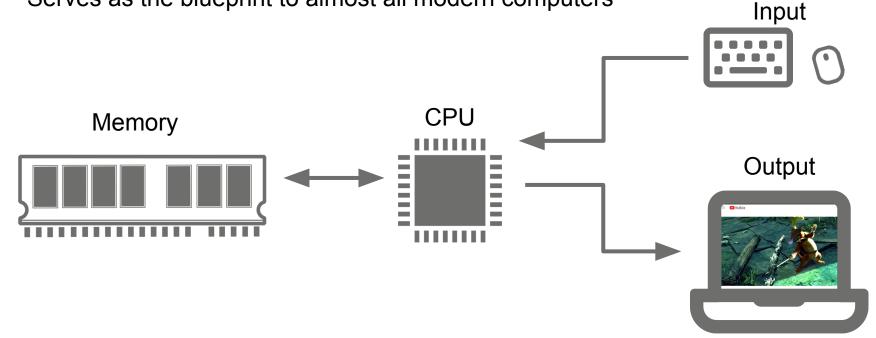

NC STATE UNIVERSITY



CSC 405 Assembly

Alexandros Kapravelos akaprav@ncsu.edu

The von Neumann Architecture

Serves as the blueprint to almost all modern computers

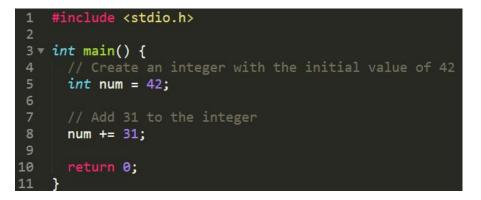
The von Neumann Architecture

Memory holds two types of information:

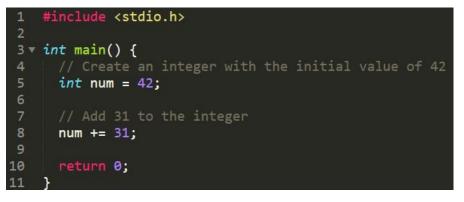
Data Items

- variables, objects, etc.
- Read **from** or written **to**

Program Instructions


- machine code
- Code, but converted into 'binary words'

Both are stored in memory as binary numbers in a continuous array of fixed width (also known as **words**) and have a unique **address**


Memory

Let's take a look at a simple C program

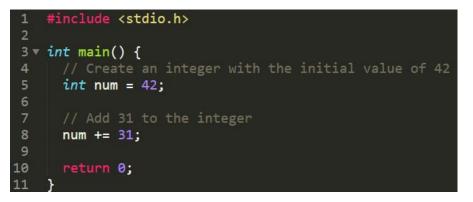
We can compile C programs using gcc to generate a binary executable

gcc simple.c -o simple

Using gcc, compile simple.c and output its binary as simple

We can compile C programs using gcc to generate a binary executable

1 #include <stdio.h></stdio.h>																		
2																		
3 v int main() {																		
4 // Create an integer with the initial	value of	42																
	TOLOC OF																	
5																		
6	00001000	E 3	ØF	1 E	FA	48	83	EC	08	48	88	05	D9	2 F	00	00	48	óúH.ì.HÙ/H
7 // Add 31 to the integer	00001010	85	CO	74	02	FF	DØ	48	83	C4	08	123	00	00	00	00		.Àt.ÿÐH.Ä.Ã
	00001020	FF	35	A2	2 F	00	00	F2	FF	25	A 3	2 F	00	00	ØF	1F	00	ÿ5¢/òÿ%£/
	00001030	F3	ØF	1 E	FA	F2	FF	25	BD	2 F	00	00	ØF	1F	44	00	00	óúòÿ%¼/D
9	00001040	F 3	0 F	1 E	FA	31	ED	49	89	D1	5 E	48	89	E 2	48	83	E 4	óú1íI.Ñ^H.âH.ä
10 return 0;	00001050	FØ	50	54	45	31	CØ	31	C9	48	8D	3D	CA	00	00	00	FF	ðpte1À1ÉH.=Êÿ
11 }	00001060	15	73	2 F	00	00	F 4	66	2 E	ØF	1 F	84	00	00	00	00	00	.s/ôf
11 }	00001070	48	8 D	3D	99	2 F	00	00	48	8 D	05	92	2 F	00	00	48	39	H.=./H/H9
• • • •	00001080	F 8	74	15	48	8 B	05	56	2 F	00	00	48	85	C 0	74	09	FF	øt.HV/H.Àt.ÿ
gcc simple.c -o simple	00001090	Ε0	0 F	1 F	80	00	00	00	00	CЗ	ØF	1 F	80	00	00	00	00	àÃ
0	000010A0	48	8 D	3 D	69	2 F	00	00	48	8 D	35	62	2 F	00	00	48	29	H.=i/H.5b/H)
	00001080	FE	48	89	FØ	48	C1	ΕE	3 F	48	C1	F 8	03	48	01	C 6	48	þH.ðHÁî?HÁø.H.ÆH
	00001000	D1	FE	74	14	48	8 B	05	25	2 F	00	00	48	85	C 0	74	08	Ñþt.H%/H.Àt.
	000010D0	FF	ΕØ	66	ØF	1 F	44	00	00	C3	0 F	1 F	80	00	00	00	00	ÿàfDÃ
	000010E0	F 3	0 F	1 E	FA	80	ЗD	25	2 F	00	00	00	75	2 B	55	48	83	óú.=%/u+UH.
It will translate things into binary!	000010F0	3D	02	2 F	00	00	00	48	89	E 5	74	0 C	48	8 B	2.20	06		=./H.åt.H.=./
	00001100	00		E 8	29	FF	FF	FF	E 8	64	FF	FF	FF	C6		FD		è)ÿÿÿèdÿÿÿÆ.ý.
	00001110	00	00	01	5D	C 3	ØF	1 F	00	C 3	ØF	1 F	80	00			1000]ÃÂ
	00001120	F 3	0 F	1 E	FA	E 9	77	FF	FF	FF	F 3	ØF	1 E	FA	55			óúéwÿÿÿóúUH.
	00001130	E 5	C7	45	FC	2 A	00	00	00	83	45	FC	1 F	88	00		00	åÇEü*Eü
	00001140	00	5D	C3	00	F 3	ØF	1E	FA	48	83	EC	08	48	83	-		.]Ä.óúH.ì.H.Ä.
	00001150	C 3	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ã


We can compile C programs using gcc to generate a binary executable

1 #incl	ude <stdio.h></stdio.h>																		
2																			
3 ▼ int m	ain() {																		
	Create an integer with the initial	walue of	43																
		varue or	42																
5 int	num = 42;																		
6		00001000	E 2	ØF	1 5	EA	48	83	EC	00	48	0 D	05	D9	2 F	00	00	10	óúH.ì.HÙ/H
7 //	Add 31 to the integer	00001010	85	CA	74	92	1.1			83	40	00	1000	00	66		00		.Àt.ÿÐH.Ä.Ã
		00001020	FF	35	A 2	2 F	99	66	F 2	FF	25	43	2 5	99	99	100	1 F	1000	ÿ5¢/òÿ%£/
	+= 31;	00001030	F 3	ØF	1 6	FA	F2	FF	25	BD	2 F	00	00	ØF	1 F		00		óúòÿ%%/D
9		00001040	F 3	ØF	1 E	FA	31	ED		89	D1	5 E		89	E2		83		óú1íI.Ñ^H.âH.ä
10 ret	urn 0;	00001050	FØ	50	54	45	31	CØ	31	C 9	48	8D	3D	CA	00	00			ðPTE1À1ÉH.=Êÿ
11 }		00001060	15	73	2 F	00	00	F4	66	2 E	ØF	1 F	84	00	00	00	00	00	.s/ôf
TT 1		00001070	48	8 D	3D	99	2 F	00	00	48	8D	05	92	2 F	00	00	48	39	H.=./H/H9
	• - • -	00001080	F 8	74	15	48	8 B	05	56	2 F	00	00	48	85	C 0	74	09	FF	øt.HV/H.Àt.ÿ
gcc s	<pre>imple.c -o simple</pre>	00001090	ΕØ	0 F	1 F	80	00	00	00	00	С3	ØF	1 F	80	00	00	00	00	àÃ
0		000010A0	48	8 D	3 D	69	2 F	00	00	48	8 D	35	62	2 F	00	00	48	29	H.=i/H.5b/H)
		000010B0	FE	48	89	FØ	48	C1	EE	3F	48	C1	F 8	03	48	01	C6	48	þH.ðHÁî?HÁø.H.ÆH
		00001000	D1				48	_			100	100					74		Ñþt.H%/H.Àt.
		000010D0	FF	EØ	66	ØF	1F	44	00	00	C3	ØF	1F						ÿàfDÃ
		000010E0	Туре	2								Val	ue		2 B				óú.=%/u+UH.
lt will ti	anslate things into binary!	000010F0												1.10	8 B				=./H.åt.H.=./
		00001100		by	te							42		100		05			è)ÿÿÿèdÿÿÿÆ.ý.
		00001110		0.5	1 F	FΔ	5.0	77	FF		FF	F3	0.5	0	00	00		1000]ÃÂ
		00001120		· ·	45		E 9		00	P P	00	15	EC.	10	DO	55			óúéwÿÿÿóúUH. åÇEü*Eü.,
		00001130		5D	45	60	E 2	00 AE	1 5	EA	12	45	FC	08	48	83			.]Ã.óúH.ì.H.Ä.
		00001150		100	00	~~	00	00	00	66	40	00	60	1.1	00				. JA.O UH.I.H.A. Ã
		00001130	05	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	A

We can compile C programs using gcc to generate a binary executable

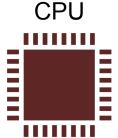
1	<pre>#include <stdio.h></stdio.h></pre>																		
2																			
3 1	<pre>int main() {</pre>																		
4	// Create an integer with the initial	value of	42																
		varue or	42																
5	<i>int</i> num = 42;																		
6		00001000	F 3	0 F	1 E	FA	48	83	EC	08	48	8 B	05	D9	2 F	00	00	48	óúH.ì.HÙ/H
7	<pre>// Add 31 to the integer</pre>	00001010	85	CØ	74	02	FF	DØ	48	83	C4	08	С3	00	00	00	00	00	.Àt.ÿÐH.Ä.Ã
8	num += 31;	00001020	FF	35	A 2	2 F	00	00	F 2	FF	25	A 3	2 F	00	00	ØF	1 F	00	ÿ5¢/òÿ%£/
		00001030	F 3	0 F	1 E	FA	F 2	FF	25	BD	2 F	00	00	ØF	1 F	44	00	00	óúòÿ%¼/D
9		00001040	F 3	0 F	1 E	FA	31	ED	49	89	D1	5 E	48	89	E 2	48	83	E 4	óú1íI.Ñ^H.âH.ä
10	return 0;	00001050	FØ	50	54	45	31	C 0	31	C 9	48	8 D	ЗD	CA	00	00	00	FF	ðPTE1À1ÉH.=Êÿ
11		00001060	15	73	2 F	00	00	F 4	66	2 E	0 F	1 F	84	00	00	00	00	00	.s/ôf
		00001070	48	8 D	3 D	99	2 F	00	00	48	8 D	05	92	2 F	00		48		H.=./H/H9
_		00001080	F 8	74	15	48	8 B	05	56	2 F	00	00	48	85	C 0	-	09		øt.HV/H.Àt.ÿ
g	cc simple.c -o simple	00001090	ΕØ	ØF	1 F	80	00	00	00	00	С3	ØF	1 F	80	00		00	1.	àÂ
U	1 1	000010A0	48	8D	3 D	69	2 F	00	00	48	8 D	35	62	2 F	00		48		H.=i/H.5b/H)
		00001080	FE	48	89	F0	48	C1	EE	3 F	48	C1	F 8	03	48		C 6		<pre>bH.δHÁî?HÁø.H.ÆH</pre>
		00001000	D1		-			_			100		00				74		Ñþt.н%/н.Àt.
		000010D0			66	01	11	44	00	00	63		1F			00			ÿàfDÃ
		000010E0 000010F0	Туре	5								Val	ue		2 B 8 B				óú.=%/u+UH.
l It	will translate things into binary!	00001100			1							1		1000	6 C G				=./H.åt.H.=./
	Je and Je and Je	00001100		by	te							31			00		00		è)ÿÿÿèdÿÿÿÆ.ý.]ÃÃ
		00001120	E 3	0.E	1.5	EA	F 9	77	E E	E E	E E	F 3	ØF	1 E	FA		48	10000	ó <u>ú</u> éwÿÿÿóúUH.
		00001130	E 5	1.000	45	FC	24	99	99	88	83		· · ·	1 F		00			åÇEü*Eü
		00001130	00		03	00	E 3	AF	1 6	FΔ	4.8	83			48		C4		.]Ã.óúH.ì.H.Ä.
		00001150		00	00		1	00	00	00	00		00				-		Ã
			~ ~ ~		20	20			~~		00	00	~~	00		00			

We can compile C programs using gcc to generate a binary executable

gcc -nostdlib simple.c -o simple

We can also exclude the standard library with -nostdlib to reduce "the code"
 00001000
 F30F
 1EFA
 5548
 89E5
 C745
 FC2A
 0000
 0083
 ó..úUH.åÇEü*....

 00001010
 45FC
 1FB8
 0000
 0000
 5DC3
 0000
 0000
 6000
 Eü.,...]Ã.....


Same code, but only simple.c and nothing else

The von Neumann Architecture

The CPU is in charge of executing the currently load program's instructions

Executes three primary tasks:

- Arithmetic Logic Unit (ALU)
 - Make some calculation
 - Do some comparison
- Registers
 - Read/Write values from/to memory
 - Stores values on the CPU rather than pushing to memory for efficiency
- Control Unit
 - Conditionally **jump** to execute other instructions

Memory is Slow

When the CPU retrieves contents from memory address i

- i travels from the CPU to RAM
- RAM's logic selects the memory register whose address is i
- contents of RAM[i] travels back to the CPU

Level	Access Time	Typical Size	Technology	Managed By
Registers	1-3 ns	1 KB	CMOS	Compiler
L1 Cache	2-8 ns	8KB - 128KB	SRAM	Hardware
L2 Cache	5-12 ns	0.5MB - 8MB	SRAM	Hardware
Main Memory	10-60 ns	64MB - 1GB	DRAM	OS
Hard Disk	0.3-1 ms	20GB - 100GB	Magnetic	OS / User

Registers

Registers provide the same service but without travel and search expenses

This is because the reside inside the CPU and are much more limited in supply (allowing for shorter instructions)

Serves three purposes:

- **Data** stores values for short term calculations
- Addressing stores memory addresses for various functions
- Program Counter keeps track of the next instruction to be fetched

Registers

Registers provide the same service but without travel and search expenses

This is because the reside inside the CPU and are much more limited in supply (allowing for shorter instructions)

Serves three purposes:

- Data stores values for short term calculations
- Addressing stores memory addresses for various functions
- Program Counter fetched

As we'll see next week, this is how we can cause some damage

Machine code can be broken down into two categories: **binary** and **symbolic**

C7 45 FC 2A 00 00 00

00001000	F30F	1EFA	5548	89E5	C745	FC2A	0000	0083	óúUH.åÇEü*
00001010	45FC	1FB8	0000	0000	5DC3	0000	0000	0000	Eü.,]Ã

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00

"binary"

00001000	F30F	1EFA	5548	89E5	C745	FC2A	0000	0083	óúUH.åÇEü*
00001010	45FC	1FB8	0000	0000	5DC3	0000	0000	0000	Eü.,]Ã

Machine code can be broken down into two categories:

C7 45 FC 2A 00 00 00

Instead of 1100 0111 0100 0101 1111 1100 0010 1010 0000 0000 0000 0000 0000 0000, we commonly condense it down to hexadecimal for "easier reading"

00001000	F30F	1EFA	5548	89E5	C745	FC2A	0000	0083	óúUH.åÇEü*
00001010	45FC	1FB8	0000	0000	5DC3	0000	0000	0000	Eü.,]Ã

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00

We can also use a symbolic

assembly language that converts 00001000 F30F 1EFA 5548 89E5►C745 FC2A 0000 these 1's and 0's into something 00001010 45FC 1FB8 0000 0000 5DC3 0000 0000 actually readable main: 1 %rbp 2 pushq 3 %rsp, %rbp movq 4 movl \$42, -4(%rbp) 5 addl \$31, -4(%rbp) 6 movl \$0, %eax 7 %rbp popq 8 ret

Assembly Flavors

There are several Assembly languages, each written for a specific processor

In accordance with the processor's Instruction Set Architecture, or **ISA**

Three Primary Architectures

- x86
- ARM
- MIPS
- plus many more...

x86 Assembly Syntax - Reserved Keywords

• lds	• sti	 bound 	 fwait 	 loopz 	• Isl	 fucompp 	 lock 	 fisubrp 	 fcomp 	 fnop
• les	• cld	 and 	• movs	• jmp	clts	• lea	 nop 	 fisubr 	 fcompp 	 fsave
• lfs	 std 	• or	• cmps	• ljmp	 arpl 	• mov	• hlt	• fmul	 ficom 	 fnsave
• lgs	 add 	• xor	 stos 	• int	 bsf 	• movw	• fld	 fmulp 	 ficomp 	 fstew
• Iss	• adc	• imul	 lods 	• into	 bsr 	 movsx 	 fst 	• fimul	 ftst 	 fnstew
 pop 	 sub 	• mul	• scas	 iret 	• bt	 movzb 	 fstp 	 fdiv 	 fxam 	 fstenv
 push 	• sbb	• div	 xlat 	 sldt 	• btc	• popa	 fxch 	 fdivp 	 fptan 	 fnstenv
• in	• cmp	• idiv	• rep	• str	• btr	 pusha 	• fild	 fdivr 	 fpatan 	 fstsw
 ins 	 inc 	 cbtw 	 repnz 	• Ildt	• bts	• rcl	 fist 	 fdivrp 	• f2xm1	 fnstsw
• out	• dec	• cwtl	• repz	• Itr	 cmpxchg 	• rcr	 fistp 	• fidiv	• fyl2x	 frstor
• outs	 test 	 cwtd 	 Icall 	• verr	• fsin	• rol	 fbld 	 fidivr 	 fyl2xp1 	 fclex
 lahf 	 sal 	 cltd 	 call 	 verw 	 fcos 	• ror	 fbstp 	 fsqrt 	 fldl2e 	 fnclex
 sahf 	 shl 	• daa	• ret	 sgdt 	 fsincos 	 setcc 	 fadd 	 fscale 	 fldl2t 	 fdecstp
 popf 	 sar 	• das	 Iret 	 sidt 	• fld	 bswap 	 faddp 	 fprem 	 fldlg2 	 ffree
 pushf 	 shr 	• aaa	 enter 	 Igdt 	 fldcw 	 xadd 	 fiadd 	 frndint 	 fldln2 	 fincstp
• cmc	 shld 	• aas	 leave 	• lidt	 fldenv 	 xchg 	 fsub 	 fxtract 	• fldpi	
• clc	 shrd 	• aam	 jcxz 	 smsw 	 fprem 	 wbinvd 	 fsubp 	 fabs 	• fldz	
 stc 	 not 	• aad	 loop 	 Imsw 	 fucom 	 invd 	 fsubr 	 fchs 	• finit	
• cli	 neg 	 wait 	 loopnz 	• lar	 fucomp 	 invlpg 	 fsubrp 	• fcom	• fnint	

https://en.wikipedia.org/wiki/X86_instruction_listings

x86 Assembly Syntax - Reserved Keywords

 Ids 	• sti	 bound 	 fwait 	 loopz 	• Isl	 fucompp 	 lock 	 fisubrp 	 fcomp 	 fnop
 les 	• cld	 and 	• movs	• jmp	 clts 	• lea	 nop 	 fisubr 	 fcompp 	 fsave
• Ifs	 std 	• or	• cmps	• ljmp	 arpl 	• mov	• hlt	• fmul	 ficom 	 fnsave
 lg: ls: pc pi in: oi oi lai sa pc pi cri 		re the adec	ey al imal	l exis valu	mem st, ha es, a ded fo	ave c Ind s	orre om	spor e of t	nding	tenv sw tsw tor
• clc	 shrd 	 aam 	 jcxz 	 smsw 	 fprem 	 wbinvd 	 fsubp 	 fabs 	• fldz	
 stc 	 not 	 aad 	 loop 	 Imsw 	 fucom 	 invd 	 fsubr 	 fchs 	• finit	
• cli	 neg 	• wait	 loopnz 	• lar	 fucomp 	 invlpg 	 fsubrp 	 fcom 	• fnint	

https://en.wikipedia.org/wiki/X86 instruction listings

Syntax Branches - Intel and AT&T

Intel

- Windows and DOS programs
- Operations follow the format mnemonic destination, source
- mov ebx, 42

AT&T

- Unix programs
- Operations follows the format mnemonic source, destination
- mov \$42, %ebx

Syntax Branches - Intel and AT&T

Intel

- Windows and DOS programs
- Operations follow the format mnemonic destination, source
- mov ebx, 42 ◀

AT&T

- Unix programs
- Operations follows the format mnemonic source, destination
- mov \$42, %ebx -

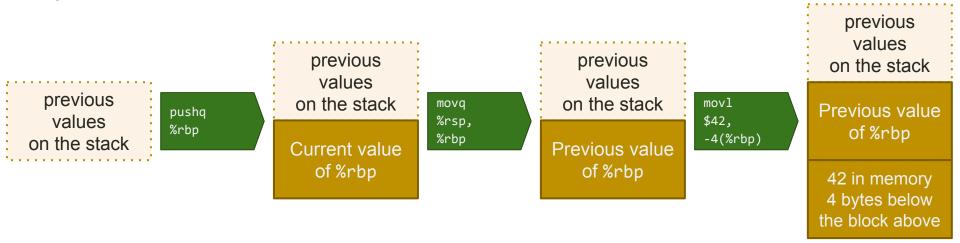
Move the value 42 into register ebx

* Slight variations between the two

Executing Programs

When a program is executed, various elements of the program are loaded into memory

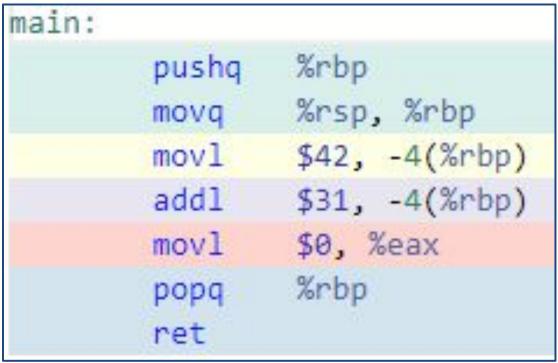
Information from the program is then loaded from the address space in memory


Three Segments:

- **.text** holds program instructions (read-only)
- .bss reserved for global variables, contains uninitialized data
 .data reserved for global variables, contains initialized data

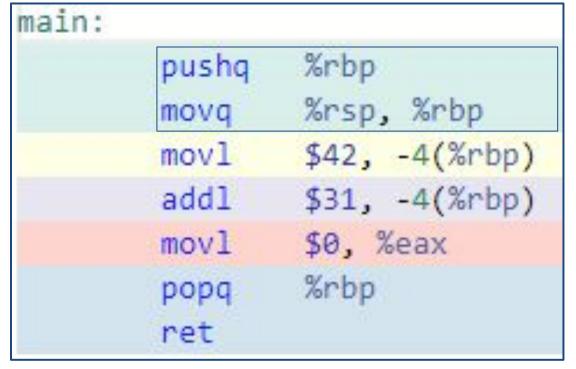
Stack Machine Model

Arithmetic commands pop their operands from the top of the stack and push their results back to the stack


Since stacks are LIFO (last in first out), a stack pointer (sp) tracks the location just above the topmost element

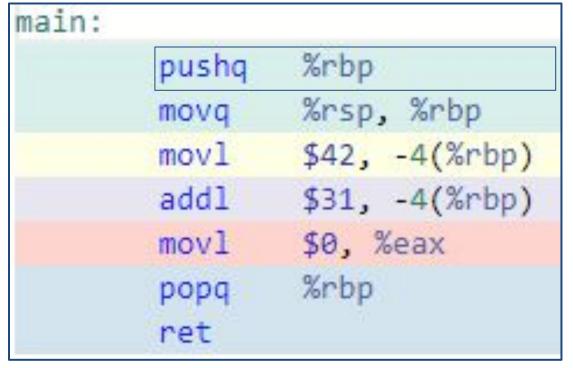
Programs in Memory

- ↑ Lower Memory Addresses (0x08000000) Shared Libraries
 - .text
 - .bss
 - Heap (grows \downarrow)
 - Stack (grows ↑)
 - env pointer
 - argc
- ↓ Higher Memory Addresses (0xbffffff)


Let's break down the machine code of simple.c

int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

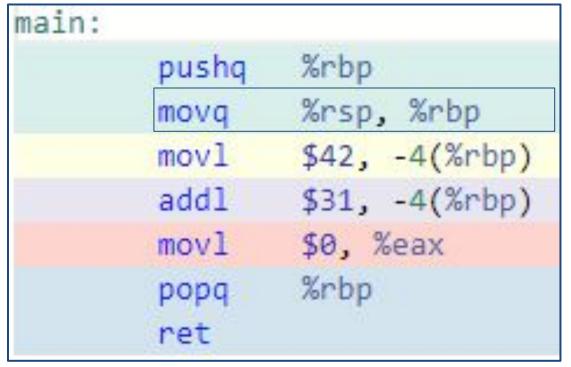
int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;


Let's break down the machine code of simple.c

These first two instructions serve as the "function prologue"

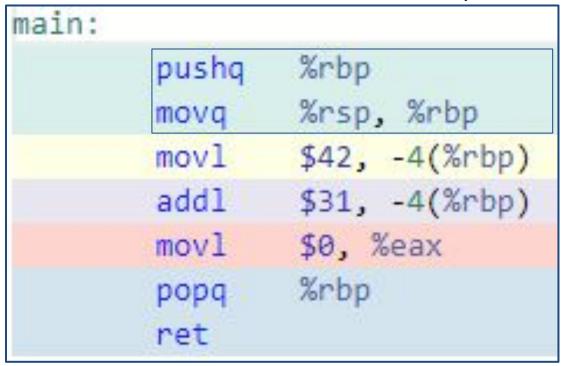
int num = 42;
// Add 31 to the integer
num += 31;
return 0;

Let's break down the machine code of simple.c



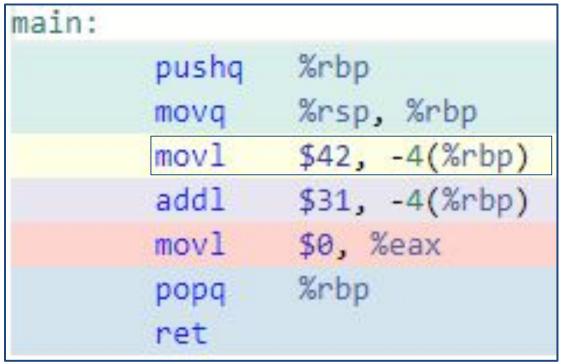
First, we **push** the **base pointer** (%**rbp**) onto the stack for later

int main() {


int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;

Let's break down the machine code of simple.c

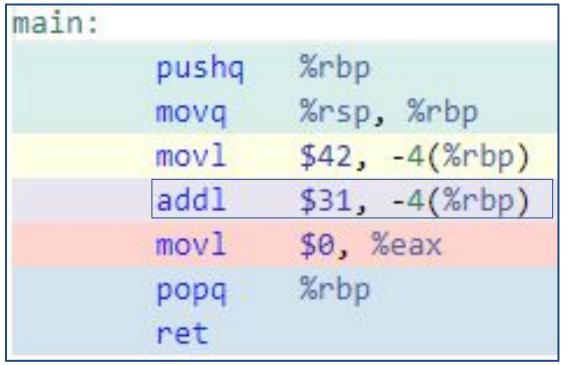
Next, we **move** (really copy) the stack pointer (%rsp) to the base pointer (%rbp)


Let's break down the machine code of simple.c

int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

These two instructions establish the **stack frame** of the program

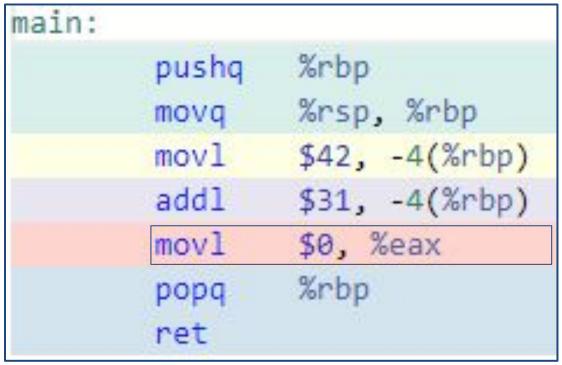
Let's break down the machine code of simple.c



int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

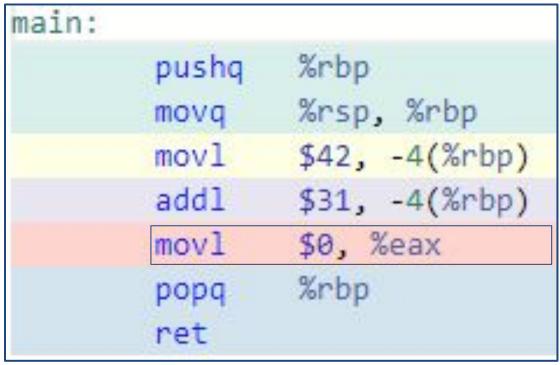
Next, we're storing the constant 42 (**\$42**) into a memory location

-4(%rbp) is pointing to a memory address that is 4 bytes before %rbp


Let's break down the machine code of simple.c

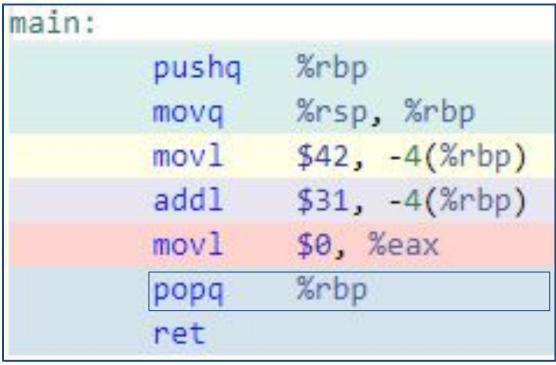
int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

Next, add the constant 31 (**\$31**) that same memory address


Let's break down the machine code of simple.c

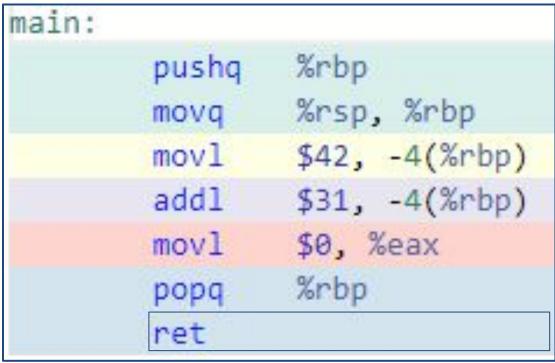
int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

C programs need to return a value, so here we are copying the return value (0) to a general purpose register (%eax)


Let's break down the machine code of simple.c

int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;

General purpose register (%eax) Register relative to stack (%rbp)


Let's break down the machine code of simple.c

int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

We **pop** the **base pointer** (%**rbp**) off the stack to return it to its original value

Let's break down the machine code of simple.c

int main() {
 // Create an integer with
 int num = 42;
 // Add 31 to the integer
 num += 31;
 return 0;
}

Finally, we **return** from the function, where the return value (0) is expected to be stored in %eax

Tools to Become Familiar With

<u>godbolt.org</u> - You can use this site to browser the machine code for any program

simple.c 🖉 🗙		$\Box \times$	x86-6	4 gcc 11	.4 (Edito	or #1)	0 X		
A 🔹 🖬 Save/Load 🕂 Add new 🔹 👽 Vim	GC	•	x86-	-64 gc	c 11.4		-	C	0
1 #include <stdio.h></stdio.h>		Market water of a market water	A٠	\$ -	T -	8	F -	/	-
2 3 int main() {			1	main	0				
4 // Create an integer with the in	itial value of 42		2		1.50	ushq	%rbp		
5 int num = 42;			3			pvq ovl		, %rbp -4(%r	
6 7 // Add 31 to the integer			5			ddl		-4(%r	
8 num += 31;			6			ovl		%eax	
9			8		1.072	opq et	%rbp		
10 return 0; 11 }									
12									

Tools to Become Familiar With

objdump -zd <binary> - Linux tool for producing the same results locally

000000000000000000000000000000000000000	.000 <main>:</main>	
1000:	f3 Of 1e fa	endbr64
1004:	55	push %rbp
1005:	48 89 e5	mov %rsp,%rbp
1008:	c7 45 fc 2a 00 00 00	movl \$0x2a,-0x4(%rbp)
100f:	83 45 fc 1f	addl \$0x1f,-0x4(%rbp)
1013:	b8 00 00 00 00	mov \$0x0,%eax
1018:	5d	pop %rbp
1019:	c3	ret

Security Zen - World's First MIDI Shellcode

