
CSC 405
SQL Injection

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

Database Primer

2

10 Fake Points if you get this

Finish Cody's Story

Database Primer

A collection of data organized to minimize
redundant entries

Organized via tables
Author Title Type Year

Mark Twain The Adventures of Tom Sawyer Fiction 1876

Jane Austen Pride and Prejudice Fiction 1811

Charles Darwin The Origin of Species Non-Fiction 1856

Charles Dickens A Christmas Story Fiction 1841

William Shakespeare Romeo and Juliet Play 1594

Database Primer

Data from tables can in turn be retrieved
through SQL (Structured Querying Language)
SELECT * FROM books WHERE year<1820;

Author Title Type Year

Jane Austen Pride and Prejudice Fiction 1811

William Shakespeare Romeo and Juliet Play 1594

Database Primer

Source: https://docs.yugabyte.com/preview/sample-data/northwind/

Tables can also store various relations
through foreign keys which reference
entries in other tables

https://docs.yugabyte.com/preview/sample-data/northwind/

Source: https://xkcd.com/327/

https://xkcd.com/327/

SQL Injection
• SQL injection might happen when queries are built using

the parameters provided by the users
– $query = "SELECT * FROM employee WHERE

 email = '" . $_POST["email"] . "' "

• By using special characters such as ' (tick), -- (comment),
+ (add), @variable, @@variable (server internal variable),
% (wildcard), it is possible to:
– Modify queries in an unexpected way
– Probe the database schema and find out about stored

procedures
– Run commands (xp_commandshell in MS SQL Server)

SQL Injection
• SQL injection might happen when queries are built using

the parameters provided by the users
– $query = "SELECT * FROM employee WHERE

 email = '" . $_POST["email"] . "' "

• By using special characters such as ' (tick), -- (comment),
+ (add), @variable, @@variable (server internal variable),
% (wildcard), it is possible to:
– Modify queries in an unexpected way
– Probe the database schema and find out about stored

procedures
– Run commands (xp_commandshell in MS SQL Server)

 An Example Web Page

9
CSS by Bulma.io

https://bulma.io/

The Form

The Form

Form Inputs will be sent to /login/
through a POST request

Email and Password are passed as POST
parameters email and password

The Login.php Script
$email = $_POST["email"];

$password = $_POST["password"];

$connection = new mysqli(...);

if ($connection->error) die($connection->error);

$query = 'SELECT * FROM employee WHERE email = "' . $email .

 '" AND password = "' . $password . '"';

$result = $connection->query($query);

 if (!$result) die($connection->error);

 elseif ($result->num_rows) {

 echo "<div>I'm in</div>";

 } else {

 echo "<div>Invalid Login</div>";

 }

The Login.php Script
$email = $_POST["email"];

$password = $_POST["password"];

$connection = new mysqli(...);

if ($connection->error) die($connection->error);

$query = 'SELECT * FROM employee WHERE email = "' . $email .

 '" AND password = "' . $password . '"';

$result = $connection->query($query);

 if (!$result) die($connection->error);

 elseif ($result->num_rows) {

 echo "<div>I'm in</div>";

 } else {

 echo "<div>Invalid Login</div>";

 }

Extract the user inputs from
the POST request

The Login.php Script
$email = $_POST["email"];

$password = $_POST["password"];

$connection = new mysqli(...);

if ($connection->error) die($connection->error);

$query = 'SELECT * FROM employee WHERE email = "' . $email .

 '" AND password = "' . $password . '"';

$result = $connection->query($query);

 if (!$result) die($connection->error);

 elseif ($result->num_rows) {

 echo "<div>I'm in</div>";

 } else {

 echo "<div>Invalid Login</div>";

 }

Build the connection to the DB

The Login.php Script
$email = $_POST["email"];

$password = $_POST["password"];

$connection = new mysqli(...);

if ($connection->error) die($connection->error);

$query = 'SELECT * FROM employee WHERE email = "' . $email .

 '" AND password = "' . $password . '"';

$result = $connection->query($query);

 if (!$result) die($connection->error);

 elseif ($result->num_rows) {

 echo "<div>I'm in</div>";

 } else {

 echo "<div>Invalid Login</div>";

 }

Construct and execute the
query with $connection

The Login.php Script
$email = $_POST["email"];

$password = $_POST["password"];

$connection = new mysqli(...);

if ($connection->error) die($connection->error);

$query = 'SELECT * FROM employee WHERE email = "' . $email .

 '" AND password = "' . $password . '"';

$result = $connection->query($query);

 if (!$result) die($connection->error);

 elseif ($result->num_rows) {

 echo "<div>I'm in</div>";

 } else {

 echo "<div>Invalid Login</div>";

 }

If there's an entry in the database with
that email and password, log them in

The Login.php Script
$email = $_POST["email"];

$password = $_POST["password"];

$connection = new mysqli(...);

if ($connection->error) die($connection->error);

$query = 'SELECT * FROM employee WHERE email = "' . $email .

 '" AND password = "' . $password . '"';

$result = $connection->query($query);

 if (!$result) die($connection->error);

 elseif ($result->num_rows) {

 echo "<div>I'm in</div>";

 } else {

 echo "<div>Invalid Login</div>";

 }

Where are the
vulnerabilities?

The ' OR 1=1 -- Technique
• Could also be " OR 1=1 –

– Depends on how the developer builds their String
• Given the SQL query string:

 "SELECT * FROM employee \
 WHERE email = '" . $email . "' AND \
 password = '" . password . "'";

• By providing the following username:
$_POST["email"] ⇒ ' OR 1=1 --

• Results in the following string:
SELECT * FROM employee WHERE email='' OR 1=1 --' AND
password='doesntmatter'
– "email='' OR 1=1 -- " is true because while email is equal to "

(blank), the OR 1=1 is always true
– The -- converts the rest of the SQL into a comment and therefore AND

password ='...' is not evaluated

The ' OR 1=1 -- Technique
• Could also be " OR 1=1 –

– Depends on how the developer builds their String
• Given the SQL query string:

 "SELECT * FROM employee \
 WHERE email = '" . $email . "' AND \
 password = '" . password . "'";

• By providing the following username:
$_POST["email"] ⇒ ' OR 1=1 --

• Results in the following string:
SELECT * FROM employee WHERE email='' OR 1=1 --' AND
password='doesntmatter'
– "email='' OR 1=1 -- " is true because while email is equal to "

(blank), the OR 1=1 is always true
– The -- converts the rest of the SQL into a comment and therefore AND

password ='...' is not evaluated

The ' OR 1=1 -- Technique
• Could also be " OR 1=1 –

– Depends on how the developer builds their String
• Given the SQL query string:

 "SELECT * FROM employee \
 WHERE email = '" . $email . "' AND \
 password = '" . password . "'";

• By providing the following username:
$_POST["email"] ⇒ ' OR 1=1 --

• Results in the following string:
SELECT * FROM employee WHERE email='' OR 1=1 --' AND
password='doesntmatter'
– "email='' OR 1=1 -- " is true because while email is equal to "

(blank), the OR 1=1 is always true
– The -- converts the rest of the SQL into a comment and therefore AND

password ='...' is not evaluated

The ' OR 1=1 -- Technique
• Could also be " OR 1=1 –

– Depends on how the developer builds their String
• Given the SQL query string:

 "SELECT * FROM employee \
 WHERE email = '" . $email . "' AND \
 password = '" . password . "'";

• By providing the following username:
$_POST["email"] ⇒ ' OR 1=1 --

• Results in the following string:
SELECT * FROM employee WHERE email='' OR 1=1 --' AND
password='doesntmatter'
– "email='' OR 1=1 -- " is true because while email is equal to "

(blank), the OR 1=1 is always true
– The -- converts the rest of the SQL into a comment and therefore AND

password ='...' is not evaluated

Injecting SQL Into Different Types of Queries
• SQL injection can modify any type of query such as

– SELECT statements
• SELECT * FROM accounts WHERE user='${u}'

AND pass='${p}'

– INSERT statements
• INSERT INTO accounts (user, pass)

VALUES('${u}', '${p}')
– Note that in this case one must figure out how many values to insert

– UPDATE statements
• UPDATE accounts SET pass='${np}'

WHERE user= '${u}' AND pass='${p}'

– DELETE statements
• DELETE * FROM accounts WHERE user='${u}'

Identifying SQL Injection
• A SQL injection vulnerability can be identified in

different ways

– Negative approach: special-meaning characters in the
query will cause an error

• For example: user=" ' "

– Positive approach: provide an expression that would
NOT cause an error

• For example: "17+5" instead of "22", or a string
concatenation

Identifying SQL Injection
• A SQL injection vulnerability can be identified in

different ways

– Negative approach: special-meaning characters in the
query will cause an error

• For example: user=" ' "

– Positive approach: provide an expression that would
NOT cause an error

• For example: "17+5" instead of "22", or a string
concatenation

The UNION Operator
• The UNION operator is used to merge the results of

two separate queries

SELECT * FROM books WHERE year<1820;

UNION SELECT * FROM comics;
Col1 Col2 Col3 Col4

Jane Austen Pride and Prejudice Fiction 1811

William Shakespeare Romeo and Juliet Play 1594

The Amazing Spider-Man Stan Lee 1963 Comic

Action Comics #1 Joe Shuster 1938 Comic

Assuming books and comics have the
same number of columns

The UNION Operator
• The UNION operator is used to merge the results of

two separate queries

SELECT * FROM books WHERE year<1820;

UNION SELECT * FROM comics;
Col1 Col2 Col3 Col4

Jane Austen Pride and Prejudice Fiction 1811

William Shakespeare Romeo and Juliet Play 1594

The Amazing Spider-Man Stan Lee 1963 Comic

Action Comics #1 Joe Shuster 1938 Comic

Note, the results don't need to follow
the same structure; just # of columns

The UNION Operator
• In a SQL injection attack this can be exploited to extract information

from the database
• Original query:

– SELECT id, name, price FROM products WHERE
brand='${b}'

• Modified query passing ${b}="foo" UNION…":
– SELECT id, name, price FROM products WHERE brand = 'foo'

UNION SELECT user, pass, NULL FROM accounts -- '
• For this attack to work the attacker must know

– The structure of the query (number of parameters and types
have to be compatible)

– The name of the table and columns

Retrieve the ID, name, and price of a product

The UNION Operator
• In a SQL injection attack this can be exploited to extract information

from the database
• Original query:

– SELECT id, name, price FROM products WHERE
brand='${b}'

• Modified query passing ${b}="foo" UNION…":
– SELECT id, name, price FROM products WHERE brand = 'foo'

UNION SELECT user, pass, NULL FROM accounts -- '
• For this attack to work the attacker must know

– The structure of the query (number of parameters and types
have to be compatible)

– The name of the table and columns

The UNION Operator
• In a SQL injection attack this can be exploited to extract information

from the database
• Original query:

– SELECT id, name, price FROM products WHERE
brand='${b}'

• Modified query passing ${b}="foo" UNION…":
– SELECT id, name, price FROM products WHERE brand = 'foo'

UNION SELECT user, pass, NULL FROM accounts -- '
• For this attack to work the attacker must know

– The structure of the query (number of parameters and types
have to be compatible)

– The name of the table and columns

Learning Query Parameter Size and Type
• Apply increasing UNION statements until the query is successful

– UNION SELECT NULL
– UNION SELECT NULL, NULL
– UNION SELECT NULL, NULL, NULL
– UNION SELECT NULL, NULL, NULL, ...

• The type of columns can be determined using a similar
technique
– UNION SELECT 'foo', NULL, NULL

– UNION SELECT NULL, 'foo', NULL

– UNION SELECT NULL, NULL, 'foo'

Depending on the Database, UNION can
crash because you provide too many

parameters or not enough

Learning Query Parameter Size and Type
• Apply increasing UNION statements until the query is successful

– UNION SELECT NULL
– UNION SELECT NULL, NULL
– UNION SELECT NULL, NULL, NULL
– UNION SELECT NULL, NULL, NULL, ...

• The type of columns can be determined using a similar
technique
– UNION SELECT 'foo', NULL, NULL
– UNION SELECT NULL, 'foo', NULL
– UNION SELECT NULL, NULL, 'foo'

Let's you determine
if a column is

numeric, text, etc.

Determining Table and Column Names
• Table and column names are database specific and

therefore needs to be explored
– Oracle

• The user_objects table provides information about the tables created for
an application

• The user_tab_column table provides the names of the columns associated
with a table

– MS-SQL
• The sysobjects table provides information about the tables in the database
• The syscolumns table provides the names of the columns associated with a

table
– MySQL (and MariaDB)

• The information_schema provides information about the tables and
columns

The ORDER Operator

• ORDER BY # can tell the query which column to order results by
• SELECT Name, Composer, UnitPrice FROM Track WHERE Name LIKE

'...' ORDER BY Name;

Display results in order by
Track Name

The ORDER Operator

• Can also be used to determine the number of columns because ORDER
BY # says which column to sort be

• SELECT Name, Composer, UnitPrice FROM Track WHERE Name LIKE
'...' ORDER BY 5;

Errors because there is no 5th column to sort by

Extracting Data from SQL Leaks

• Determine the query structure

Extracting Data from SQL Leaks

• Determine the query structure

We now know the query's
structure and will evaluate

anything passed into results

Extracting Data from SQL Leaks

• Determine the database

Query will return all tables
stored on database()

Extracting Data from SQL Leaks

• Determine the columns for the table you want to extract

Returns the columns for the
employee table

Extracting Data from SQL Leaks

• Determine the columns for the table you want to extract

Pick the columns
you want…

Extracting Data from SQL Leaks

• …and write your query

Second-Order SQL Injection
• In a second-order SQL injection, the code is injected into an

application, but the SQL statement is invoked at a later point in time
– e.g., Guestbook, statistics page, etc.

• Even if application escapes single quotes, second order SQL
injection might be possible
– Attacker sets user name to: john'--, application safely escapes

value to john''-- (note the two single quotes)
– At a later point, attacker changes password (and "sets" a new

password for victim john):

UPDATE users SET password='hax' WHERE
database_handle("username") = 'john'--'

register.php
<?php

session_start();

$sql = "insert into users (username, password) values ('" .

mysql_real_escape_string($_POST['name']) . "', '" .

mysql_real_escape_string($_POST['password']) . "');";

mysq_query($sql);

$user_id = mysql_insert_id();

$_SESSION['uid'] = $user_id;

change_password.php
<?php

session_start();

$new_password = $_POST['password'];

$res = mysql_query("select username, password from users where

id = '" . $_SESSION['uid'] . "';");

$row = mysql_fetch_assoc($result);

$query = "update users set password = '" .

mysql_real_escape_string($new_password) . "' where username = '"

.$row['username']."' and password = '".$row['password']."';";

mysql_query($query);

Blind SQL Injection
• A typical countermeasure is to prohibit the display of error

messages: However, a web application may still be vulnerable to
blind SQL injection

• Example: a news site
– Press releases are accessed with

 pressRelease.jsp?id=5
– A SQL query is created and sent to the database:

• SELECT title, description FROM pressReleases
WHERE id=5;

– All error messages are filtered by the application

Blind SQL Injection
• How can we inject statements into the application and exploit it?

– We do not receive feedback from the application so we can use
a trial-and-error approach

– First, we try to inject
 pressRelease.jsp?id=5 AND 1=1

– The SQL query is created and sent to the database:
• SELECT title, description FROM pressReleases
WHERE id=5 AND 1=1

– If there is a SQL injection vulnerability, the same press release
should be returned

– If input is validated, id=5 AND 1=1 should be treated as the
value

Blind SQL Injection
• When testing for vulnerability, we know 1=1 is always true

– However, when we inject other statements, we do not have any
information

– What we know: If the same record is returned, the statement must
have been true

– For example, we can ask server if the current user is "h4x0r":
• pressRelease.jsp?id=5 AND user_name()='h4x0r'

– By combining subqueries and functions, we can ask more complex
questions (e.g., extract the name of a database table character by
character)
• pressRelease.jsp?id=5 AND SUBSTRING(user_name(), 1,
1) < '?'

SQL Injection Solutions
• NEVER ALLOW RAW INPUTS FROM CLIENTS
$email = $mysqli->real_escape_string($_POST["email"]);

$pw = $mysqli->real_escape_string($_POST["password"]);

• Stored procedures
– Isolate applications from SQL
– All SQL statements required by the application are stored

procedures on the database server
• Prepared statements

– Statements compiled into SQL statements before user input is
added

• Objectify Query with Third-Party Libraries
– Warning - if they are vulnerable, you are vulnerable.

SQL Injection Solutions: Stored Procedures
• Original query:

String query = "SELECT title, description FROM
pressReleases WHERE id= " +
request.getParameter("id");

Statement stat = dbConnection.createStatement();

ResultSet rs = stat.executeQuery(query);

• Takes the SQL statements and transforms it into a function you
pass parameters to

CREATE PROCEDURE getPressRelease @id integer AS
SELECT title, description FROM pressReleases WHERE
Id = @id

SQL Injection Solutions: Stored Procedures
• Instead of string-building SQL, a stored procedure

is invoked

• For example, in Java:
CallableStatements cs = dbConnection.prepareCall(

"{call getPressRelease(?)}"

);

cs.setInt(1,

Integer.parseInt(request.getParameter("id")));

ResultSet rs = cs.executeQuery();

SQL Injection Solutions: Prepared Statements
$mysqli = new mysqli("localhost", "my_user",

 "my_pass", "db");
$stmt = $mysqli->stmt_init();
$stmt->prepare("SELECT * FROM employee WHERE email=?"));
$stmt->bind_param("s", $email);
/* type can be "s" = string, "i" = integer … */

$stmt->execute();
$row = $stmt->fetch_assoc();
printf("%s is Employee %s\n", $email, $row["EmpId"]);
$stmt->close();

SQL Injection Solutions: Objectify Queries

More on hashing password next
week

Libraries like SQLAlchemy will let you
convert your Queries into Objects

https://www.sqlalchemy.org/

Security Zen

https://www.varonis.com/blog/zendesk-sql-injection-and-access-flaws

https://www.varonis.com/blog/zendesk-sql-injection-and-access-flaws

