX patches)
- Mandatory access control extensions
 - SELinux/AppArmor
 - role-based access control extensions
 - capability support
- Miscellaneous improvements
 - hardened chroot jails
 - better auditing
- https://wiki.ubuntu.com/Security/Features

in-class lab

Go to <u>https://pwn.college/linux-luminarium/</u> Solve 12 challenges (they are really easy :))