
CSC 405
Reverse Engineering,

Ghidra

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

Alex Napetyan
anahape@ncsu.edu

Follow Along: go.ncsu.edu/rev101

http://go.ncsu.edu/rev101

Thinking like a CTF

Designed around finding a secret in a
binary/website that can be discovered

through exploiting a vulnerability

Flag:
Drink
More

Ovaltine

Thinking like a CTF

Designed around finding a secret in a
binary/website that can be discovered

through exploiting a vulnerability

"flag{YouSolvedTheChallenge!}"

101*-
01010
10101
10101 "Typically" in the form of a string format

term{challenge_passcode}

Thinking like a CTF

Designed around finding a secret in a
binary/website that can be discovered

through exploiting a vulnerability

Flag:
Drink
More

Ovaltine

$ objdump -zd example
0000000000401275 <main>:
401275: f3 0f 1e fa endbr64
401279: 55 push %rbp
40127a: 48 89 e5 mov %rsp,%rbp
40127d: 48 83 ec 20 sub $0x20,%rsp
401281: 89 7d ec mov %edi,-0x14(%rbp)
401284: 48 89 75 e0 mov %rsi,-0x20(%rbp)
401288: 48 8b 45 e0 mov -0x20(%rbp),%rax
40128c: 48 83 c0 08 add $0x8,%rax
401290: 48 8b 00 mov (%rax),%rax
401293: 48 89 c7 mov %rax,%rdi
401296: e8 e5 fd ff ff call 401080 <atoi@plt>
40129b: 89 45 fc mov %eax,-0x4(%rbp)
40129e: 8b 45 fc mov -0x4(%rbp),%eax
4012a1: 89 c7 mov %eax,%edi
4012a3: e8 ce fe ff ff call 401176 <function>
4012a8: b8 00 00 00 00 mov $0x0,%eax
4012ad: c9 leave
4012ae: c3 ret

Problem is reading
hexadecimal and machine

code is incredibly
difficult!

• Released in March 2019

• Developed by the NSA
– Declassified after leak on WikiLeaks

• Open Source
– https://github.com/NationalSecurityAgency/ghidra

• In development for ∼20 years
– History of Ghidra

• Scripting in Java and Python

• Headless Analyzer

• Ghidra Cheat Sheet

• Walkthrough of Solving a Simple Reverse Engineering Challenge

https://ghidra-sre.org/

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra/wiki/files/recon2019.pdf
https://www.ghidra-sre.org/CheatSheet.html
https://www.youtube.com/watch?v=fTGTnrgjuGA
https://ghidra-sre.org/

Installing Ghidra
1. Grab the latest version of Ghidra

2. Install Ghidra via Gradle
a. gradle -I gradle/support/fetchDependencies.gradle init
b. If you need to install Java 17 and Gradle:

i. sudo apt install openjdk-17-jdk
ii. sudo apt install gradle

2.1 Install Ghidra on macOS via brew
a. brew install --cask temurin
b. brew install --cask ghidra

3. Run Ghidra via ./ghidraRun or ghidraRun.bat
a. Don't run ./ghidraRun through WSL, has weird interactions; use the

.bat version instead

https://github.com/NationalSecurityAgency/ghidra/releases

Running Ghidra - Starting a Project

Running Ghidra - Starting a Project

Running Ghidra - Starting a Project

Running Ghidra - Loading Binaries

Running Ghidra - Loading Binaries

Running Ghidra - Loading Binaries

Running Ghidra - Loading Binaries

Running Ghidra - Analyzing Level 1

Running Ghidra - Analyzing Level 1

Running Ghidra - Analyzing Level 1

Running Ghidra - Analyzing Level 1

Okay, that one was super simple, even
strings could have found it...

Running Ghidra - Analyzing Level 2

Same program, but now the flag is obfuscated

Running Ghidra - Analyzing Level 2

But if I dig a little deeper, we can observe what
this flag function is really doing

Running Ghidra - Analyzing Level 2

Ghidra IS having some trouble understanding this
part, which is why it's labeled as "undefined"

Running Ghidra - Analyzing Level 2

But whatever it is, the binary seems to loop
through those hex values and then XOR (^) them

with another fixed hex value (0x23)

Solving Level 2 with GDB
Since we know the function names in the binary, we can use gdb to
call that function directly

$ gdb level2
Reading symbols from level2...
(gdb) b main
Breakpoint 1 at 0x12a2: file src/level2.c, line 20.
(gdb) r
Starting program: /path/to/level2
[Thread debugging using libthread_db enabled]
Using host libthread_db library
"/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, main (argc=1, argv=0x7fffffffda48) at src/level2.c:20
20 src/level2.c: No such file or directory.
(gdb) call (char*)flag()
$1 = 0x5555555592a0 "workshop{Super_SecretLevel2}"

Solving Level 2 with Python
Alternatively, we can take those raw hex values from Ghidra and
write a short Python script to decrypt them

from struct import pack, unpack

parts = [
 0x534c4b5048514c54,
 0x707c514653567058,
 0x55466f5746514046,
 0x5e114f46
]

< means little endian byte order
Q means unsigned long integer (8 bytes)
flag = b"".join([pack("<Q", hex_chunk) for hex_chunk in parts])
trim null bytes
flag = flag.replace(b"\x00", b"")

decrypted_flag = ""
for char in flag:
 # XOR each byte with 0x23 to get password
 decrypted_flag += chr(char ^ 0x23)

print(decrypted_flag)

Running Ghidra - Analyzing Level 3

Oh no! Someone used strip to remove function
identifiers!

Running Ghidra - Analyzing Level 3

Luckily, all programs need a starting point, which
we can figure out via __libc_start_main

Running Ghidra - Analyzing Level 3

This reference points us to the program's starting function

Running Ghidra - Analyzing Level 3

Jumping to that memory address, we can see what it's doing

Running Ghidra - Analyzing Level 3

Specifically, we can see libc's main is being called on function pointer
FUN_0010128f

Running Ghidra - Analyzing Level 3

And we're back to our decryption function

Want More Practice on Reverse Engineering?

https://picoctf.org/

https://picoctf.org/

Play
CTFs

Read
write-ups

Learn new
tricks

Playlist Link

https://www.youtube.com/playlist?list=PLhixgUqwRTjzzBeFSHXrw9DnQtssdAwgG

MalwareUnicorn.org

https://malwareunicorn.org/#/workshops

YouTube Playlist

https://www.youtube.com/playlist?list=PL1H1sBF1VAKUdXGN03SFFXcW9-lTF1Ug6

Security Zen - At least Taylor Swift's BF Won

Rest of Class - Level 4 Practice

