NC STATE UNIVERSITY

CSC 405
Linux Security

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

We are done with machine code!

NC STATE UNIVERSITY

We are done with machine code!

for now...

NC STATE UNIVERSITY

Reason

N

Having access to the shell means you have full control over the system

NC STATE UNIVERSITY

Reason

N

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

NC STATE UNIVERSITY

Reason

And it means we have access to all the tools available to Linux

$ls

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

NC STATE UNIVERSITY

Reason

And it means we have access to all the tools available to Linux
$ cd
1s

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

NC STATE UNIVERSITY

Reason

And it means we have access to all the tools available to Linux

$rm -rt /
cd
1s

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

NC STATE UNIVERSITY

Reason

And it means we have access to all the tools available to Linux

$rm -rt /

This is also a friendly reminder that some of the control
we gain in this class can break a system

gEW (please remember to always test things out on your VMs) XYE Gl
ain

NC STATE UNIVERSITY

LinuXx

The most deployed operating system in the world

What are three devices that explain why?

NC STATE UNIVERSITY

LinuXx

The most deployed operating system in the world

What are three devices that explain why?

-

=

A History of Linux

In the beginning,
there was UN | X

An Open Group Standard

1969

197110 1973

1974 to 1975

1978

1980

1981

1982

1983

1986

1988

1990
1991

1998

1999

2001 to 2002

2005 to 2007

2008 to 2009

2010

2011to 2018

2019 to 2023

Unix-like systems

- Open source

- Mixed/shared source
. Closed source

1969

1971 to 1973

1974 to 1975

1978

1980

1981

1982

1984

2008 to 2009
2010
2011to 2018

2019 to 2023

NC STATE UNIVERSITY

Unix

Started in 1969 at AT&T / Bell Labs

Split into a number of popular branches
— BSD, System V (commercial, AT&T), Solaris, HP-UX, AlX

Inspired a number of Unix-like systems

— Linux, Minix, macOS

Standardization attempts

— POSIX, Single Unix Specification (SUS), Filesystem Hierarchy Standard (FHS), Linux
Standard Base (LSB), ELF

A History of Linux

Linus Torvalds

NC STATE UNIVERSITY

Linus developed the first
iteration of Linux while Iin
college (~1987) coding in
Minix and thought...

"there must be a better way"

Andrew S. Tanenbaum® =5
P AlbertS. Woodhull ~ 7

NC STATE UNIVERSITY

The Kernel
Core component to the operating system

Manages system resources

Provides essential services like scheduling, drivers,
memory management, and system calls

NC STATE UNIVERSITY

The Kernel
Serves as the bridge between software and hardware

Facilitates communication between them

The Kernel

Linux for example is a collection of C binaries for
handling the kernel

grub
kexec

modprobe
insmod
rmmod
1smod
depmod
sysctl

https://linux.die.net/man/8/grub
https://linux.die.net/man/8/kexec
https://linux.die.net/man/8/modprobe
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/rmmod
https://linux.die.net/man/8/lsmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/sysctl

NC STATE UNIVERSITY

The Kernel
Linux for example is a collection of C binaries for
handling the kernel

grub
kexec

modprobe

insmod
Being open source means rmmod
you can view how Linux

manages each program > 1smod

\/ depmod
Devices)
\] sysctl

https://linux.die.net/man/8/grub
https://linux.die.net/man/8/kexec
https://linux.die.net/man/8/modprobe
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/rmmod
https://linux.die.net/man/8/lsmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/sysctl
https://github.com/brgl/busybox/blob/master/modutils/lsmod.c

NC STATE UNIVERSITY

The Operating System

The operating system, on the other hand, is essentially
built around the kernel to provide a user-friendly interface

NC STATE UNIVERSITY

Kernel vulnerabilities

CVEID CWEID # of Exploits Vulnerability Type(s) Publish Date Update Date Score Gained Access Level Access Complexity Authentication Conf. Integ. Avail.

1 CVE-2017-12762 119 Overflow 2017-08-09 2017-08-25 None Remote Low Not required Complete Complete Complete

In /drivers/isdn/i4l/isdn_net.c: A user-controlled buffer is copied into a local buffer of constant size using strcpy without a length check which can cause a buffer overflow. This affects the Linux kernel 4.9-stable tree, 4.12-stable tree, 3.18-stable tree,
and 4.4-stable tree.

2 CVE-2017-11176 16 DoS 2017-07-11 2017-08-07

None Remote Low Not required Complete Complete Complete

The mq_notify function in the Linux kernel through 4.11.9 does not set the sock pointer to NULL upon entry into the retry logic. During a user-space close of a Netlink socket, it allows attackers to cause a denial of service (use-after-free) or possibly
have unspecified other impact.

3 CVE-2017-8890 415 DoS 2017-05-10 2017-05-24 None Remote Low Not required Complete Complete Complete

The inet_csk_clone_lock function in net/ipv4/inet_connection_sock.c in the Linux kernel through 4.10.15 allows attackers to cause a denial of service (double free) or possibly have unspecified other impact by leveraging use of the accept system call.

4 CVE-2017-7895 189 2017-04-28 2017-05-11 None Remote Low Not required Complete Complete Complete

The NFSv2 and NFSv3 server implementations in the Linux kernel through 4.10.13 lack certain checks for the end of a buffer, which allows remote attackers to trigger pointer-arithmetic errors or possibly have unspecified other impact via crafted
requests, related to fs/nfsd/nfs3xdr.c and fs/nfsd/nfsxdr.c.

5 CVE-2017-0648 264 Exec Code 2017-06-14 2017-07-07 None Remote Medium Not required Complete Complete Complete

An elevation of privilege vulnerability in the kernel FIQ debugger could enable a local malicious application to execute arbitrary code within the context of the kernel. This issue is rated as High due to the possibility of a local permanent device
compromise, which may require reflashing the operating system to repair the device. Product: Android. Versions: Kernel-3.10. Android ID: A-36101220.

6 CVE-2017-0605 264 Exec Code 2017-05-12 2017-05-19 None Remote Medium Not required Complete Complete Complete

An elevation of privilege vulnerability in the kernel trace subsystem could enable a local malicious application to execute arbitrary code within the context of the kernel. This issue is rated as Critical due to the possibility of a local permanent device
compromise, which may require reflashing the operating system to repair the device. Product: Android. Versions: Kernel-3.10, Kernel-3.18. Android ID: A-35399704. References: QC-CR#1048480.

7 CVE-2017-0564 264 Exec Code 2017-04-07 2017-07-10 None Remote Medium Not required Complete Complete Complete

An elevation of privilege vulnerability in the kernel ION subsystem could enable a local malicious application to execute arbitrary code within the context of the kernel. This issue is rated as Critical due to the possibility of a local permanent device
compromise, which may require reflashing the operating system to repair the device. Product: Android. Versions: Kernel-3.10, Kernel-3.18. Android ID: A-34276203.

8 CVE-2017-0563 264 Exec Code 2017-04-07 2017-07-10 None Remote Medium Not required Complete Complete Complete

An elevation of privilege vulnerability in the HTC touchscreen driver could enable a local malicious application to execute arbitrary code within the context of the kernel. This issue is rated as Critical due to the possibility of a local permanent device
compromise, which may require reflashing the operating system to repair the device. Product: Android. Versions: Kernel-3.10. Android ID: A-32089409.

9 CVE-2017-0561 264 Exec Code 2017-04-07 2017-08-15 None Remote Low Not required Complete Complete Complete

A remote code execution vulnerability in the Broadcom Wi-Fi firmware could enable a remote attacker to execute arbitrary code within the context of the Wi-Fi SoC. This issue is rated as Critical due to the possibility of remote code execution in the
context of the Wi-Fi SoC. Product: Android. Versions: Kernel-3.10, Kernel-3.18. Android ID: A-34199105. References: B-RB#110814.

10 CVE-2017-0528 264 Exec Code Bypass 2017-03-07 2017-07-17 None Remote Medium Not required Complete Complete Complete

An elevation of privilege vulnerability in the kernel security subsystem could enable a local malicious application to to execute code in the context of a privileged process. This issue is rated as High because it is a general bypass for a kernel level
defense in depth or exploit mitigation technology. Product: Android. Versions: Kernel-3.18. Android ID: A-33351919.

NC STATE UNIVERSITY

Kernel vulnerabilities

CVE ID CWE ID # of Exploits Vulnerability Publish Date Update Date Score Gained Access Access Complexity Authentication Conf. Integ. Avail.
Type(s) Level
1 CVE-2018-20961 415 DoS 2019-08-07 2019-08-27 - None Remote Low Not required Complete Complete Complete

In the Linux kernel before 4.16.4, a double free vulnerability in the f_midi_set_alt function of drivers/usb/gadget/function/f_midi.c in the f_midi driver may allow attackers to cause a denial of service or possibly have
unspecified other impact.

2 CVE-2019-10125 94 2019-03-27 2019-06-14 None Remote Low Not required Complete Complete Complete

An issue was discovered in aio_poll() in fs/aio.c in the Linux kernel through 5.0.4. A file may be released by aio_poll_wake() if an expected event is triggered immediately (e.g., by the close of a pair of pipes) after the
return of vfs_poll(), and this will cause a use-after-free.

3 CVE-2019-11683 399 DoS Mem. Corr. 2019-05-02 2019-06-14 None Remote Low Not required Complete Complete Complete

udp_gro_receive_segment in net/ipv4/udp_offload.c in the Linux kernel 5.x before 5.0.13 allows remote attackers to cause a denial of service (slab-out-of-bounds memory corruption) or possibly have unspecified
other impact via UDP packets with a 0 payload, because of mishandling of padded packets, aka the "GRO packet of death" issue.

4 CVE-2019-11811 416 2019-05-07 2019-05-31

None Remote Low Not required Complete Complete Complete

An issue was discovered in the Linux kernel before 5.0.4. There is a use-after-free upon attempted read access to /proc/ioports after the ipmi_si module is removed, related to drivers/char/ipmi/ipmi_si_intf.c,
drivers/char/ipmi/ipmi_si_mem_io.c, and drivers/char/ipmi/ipmi_si_port_io.c.

5 CVE-2019-15292 416 2019-08-21 2019-09-02

None Remote Low Not required Complete Complete Complete
An issue was discovered in the Linux kernel before 5.0.9. There is a use-after-free in atalk_proc_exit, related to net/appletalk/atalk_proc.c, net/appletalk/ddp.c, and net/appletalk/sysctl_net_atalk.c.

6 CVE-2019-15504 415 2019-08-23 2019-09-04 None Remote Low Not required Complete Complete Complete

drivers/net/wireless/rsi/rsi_91x_usb.c in the Linux kernel through 5.2.9 has a Double Free via crafted USB device traffic (which may be remote via usbip or usbredir).

7 CVE-2019-15505 125 2019-08-23 2019-09-04

None Remote Low Not required Complete Complete Complete
drivers/media/usb/dvb-usb/technisat-usb2.c in the Linux kernel through 5.2.9 has an out-of-bounds read via crafted USB device traffic (which may be remote via usbip or usbredir).

8 CVE-2019-15926 125 2019-09-04 2019-09-14

None Remote Low Not required Complete None Complete

An issue was discovered in the Linux kernel before 5.2.3. Out of bounds access exists in the functions ath6kl_wmi_pstream_timeout_event_rx and ath6kl_wmi_cac_event_rx in the file drivers/net/wireless/ath/ath6kl
/wmi.c.

9 CVE-2018-20836 416 2019-05-07 2019-05-08

None Remote Medium Not required Complete Complete Complete
An issue was discovered in the Linux kernel before 4.20. There is a race condition in smp_task_timedout() and smp_task_done() in drivers/scsi/libsas/sas_expander.c, leading to a use-after-free.

10 CVE-2019-11815 362 2019-05-08 2019-06-07 None Remote Medium Not required Complete Complete Complete

An issue was discovered in rds_tcp_kill_sock in net/rds/tcp.c in the Linux kernel before 5.0.8. There is a race condition leading to a use-after-free, related to net namespace cleanup.

NC STATE UNIVERSITY

Kernel Security Research is Active

Papers from USENIX Security 2023

— PhyAuth: Physical-Layer Message Authentication for ZigBee
Networks

— Auditory Evesight: Demystifying us-Precision Keystroke
Tracking Attacks on Unconstrained Keyboard Inputs

— Improving Logqging to Reduce Permission Over-Granting
Mistakes

— Know Your Cvybercriminal: Evaluating Attacker Preferences by
Measuring Profile Sales on an Active, Leading Criminal Market
for User Impersonation at Scale

source: https://www.usenix.org/conference/usenixsecurity23/technical-sessions

https://www.usenix.org/conference/usenixsecurity23/presentation/li-ang
https://www.usenix.org/conference/usenixsecurity23/presentation/li-ang
https://www.usenix.org/conference/usenixsecurity23/presentation/tu
https://www.usenix.org/conference/usenixsecurity23/presentation/tu
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-bingyu-logging
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-bingyu-logging
https://www.usenix.org/conference/usenixsecurity23/presentation/campobasso
https://www.usenix.org/conference/usenixsecurity23/presentation/campobasso
https://www.usenix.org/conference/usenixsecurity23/presentation/campobasso
https://www.usenix.org/conference/usenixsecurity23/technical-sessions

NC STATE UNIVERSITY

Kernel Security is also Rapidly Changing

Rust will be added to Linux v6.1

— Compiles to machine code via rustc

— Provides stronger memory safety
guarantees

— Performs comparable to C and C++

Aka, a lot of the most basic attacks may change

https://www.rust-lang.org/

NC STATE UNIVERSITY

Users

Unix is user-centric
— no roles

Running code is always linked to a certain identity

— security checks and access control decisions are based
on user identity

NC STATE UNIVERSITY

Users
User
— identified by username (UID), group name (GID)

amgaweda amgaweda 4.0K Jan 29 21:04
amgaweda amgaweda 4.0K Jan 29 21:03

amgaweda amgaweda @ Jan 29 21:04 example.txt

NC STATE UNIVERSITY

Users
User
— identified by username (UID), group name (GID)

amgaweda amgaweda 4.0K Jan 29 21:04
amgaweda amgaweda 4.0K Jan 29 21:03

amgaweda amgaweda @ Jan 29 21:04 example.txt

— typically authenticated by password (stored encrypted)

sudo cat /etc/shadow

amgaweda: ynotOnYourLifeBubYoullNeverGuessBubbles:0:99999:7: ::

NC STATE UNIVERSITY

Users
User

— identified by username (UID), group name (GID)
— typically authenticated by password (stored encrypted)

User root

root root 4.0K Apr 18 2022

— superuser, system administrator
— special privileges (access resources, modify OS)
— cannot decrypt user passwords

NC STATE UNIVERSITY

Process Management
Process (PID)
— implements user-activity
— entity that executes a given piece of code

— has its own execution stack, memory pages, and file
descriptors table

— separated from other processes using the virtual memory
abstraction

‘ htop

00.00 plan9 -

4 20 %) 456 932 896 S 0.0 0.0 0.
9O amgaweda 20 © 6180 5156 3396 S 0.0 0.0 0:00.11 -bash
0.0 0.0 0.

163 amgaweda 20 0 364 780 116 00.01 htop

NC STATE UNIVERSITY

Process Management

Thread

* separate stack and program counter

* share memory pages and file descriptor table

* processes are also executed through threads and
have their own thread ids (LWP) and count (NLWP)

$ ps -eLf
UID PID PPID LWP
root 1 (%] 1

NLWP STIME TTY TIME CMD
2 21:02 hvco 00:00:00 /init

C
0

amgaweda 9 8 9 © 1 21:02 pts/o 00:00:00 -bash
0

amgaweda 164 9 164 1 21:24 pts/0 00:00:00 ps -elLf

NC STATE UNIVERSITY

Process Management
Process Attributes
* process ID (PID)
— uniquely identified process
* user ID (UID)
— |ID of owner of process
* effective user ID (EUID)
— |ID used for permission checks (e.g., to access resources)
* saved user ID (SUID)
— to temporarily drop and restore privileges

* lots of management information

— scheduling, memory management, resource management

NC STATE UNIVERSITY

Process Management
Switching between IDs

— uid-setting system calls
— int setuid(uid_t uid)
— int seteuid(uid_t uid)

— int setresuid(uid_t ruid, uid_t euid, uid_t suid)

Can be tricky

— POSIX 1003.1:

If the process has appropriate privileges, the setuid(newuid) function sets
the real user ID, effective user ID, and the [saved user ID] to newuid.

— what are appropriate privileges?
Solaris: EUID = 0; FreeBSD: newuid = EUID; Linux: SETUID capability

https://man7.org/linux/man-pages/man2/setuid.2.html

NC STATE UNIVERSITY

Sudo Change Time

* user logs in

— their UID is set to a non-root value, indicating they have
regular user permissions

NC STATE UNIVERSITY

Sudo Change Time

* user logs in

— their UID is set to a non-root value, indicating they have
regular user permissions

* user runs date to change the system time
— Doing this requires escalated privileges (root)

— date is executed but the kernel checks the EUID of the
process to see if it matches the users UID

— Since it doesn't, the process is halted

NC STATE UNIVERSITY

Sudo Change Time

* user logs in

— their UID is set to a non-root value, indicating they have
regular user permissions

* user runs date to change the system time
— Doing this requires escalated privileges (root)

— date is executed but the kernel checks the EUID of the
process to see if it matches the users UID

— Since it doesn't, the process is halted
* user runs sudo date

— sudo elevates the EUID of date to root temporarily, allowing it
to change the time

NC STATE UNIVERSITY

Obligatory XKCD
robm@homebox ~$ Sudo su HEY — WHO DOES
Possuord: SUDO REPORT TH
robm is not inthe sudoers file. INCIDENTS" 70? =
This incident will be reported.
room@homebox ~$ YOU KNOW, TVE
NEVER CHECKED.

J

) [T

Obligatory alt-text: https://xkcd.com/838/

TS
= -, i

https://xkcd.com/838/

NC STATE UNIVERSITY

Summary of all the Functions that Set the User IDs

superuser superuser superuser
setreuid (ruid, euwid) setuid (uid) seteuid (uid)

K \-‘\C\ /‘d
ruid uid

real unprivileged effective unprivileged saved
user 1D setreuid user 1D setreuid set-user-1D
‘R_——'-‘_"/

exec of
set-user-1D

unprivileged unprivileged
setuidor seteuid setuidor seteuid

source: http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch08levisec11.html

https://web.archive.org/web/20200223221952/http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch08lev1sec11.html

Early Example of Privilege Escalation

Bug in sendmail 8.10.1:
* call to setuid(getuid()) to clear privileges (effective UID is root)
* on Linux, attacker could clear SETUID capability

e call clears EUID, but SUID remains root

Further reading

Setuid Demystified, Hao Chen, David Wagner, and Drew Dean
11th USENIX Security Symposium, 2002

http://www.cs.umd.edu/~jkatz/TEACHING/comp_sec_F04/downloads/setuid.pdf

NC STATE UNIVERSITY

User Authentication

How does a process get a user ID?

NC STATE UNIVERSITY

User Authentication

How does a process get a user ID?
Authentication

NC STATE UNIVERSITY

User Authentication
Passwords

— user passwords are used as keys for crypt() function
— uses SHA-512
— 8-byte “salt”

* chosen from date, not secret

* prevent same passwords to map onto same string
* make dictionary attacks more difficult

sudo cat /etc/shadow
kali:yj9T$1R7REZAXgU56yXN19PFiN/$0I3B/0eQGX00Tb70pQ.azBMOgG2IMONeRj4MN3HCQ. :19331:0:99999:7:::

SHA-512 encryption of "kali"

More on salting passwords in our Web Security lectures

NC STATE UNIVERSITY

User Authentication

Password Cracking

 dictionary attacks (try common passwords)
* rainbow tables (efficiently try common passwords)
« simple brute force (inefficiently try all passwords)

Password Crackers

* Crack
« JohnTheRipper

NC STATE UNIVERSITY

User Authentication
Shadow passwords

* password file is needed by many applications to map user ID to user names
* encrypted passwords are not

kali:yj9T$1R7REZ4XgU56yXN19PFiN/$0I3B/0eQGX00Tb70pQ.azBMOgG2IMONeRj4MN3HCQ. : 19331:0:99999:7: : :

/etc/shadow
* holds encrypted passwords

* account information
— last change date (19331)
— minimum change frequency (0, 99999)

— number of days before expiration (7)

* readable only by superuser and privileged programs
* SHA-512 hashed passwords (default on Ubuntu) to slow down guessing

NC STATE UNIVERSITY

User Authentication

Shadow passwords
* a number of other encryption / hashing algorithms were proposed
* blowfish, SHA-1, ...

Other authentication means possible
* Linux PAM (pluggable authentication modules)
* Kerberos
* Active directory (Windows)

NC STATE UNIVERSITY

Group Model
Users belong to one or more groups
®* primary group (stored in /etc/passwd)
® additional groups (stored in /etc/group)
* Dbecome group member with newgrp
® can also to set group password (none by default)

/etc/group (groupname : password : group id : additional users)

root:x:0:root
bin:x:1:root,bin, daemon
users:x:100:akaprav

Special group wheel/sudo (like on Ubuntu)
* protect root account by limiting user accounts that can perform su

NC STATE UNIVERSITY

File System
 File Hierarchy Tree - primary repository of information
— directories contain file system objects (FSO)

bin boot dev etc home tmp usr var

I
I I [| |
apt J bash 1s J sh USER
7 7

.profile
* File system object

— files, directories, symbolic links (shortcuts), sockets, device files

— referenced by inode (index node)

NC STATE UNIVERSITY

Denial of Service through Inodes

Do exercise caution, this is

#1/bin/bash " " sCri
/bin/bas one of those "attack" scripts

Directory to create files in

target_dir="/tmp/exhaust_inodes" We aren't responsible if you
mkdir -p $target _dir break your machine

Loop to create one million small files

for i in {1..1000000}; do
Create a small file with a unique name, exhausting 1 inode
echo "This is file $i" > "$target dir/file $i.txt"

done

Wait for user input to keep files in place for inspection

Could DOS processes waiting to creating files on the system

if the script exhausts all available inodes, even if there

is still disk space on the drive

read -p "Press any key to delete files and clean up..." -n 1 -r

Clean up: Remove files and directory
rm -rf $target dir
echo "Cleanup complete."

df -i to see how many inodes
your system has

NC STATE UNIVERSITY

File Permissions
Access Control
* permission bits
e chmod, chown, chgrp, umask
* permission structure:

- rwx rwx rwx -
(file type) (user) (group) (other) (sticky)

Type r W X S t
id / sgid
File read access | write access execute Sl.Jl .Sgl sticky bit
inherit id

: , files/dirs only

. . insert and stat / execute | new files have

Directory list files : :) o delete-able by
remove files files, chdir dir-gid owner

NC STATE UNIVERSITY

File Permissions
Access Control
* permission bits
e chmod, chown, chgrp, umask
* permission structure:

s inherits the permissions of

- rwx rwx rw the binary owner

: he
(file type) (user) (group) (ot When you execute passwd, it

inherits root permissions

Type r W X S t
suid/ sgid
inherit id
Find files w/ root setuid
Directory I find / -type f -perm /4000 -exec stat -c "%U %n" {} + | grep root

File read access | write access execute sticky bit

Find available binaries on the system
dpkg -get-resources

NC STATE UNIVERSITY

Sticky bit

No effect on files (on Linux)
When used on a directory, all the files in that directory will
be modifiable only by their owners

What's a very common directory with sticky bit?

Sticky bit
No effect on files (on Linux)

When used on a directory, all the files in that directory will
be modifiable only by their owners

What's a very common directory with sticky bit?

$ 1s -1d /tmp
drwxrwxrwt 26 root root 69632 Sep 7 15:24 /tmp

$ 1s -1
-rw-rw-r-- 1 username username 0 Sep 7 15:29 test

$ chmod +t test; 1ls -1
-rw-rw-r-t 1 username username O Sep 7 15:29 test

NC STATE UNIVERSITY

SUID Programs

Each process has real and effective user / group 1D
* usually identical
* real IDs
— determined by current user
— authentication (login, su)
» effective IDs
— determine the “rights” of a process
— system calls (e.g., setuid())
* suid/ sgid bits
— to start process with effective ID different from real ID
— attractive target for attacker

Never use suid shell scripts (multiplying problems)

* many operating systems ignore the setuid attribute when applied to executable
shell scripts

* you need to patch the kernel to enable it

NC STATE UNIVERSITY

File System

Shared resource
— susceptible to race condition problems

Time-of-Check, Time-of-Use (TOCTOU)
— common race condition problem
— problem:
* Time-Of-Check (t,): validity of assumption A on entity E is
checked
* Time-Of-Use (t,): assuming A is still valid, E is used
» Time-Of-Attack (t,): assumption A is invalidated

https://en.wikipedia.org/wiki/Race_condition

TOCTOU

* Steps to access a resource
— obtain reference to resource
— query resource to obtain characteristics
— analyze query results
— if resource is fit, access it

* Often occurs in Unix file system accesses
— check permissions for a certain file name (e.g., using access(2))
— open the file, using the file name (e.g., using fopen(3))
— four levels of indirection (symbolic link - hard link - inode - file descriptor)

* Windows uses file handles and includes checks in the API open call

https://man7.org/linux/man-pages/man2/access.2.html
https://www.man7.org/linux/man-pages/man3/fopen.3.html
https://learn.microsoft.com/en-us/windows/win32/api/mswmdm/nf-mswmdm-imdspobject-open

NC STATE UNIVERSITY

TOCTOU Example

/* access returns @ on success */

if(l'access(file, W OK)) {
f = fopen(file,)
write to file(f);

W_OK: Flag meaning test for write permission.
access return value is 9 if the access is permitted

} else {
fprintf(stderr,

Application checks if a file is safe to write to, if so then writes to it.

NC STATE UNIVERSITY

TOCTOU Example

/* access returns @ on success */

if(l'access(file, W OK)) {
f = fopen(file,)
write to file(f);

W_OK: Flag meaning test for write permission.
access return value is 9 if the access is permitted

} else {
fprintf(stderr,

Application checks if a file is safe to write to, if so then writes to it.

Attack creates symbolic link to dummy
Application makes access () call on dummy

$ touch dummy; 1ln -s dummy pointer System says dummy is okay to write to

$ rm pointer; 1ln -s /etc/passwd pointer

NC STATE UNIVERSITY

TOCTOU Example

/* access returns @ on success */

if(l'access(file, W OK)) {
f = fopen(file,)
write to file(f);

W_OK: Flag meaning test for write permission.
access return value is 9 if the access is permitted

} else {
fprintf(stderr,

Application checks if a file is safe to write to, if so then writes to it.

Attack creates symbolic link to dummy
Application makes access () call on dummy

$ touch dummy; ln -s dummy pointer\ System says dummy is okay to write to

$ rm pointer; ln -s /etc/passwd pointer Before fopen() operation occurs, attacker
deletes the symbolic link on dummy and creates it

on /etc/passwd

TOCTOU Example

e setuid Scripts
— exec () system call invokes seteuid() call prior to executing program
— program is a script, so command interpreter is loaded first
— program interpreted (with root privileges) is invoked on script name

— attacker can replace script content between step 2 and 3
#!/bin/bash

Check if the user has read permissions on sensitive file
if [-r "sensitive_file"]; then
echo "User has read permissions. Executing privileged operation..."

Perform privileged operation

cat "sensitive file"
else

echo "User does not have read permissions. Operation aborted."
fi

TOCTOU Example

e setuid Scripts
— exec () system call invokes seteuid() call prior to executing program
— program is a script, so command interpreter is loaded first
— program interpreted (with root privileges) is invoked on script name

— attacker can replace script content between step 2 and 3
#!/bin/bash

Check if the user has read permissions on sensitive file
if [-r "sensitive_file"]; then
echo "User has read permissions. Executing privileged operation..."
Perform privileged operation
cat "sensitive file"
else
echo "Usel

User triggers execution of script...

fi

TOCTOU Example

e setuid Scripts
— exec () system call invokes seteuid() call prior to executing program
— program is a script, so command interpreter is loaded first
— program interpreted (with root privileges) is invoked on script name

— attacker can replace script content between step 2 and 3
#!/bin/bash

Check if the user has read permissions on sensitive file

if [-r "sensitive_file"]; then
echo "User has read permissions. Executing privileged operation..."
Perform privileged operation
cat "sensitive file"

else
echc But before execution, attacker creates a symbolic link named

fi sensitive_ file pointing to /etc/passwd

$ 1In -s /etc/passwd sensitive file

TOCTOU Example

#!/bin/bash

Create a temporary file

. . t h /tmp/ 1
» Directory operations S HIPIEREIREE

— rm can remove directory trees,

Check if the directory exists
if [-f "/tmp/example"]; then

traverses directories depth-first # Prompt the user before removing
_ echo "File exists. Are you sure? (y/n)"
— issues chdir("..") to go one level read answer

if ["$answer"” == "y"]; then
Remove the file

up after removing a directory branch

. . rm -rf /tmp/example
— by relocating subdirectory to another echo "File removed. "

directory, arbitrary files can be else
echo "File not removed."
deleted .
else
echo "File does not exist."
fi

TOCTOU Example

#!/bin/bash

Create a temporary file

. . touch /tmp/example
 Directory operations
: : : # Check if the directory exists
ol 0| (Me After checking the file exists... e R e e p Iy L e
1. Attacker deletes /.tm.p/example # Prompt the user before removing
2. Creates a symbolic link echo "File exists. Are you sure? (y/n)"
i : In -s /etc /tmp/example Fead EREEE
3. Process proceeds to execute if [" " == "y" 1; then
rm -rf /etc # Remove the file
. . -rf /t 1
— by relocating subdirectory to another o orT ime/exanple,
directory, arbitrary files can be else

echo "File not removed."
deleted .

else

echo "File does not exist."
fi

NC STATE UNIVERSITY

TOCTOU Example

« Temporary files
— commonly opened in /tmp or /var/tmp
— often guessable file names

— if the attacker can intercept the process between permission check and
operation, and the /tmp file is trivially named, they may be able to
manipulate it

Common Trivial Names:
cache.dat
temp file

data.txt
apache2.pid
sshd.pid

NC STATE UNIVERSITY

Temporary Files

* "Secure" procedure for creating temporary files
— pick a prefix for your filename
— generate at least 64 bits of high-quality randomness
— base64 encode the random bits
— concatenate the prefix with the encoded random data
— set umask appropriately (0066 is usually good, readable/writable only by you)
— use fopen(3) to create the file, opening it in the proper mode
— delete the file immediately using unlink(2) (deletes file after you're done with it)
— perform reads, writes, and seeks on the file as necessary

— finally, close the file

https://www.man7.org/linux/man-pages/man3/fopen.3.html
https://man7.org/linux/man-pages/man2/unlink.2.html

NC STATE UNIVERSITY

Prevention

* Immutable bindings
— rather than using the file's variable, operate on file descriptors (fstat)

{

fd = open(filename, O_RDONLY);

struct stat st; Ensures that we're not attempting
fstat(fd, &st) to word with a special file type
(directory, symbolic link)

i%.(!S_ISREG(st.st_mode)) { ...}

printf("File size: %1d bytes\n", st.st_size);
close(fd);
return 0;

https://linux.die.net/man/2/fstat

NC STATE UNIVERSITY

Prevention
* Usethe O CREAT | O _EXCL flags to create a new file with open(2)

— be prepared to have the open call fail

{

= open(filename, O WRONLY | O _CREAT | O_EXCL,);

close(fd);
return 0;

Automatically creates the file if it
does not exist and fails if it does

}

https://linux.die.net/man/2/open

NC STATE UNIVERSITY

Prevention

Series of papers on the access system call

Fixing races for fun and profit: how to use access(2)
D. Dean and A. Hu
Usenix Security Symposium, 2004

Fixing races for fun and profit: how to abuse atime
N. Borisov, R. Johnson, N. Sastry, and D. Wagner
Usenix Security Symposium, 2005

Portably Solving File TOCTTOU Races with Hardness Amplification
D. Tsafrir, T. Hertz, D. Wagner, and D.Da Silva
Usenix Conference on File and Storage Technologies (FAST), 2008

https://www.usenix.org/legacy/event/sec04/tech/full_papers/dean/dean_html/
https://www.usenix.org/legacy/event/sec05/tech/full_papers/borisov/borisov.pdf
https://www.usenix.org/legacy/event/fast08/tech/full_papers/tsafrir/tsafrir.pdf

NC STATE UNIVERSITY

Locking
struct flock lock;
* Ensures exclusive access to a certain
e e
* Used to circumvent accidental race i | O_CREAT,
conditions

) . // Prepare lock structure
— advisory locking (processes need to cooperate) B SRR R RS SRV 8 -0 oY S

lock.1l whence = SEEK_SET;
— not mandatory, therefore not secure Toelk Il s

. i lock.1l_len = @9; // Lock entire file
* Often, files are used for locking
// Try to acquire the lock

— portable (files can be created nearly if (fontl(fd, F SETLK, &lock) == -1) {
everywhere) // error

— “stuck” locks can be easily removed }

// Do some operations

* Simple method

. : // Unlock the file
— create file using the O_EXCL flag lock.1 type = F_UNLCK;

NC STATE UNIVERSITY

Shell
* Shell

— one of the core Unix application
— both a command language and programming language

— provides an interface to the Unix operating system

— rich features such as control-flow primitives, parameter passing, variables,
and string substitution

— communication between shell and spawned programs via redirection and
pipes

— different flavors
®* bash and sh, tcsh and csh, ksh, zsh

Shell Attacks

* Environment Variables

— $HOME and $PATH can modify behavior of programs that

operate with relative path names Used to be super common but IFS
has been removed since actual

use is rare

— $IFS — internal field separator
* used to parse tokens

$ IFS=';" ./vulnerable script.sh
* usually set to [\t\n] but can be changed to "/" Enter a filename:

* "/bin/1s" is parsed as "bin 1s" calling bin locally [RAUZELEEREECHIEEN

* IFS now only used to split expanded variables

— preserve attack (/usr/lib/preserve is SUID) IFS=$'\n’

ln - bi h
* called "/bin/mail" when vi crashes to preserve file il o5 SR/

/usr/lib/preserve/bin
* change IFS, create bin as link to /bin/sh, kill vi vi /usr/lib/preserve/some_file

NC STATE UNIVERSITY

Shell Attacks

* Control and escape characters
— can be injected into command string
— modify or extend shell behavior
— user input used for shell commands has to be rigorously sanitized
— easy to make mistakes

— classic examples are '; "' and '&" find /some_path -name "filename.txt; 1ls /"

* Applications that are invoked via shell can be targets as well
— increased vulnerability surface

®* Restricted shell
— invoked with -r or rbash
— more controlled environment

Shell Attacks

e system(char *cmd)
— function called by programs to execute other commands
— invokes shell
— executes string argument by calling /bin/sh -c string
— makes binary program vulnerable to shell attacks

— especially when user input is utilized

® popen(char *cmd, char *type)

— forks a process, opens a pipe and invokes shell for cmd

NC STATE UNIVERSITY

File Descriptor Attacks

SUID program (everyone uses, root permissions) opens file

forks external process
— sometimes under user control

on-execute flag
— if close-on-exec flag is not set, then new process inherits file descriptor
— malicious attacker might exploit such weakness

Linux Perl 5.6.0

— getpwuid() leaves /etc/shadow opened (June 2002)
— could attack this with Apache or mod_perl

— web browsers and flash

NC STATE UNIVERSITY

Resource Limits

#!/bin/bash

* File system limits

— quotas # I._ir‘nit CPU time to 10 seconds
ulimit -t

— restrict storage blocks and number of inodes # Limit virtual memory to 100 MB

— ulimit -v
— hard limit
* can never be exceeded (operation fails) # Infinite loop consumes CPU and memory

while true; do

— soft limit :

) done
* can be exceeded temporarily

— can be defined per mount-point

— defend against resource exhaustion (denial of service)

®* Process resource limits

— number of child processes, open file descriptors

Signals

Signal .
o . _ #!/bin/bash
® asynchronous notification; simple form of interrupt
® can happen anywhere for process in user space # Start the vulnerable SCI"ipt in the backgr‘ound
) . ./vulnerable script.sh &
* used to deliver segmentation faults, reload
commands, ... # Obtain the PID of the vulnerable script
* kill command pid=$!
Wait for a few seconds to ensure the

Signa| hand“ng vulnerable script is running

sleep 2

® process can install signal handlers

* when no handler is present, default behavior is used JEESEIERERSIICINENEEF-{EN R ok o [SEAVIT RN IETor | N NSIET el ok ok

— ignore or kill process echo "Sending SIGINT signal to PID $pid..."
kill -2 $pid

* possible to catch all signals except SIGKILL (-9)

NC STATE UNIVERSITY

Signals

* Security issues

— code has to be re-entrant (code running, signal jump, then come back)
* atomic modifications

* no global data structures
— race conditions
— unsafe library calls, system calls

— examples
* wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006

* Secure signals
— write handler as simple as possible

— block signals in handler

NC STATE UNIVERSITY

Shared Libraries
* Library
— collection of object files

— included into (linked) program as needed

— code reuse

* Shared library
— multiple processes share a single library copy
— save disk space (program size is reduced)
— save memory space (only a single copy in memory)
— used by virtually all Unix applications (at least libc.so)

— check binaries with 1dd

NC STATE UNIVERSITY

Shared Libraries

* Static shared library
— address binding at link-time
— not very flexible when library changes
— code is fast

* Dynamic shared library
— address binding at load-time
— uses procedure linkage table (PLT) and global offset table (GOT) to hold references to code
— code is slower (redirection)
— loading is slow (binding has to be done at run-time)
— classic .so or .dll libraries

* PLT and GOT entries are very popular attack targets
— buffer overflows

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

NC STATE UNIVERSITY

Shared Libraries

* Management
— stored in special directories (listed in /etc/1d.so.conf)

— manage cache with 1dconfig

* Preload
— override (substitute) with other version
— use /etc/ld.so.preload
— can also use environment variables for override
— possible security hazard

— now disabled for SUID programs (old Solaris vulnerability)

NC STATE UNIVERSITY

Advanced Security Features

* Address space protection
— address space layout randomization (ASLR)
— non-executable stack (based on NX bit or PAX patches)

* Mandatory access control extensions
— SELinux/AppArmor
— role-based access control extensions
— capability support

* Miscellaneous improvements
— hardened chroot jails
— better auditing

* https://wiki.ubuntu.com/Security/Features

https://wiki.ubuntu.com/Security/Features

NC STATE UNIVERSITY

in-class lab

Go to https://pwn.college/linux-luminarium/
Solve 12 challenges (they are really easy :))

https://pwn.college/linux-luminarium/

