
CSC 405
Assembly

Alexandros Kapravelos
akaprav@ncsu.edu

The von Neumann Architecture

Serves as the blueprint to almost all modern computers

Memory CPU

Input

Output

The von Neumann Architecture

Memory holds two types of information:
Data Items

- variables, objects, etc.
- Read from or written to

Program Instructions
- machine code
- Code, but converted into 'binary words'

Both are stored in memory as binary numbers in a continuous array of fixed
width (also known as words) and have a unique address

Memory

Compiling Programs

Let's take a look at a simple C program

Compiling Programs

We can compile C programs using gcc to generate a binary executable

gcc simple.c -o simple

Using gcc, compile simple.c
and output its binary as simple

Compiling Programs

We can compile C programs using gcc to generate a binary executable

gcc simple.c -o simple

It will translate things into binary!

Compiling Programs

We can compile C programs using gcc to generate a binary executable

gcc simple.c -o simple

It will translate things into binary!

Compiling Programs

We can compile C programs using gcc to generate a binary executable

gcc simple.c -o simple

It will translate things into binary!

Compiling Programs

We can compile C programs using gcc to generate a binary executable

gcc -nostdlib simple.c -o simple

We can also exclude the
standard library with -nostdlib to

reduce "the code"
Same code, but only simple.c and nothing else

The von Neumann Architecture

The CPU is in charge of executing the currently load program's
instructions

Executes three primary tasks:
- Arithmetic Logic Unit (ALU)

- Make some calculation
- Do some comparison

- Registers
- Read/Write values from/to memory
- Stores values on the CPU rather than pushing to memory for efficiency

- Control Unit
- Conditionally jump to execute other instructions

CPU

Memory is Slow

When the CPU retrieves contents from memory address i
• i travels from the CPU to RAM
• RAM's logic selects the memory register whose address is i
• contents of RAM[i] travels back to the CPU

Level Access Time Typical Size Technology Managed By

Registers 1-3 ns 1 KB CMOS Compiler

L1 Cache 2-8 ns 8KB - 128KB SRAM Hardware

L2 Cache 5-12 ns 0.5MB - 8MB SRAM Hardware

Main Memory 10-60 ns 64MB - 1GB DRAM OS

Hard Disk 0.3-1 ms 20GB - 100GB Magnetic OS / User

Registers

Registers provide the same service but without travel and search
expenses

This is because the reside inside the CPU and are much more
limited in supply (allowing for shorter instructions)

Serves three purposes:
• Data - stores values for short term calculations
• Addressing - stores memory addresses for various functions
• Program Counter - keeps track of the next instruction to be

fetched

Registers

Registers provide the same service but without travel and search
expenses

This is because the reside inside the CPU and are much more
limited in supply (allowing for shorter instructions)

Serves three purposes:
• Data - stores values for short term calculations
• Addressing - stores memory addresses for various functions
• Program Counter - keeps track of the next instruction to be

fetched
As we'll see next week, this is how we can

cause some damage

Machine Code

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00

Machine Code

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00
"binary"

Machine Code

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00

Instead of
1100 0111 0100 0101 1111
1100 0010 1010 0000 0000

0000 0000 0000 0000,
we commonly condense it down to
hexadecimal for "easier reading"

Machine Code

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00 We can also use a symbolic
assembly language that converts
these 1's and 0's into something

actually readable

Assembly Flavors

There are several Assembly languages, each written for a
specific processor

In accordance with the processor's Instruction Set
Architecture, or ISA

Three Primary Architectures
• x86
• ARM
• MIPS
• plus many more…

x86 Assembly Syntax - Reserved Keywords

https://en.wikipedia.org/wiki/X86_instruction_listings

https://en.wikipedia.org/wiki/X86_instruction_listings

x86 Assembly Syntax - Reserved Keywords

https://en.wikipedia.org/wiki/X86_instruction_listings

You don't need to memorize them, but be
aware they all exist, have corresponding
hexadecimal values, and some of them

will be needed for this class

https://en.wikipedia.org/wiki/X86_instruction_listings

Syntax Branches - Intel and AT&T

Intel
• Windows and DOS programs
• Operations follow the format

mnemonic destination, source
• mov ebx, 42

AT&T
• Unix programs
• Operations follows the format

mnemonic source, destination
• mov $42, %ebx

Syntax Branches - Intel and AT&T

Intel
• Windows and DOS programs
• Operations follow the format

mnemonic destination, source
• mov ebx, 42

AT&T
• Unix programs
• Operations follows the format

mnemonic source, destination
• mov $42, %ebx

Move the
value 42 into
register ebx

* Slight variations between the two

Executing Programs

When a program is executed, various elements of the program are
loaded into memory

Information from the program is then loaded from the address space in
memory

Three Segments:
.text - holds program instructions (read-only)
.bss - reserved for global variables, contains uninitialized data
.data - reserved for global variables, contains initialized data

Stack Machine Model

Arithmetic commands pop their operands from the top of the stack and push
their results back to the stack

Since stacks are LIFO (last in first out), a stack pointer (sp) tracks the location
just above the topmost element

previous
values

on the stack

previous
values

on the stackpushq

%rbp

Current value
of %rbp

movq

%rsp,

%rbp

previous
values

on the stack

Previous value
of %rbp

movl

$42,

-4(%rbp)

previous
values

on the stack

Previous value
of %rbp

42 in memory
4 bytes below

the block above

Programs in Memory

↑ Lower Memory Addresses (0x08000000)
 Shared Libraries

 .text

 .bss

 Heap (grows ↓)
 Stack (grows ↑)
 env pointer

 argc

↓ Higher Memory Addresses (0xbfffffff)

Machine Code

Let's break down the machine code of simple.c

Machine Code

Let's break down the machine code of simple.c

These first two instructions serve as
the "function prologue"

Machine Code

Let's break down the machine code of simple.c

First, we push the base pointer
(%rbp) onto the stack for later

Machine Code

Let's break down the machine code of simple.c

Next, we move (really copy) the
stack pointer (%rsp) to the base

pointer (%rbp)

Machine Code

Let's break down the machine code of simple.c

These two instructions establish
the stack frame of the program

Machine Code

Let's break down the machine code of simple.c

Next, we're storing the constant 42
($42) into a memory location

-4(%rbp) is pointing to a memory
address that is 4 bytes before %rbp

Machine Code

Let's break down the machine code of simple.c

Next, add the constant 31 ($31) that
same memory address

Machine Code

Let's break down the machine code of simple.c

C programs need to return a value,
so here we are copying the return

value (0) to a general purpose
register (%eax)

Machine Code

Let's break down the machine code of simple.c

General purpose register (%eax)
Register relative to stack (%rbp)

Machine Code

Let's break down the machine code of simple.c

We pop the base pointer (%rbp)
off the stack to return it to its

original value

Machine Code

Let's break down the machine code of simple.c

Finally, we return from the function,
where the return value (0) is

expected to be stored in %eax

Tools to Become Familiar With

godbolt.org - You can use this site to browser the machine code for any
program

https://godbolt.org/

Tools to Become Familiar With

objdump -zd <binary> - Linux tool for producing the same results locally

Security Zen - World’s First MIDI Shellcode

https://psi3.ru/blog/swl01u/

https://psi3.ru/blog/swl01u/
http://www.youtube.com/watch?v=u6sukVMijBg

