
CSC 405
Linux Security

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

We are done with machine code!

We are done with machine code!
for now…

$█

Reason

Having access to the shell means you have full control over the system

█

$█

Reason

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

█

$xxxxx

Reason

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

ls

And it means we have access to all the tools available to Linux

$xxxxx

Reason

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

cd
ls

And it means we have access to all the tools available to Linux

$xxxxxxxxxxx

Reason

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

rm -rf /
cd
ls

And it means we have access to all the tools available to Linux

$xxxxxxxxxxx

Reason

Having access to the shell means you have full control over the system
Which means all we're ever trying to do is reach THAT again

rm -rf /
cd
ls

And it means we have access to all the tools available to Linux

This is also a friendly reminder that some of the control
we gain in this class can break a system

(please remember to always test things out on your VMs)

Linux
The most deployed operating system in the world

What are three devices that explain why?

Linux
The most deployed operating system in the world

What are three devices that explain why?

A History of Linux

In the beginning,
there was UNIX

Unix
• Started in 1969 at AT&T / Bell Labs

• Split into a number of popular branches
– BSD, System V (commercial, AT&T), Solaris, HP-UX, AIX

• Inspired a number of Unix-like systems
– Linux, Minix, macOS

• Standardization attempts
– POSIX, Single Unix Specification (SUS), Filesystem Hierarchy Standard (FHS), Linux

Standard Base (LSB), ELF

A History of Linux

Linus Torvalds

A History of Linux

Linus developed the first
iteration of Linux while in
college (~1987) coding in
Minix and thought…

"there must be a better way"

The Kernel
Core component to the operating system

Manages system resources

Provides essential services like scheduling, drivers,
memory management, and system calls

Kernel

CPU Memory Devices

The Kernel
Serves as the bridge between software and hardware

Facilitates communication between them

Kernel

CPU Memory Devices

Applications

The Kernel
Linux for example is a collection of C binaries for
handling the kernel

Kernel

CPU Memory Devices

Applications

grub
kexec
modprobe
insmod
rmmod
lsmod
depmod
sysctl

https://linux.die.net/man/8/grub
https://linux.die.net/man/8/kexec
https://linux.die.net/man/8/modprobe
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/rmmod
https://linux.die.net/man/8/lsmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/sysctl

The Kernel
Linux for example is a collection of C binaries for
handling the kernel

Kernel

CPU Memory Devices

Applications

grub
kexec
modprobe
insmod
rmmod
lsmod
depmod
sysctl

Being open source means
you can view how Linux
manages each program

https://linux.die.net/man/8/grub
https://linux.die.net/man/8/kexec
https://linux.die.net/man/8/modprobe
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/rmmod
https://linux.die.net/man/8/lsmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/sysctl
https://github.com/brgl/busybox/blob/master/modutils/lsmod.c

The Operating System

The operating system, on the other hand, is essentially
built around the kernel to provide a user-friendly interface

Kernel

CPU Memory Devices

Applications

Operating System

Kernel vulnerabilities

Kernel vulnerabilities

Kernel Security Research is Active

Papers from USENIX Security 2023
– PhyAuth: Physical-Layer Message Authentication for ZigBee

Networks
– Auditory Eyesight: Demystifying μs-Precision Keystroke

Tracking Attacks on Unconstrained Keyboard Inputs
– Improving Logging to Reduce Permission Over-Granting

Mistakes
– Know Your Cybercriminal: Evaluating Attacker Preferences by

Measuring Profile Sales on an Active, Leading Criminal Market
for User Impersonation at Scale

source: https://www.usenix.org/conference/usenixsecurity23/technical-sessions

https://www.usenix.org/conference/usenixsecurity23/presentation/li-ang
https://www.usenix.org/conference/usenixsecurity23/presentation/li-ang
https://www.usenix.org/conference/usenixsecurity23/presentation/tu
https://www.usenix.org/conference/usenixsecurity23/presentation/tu
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-bingyu-logging
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-bingyu-logging
https://www.usenix.org/conference/usenixsecurity23/presentation/campobasso
https://www.usenix.org/conference/usenixsecurity23/presentation/campobasso
https://www.usenix.org/conference/usenixsecurity23/presentation/campobasso
https://www.usenix.org/conference/usenixsecurity23/technical-sessions

Kernel Security is also Rapidly Changing

Rust will be added to Linux v6.1
– Compiles to machine code via rustc
– Provides stronger memory safety

guarantees
– Performs comparable to C and C++

Aka, a lot of the most basic attacks may change

https://www.rust-lang.org/

Users

Unix is user-centric
– no roles

Running code is always linked to a certain identity
– security checks and access control decisions are based

on user identity

Users
User
– identified by username (UID), group name (GID)

Users
User
– identified by username (UID), group name (GID)

– typically authenticated by password (stored encrypted)
–

sudo cat /etc/shadow
...
amgaweda:ynotOnYourLifeBubYoullNeverGuessBubbles:0:99999:7:::

Users
User
– identified by username (UID), group name (GID)
– typically authenticated by password (stored encrypted)

User root

– superuser, system administrator
– special privileges (access resources, modify OS)
– cannot decrypt user passwords

Process Management
Process (PID)

– implements user-activity
– entity that executes a given piece of code
– has its own execution stack, memory pages, and file

descriptors table
– separated from other processes using the virtual memory

abstraction
htop

Process Management
Thread
• separate stack and program counter
• share memory pages and file descriptor table
• processes are also executed through threads and

have their own thread ids (LWP) and count (NLWP)

$ ps -eLf
UID PID PPID LWP C NLWP STIME TTY TIME CMD
root 1 0 1 0 2 21:02 hvc0 00:00:00 /init
amgaweda 9 8 9 0 1 21:02 pts/0 00:00:00 -bash
amgaweda 164 9 164 0 1 21:24 pts/0 00:00:00 ps -eLf

Process Management
Process Attributes
• process ID (PID)

– uniquely identified process

• user ID (UID)
– ID of owner of process

• effective user ID (EUID)
– ID used for permission checks (e.g., to access resources)

• saved user ID (SUID)
– to temporarily drop and restore privileges

• lots of management information
– scheduling, memory management, resource management

Process Management
Switching between IDs

– uid-setting system calls

– int setuid(uid_t uid)

– int seteuid(uid_t uid)

– int setresuid(uid_t ruid, uid_t euid, uid_t suid)

Can be tricky
– POSIX 1003.1:

If the process has appropriate privileges, the setuid(newuid) function sets
the real user ID, effective user ID, and the [saved user ID] to newuid.

– what are appropriate privileges?
Solaris: EUID = 0; FreeBSD: newuid = EUID; Linux: SETUID capability

https://man7.org/linux/man-pages/man2/setuid.2.html

Sudo Change Time
• user logs in

– their UID is set to a non-root value, indicating they have
regular user permissions

Sudo Change Time
• user logs in

– their UID is set to a non-root value, indicating they have
regular user permissions

• user runs date to change the system time
– Doing this requires escalated privileges (root)
– date is executed but the kernel checks the EUID of the

process to see if it matches the users UID
– Since it doesn't, the process is halted

Sudo Change Time
• user logs in

– their UID is set to a non-root value, indicating they have
regular user permissions

• user runs date to change the system time
– Doing this requires escalated privileges (root)
– date is executed but the kernel checks the EUID of the

process to see if it matches the users UID
– Since it doesn't, the process is halted

• user runs sudo date
– sudo elevates the EUID of date to root temporarily, allowing it

to change the time

Obligatory XKCD

Obligatory alt-text: xxxxhttps://xkcd.com/838/

https://xkcd.com/838/

Summary of all the Functions that Set the User IDs

source: http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch08lev1sec11.html

https://web.archive.org/web/20200223221952/http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch08lev1sec11.html

Early Example of Privilege Escalation

Bug in sendmail 8.10.1:
• call to setuid(getuid()) to clear privileges (effective UID is root)

• on Linux, attacker could clear SETUID capability

• call clears EUID, but SUID remains root

Further reading
Setuid Demystified, Hao Chen, David Wagner, and Drew Dean
11th USENIX Security Symposium, 2002

http://www.cs.umd.edu/~jkatz/TEACHING/comp_sec_F04/downloads/setuid.pdf

User Authentication

How does a process get a user ID?

User Authentication

How does a process get a user ID?
Authentication

User Authentication
Passwords

– user passwords are used as keys for crypt() function
– uses SHA-512
– 8-byte “salt”

• chosen from date, not secret
• prevent same passwords to map onto same string
• make dictionary attacks more difficult

sudo cat /etc/shadow
kali:yj9T$lR7REZ4XgU56yXNl9PFiN/$oI3B/OeQGXOoTb7opQ.azBMOgG2IM0neRj4MN3HCqQ.:19331:0:99999:7:::

User SHA-512 encryption of "kali"
More on salting passwords in our Web Security lectures

User Authentication

Password Cracking
• dictionary attacks (try common passwords)
• rainbow tables (efficiently try common passwords)
• simple brute force (inefficiently try all passwords)

Password Crackers
• Crack
• JohnTheRipper

User Authentication
Shadow passwords
• password file is needed by many applications to map user ID to user names
• encrypted passwords are not

/etc/shadow
• holds encrypted passwords
• account information

– last change date (19331)
– minimum change frequency (0, 99999)
– number of days before expiration (7)

• readable only by superuser and privileged programs
• SHA-512 hashed passwords (default on Ubuntu) to slow down guessing

kali:yj9T$lR7REZ4XgU56yXNl9PFiN/$oI3B/OeQGXOoTb7opQ.azBMOgG2IM0neRj4MN3HCqQ.:19331:0:99999:7:::

User Authentication

Shadow passwords
• a number of other encryption / hashing algorithms were proposed
• blowfish, SHA-1, …

Other authentication means possible
• Linux PAM (pluggable authentication modules)
• Kerberos
• Active directory (Windows)

Group Model
Users belong to one or more groups
• primary group (stored in /etc/passwd)
• additional groups (stored in /etc/group)
• become group member with newgrp
• can also to set group password (none by default)

/etc/group (groupname : password : group id : additional users)
root:x:0:root
bin:x:1:root,bin,daemon
users:x:100:akaprav

Special group wheel/sudo (like on Ubuntu)
• protect root account by limiting user accounts that can perform su

File System
• File Hierarchy Tree - primary repository of information

– directories contain file system objects (FSO)

• File system object
– files, directories, symbolic links (shortcuts), sockets, device files
– referenced by inode (index node)

/

bin boot dev etc home … tmp usr var

apt bash ls sh user

.profile

Denial of Service through Inodes
#!/bin/bash

Directory to create files in
target_dir="/tmp/exhaust_inodes"
mkdir -p $target_dir

Loop to create one million small files
for i in {1..1000000}; do
 # Create a small file with a unique name, exhausting 1 inode
 echo "This is file $i" > "$target_dir/file_$i.txt"
done

Wait for user input to keep files in place for inspection
Could DOS processes waiting to creating files on the system
if the script exhausts all available inodes, even if there
is still disk space on the drive
read -p "Press any key to delete files and clean up..." -n 1 -r

Clean up: Remove files and directory
rm -rf $target_dir
echo "Cleanup complete."

Do exercise caution, this is
one of those "attack" scripts

We aren't responsible if you
break your machine

df -i to see how many inodes
your system has

File Permissions
Access Control

• permission bits
• chmod, chown, chgrp, umask
• permission structure:

 Type r w x s t

 File read access write access execute
suid / sgid

inherit id
sticky bit

 Directory list files insert and
remove files

stat / execute
files, chdir

new files have
dir-gid

files/dirs only
delete-able by

owner

 - rwx rwx rwx -
(file type) (user) (group) (other) (sticky)

File Permissions
Access Control

• permission bits
• chmod, chown, chgrp, umask
• permission structure:

 Type r w x s t

 File read access write access execute
suid / sgid

inherit id
sticky bit

 Directory list files insert and
remove files

stat / execute
files, chdir

new files have
dir-gid

files/dirs only
delete-able by

owner

 - rwx rwx rwx -
(file type) (user) (group) (other) (sticky)

s inherits the permissions of
the binary owner

When you execute passwd, it
inherits root permissions

Find files w/ root setuid
find / -type f -perm /4000 -exec stat -c "%U %n" {} + | grep root

Find available binaries on the system
dpkg –get-resources

Sticky bit
No effect on files (on Linux)
When used on a directory, all the files in that directory will
be modifiable only by their owners

What’s a very common directory with sticky bit?

Sticky bit
No effect on files (on Linux)
When used on a directory, all the files in that directory will
be modifiable only by their owners

$ ls -ld /tmp
drwxrwxrwt 26 root root 69632 Sep 7 15:24 /tmp

$ ls -l
-rw-rw-r-- 1 username username 0 Sep 7 15:29 test

$ chmod +t test; ls -l
-rw-rw-r-t 1 username username 0 Sep 7 15:29 test

What’s a very common directory with sticky bit?

SUID Programs
Each process has real and effective user / group ID
• usually identical
• real IDs

– determined by current user
– authentication (login, su)

• effective IDs
– determine the “rights” of a process
– system calls (e.g., setuid())

• suid / sgid bits
– to start process with effective ID different from real ID
– attractive target for attacker

Never use suid shell scripts (multiplying problems)
• many operating systems ignore the setuid attribute when applied to executable

shell scripts
• you need to patch the kernel to enable it

File System
Shared resource

– susceptible to race condition problems

Time-of-Check, Time-of-Use (TOCTOU)
– common race condition problem
– problem:

• Time-Of-Check (t
1
): validity of assumption A on entity E is

checked
• Time-Of-Use (t

2
): assuming A is still valid, E is used

• Time-Of-Attack (t
3
): assumption A is invalidated

t
1

<

t
3
< t

2

https://en.wikipedia.org/wiki/Race_condition

TOCTOU
• Steps to access a resource

– obtain reference to resource
– query resource to obtain characteristics
– analyze query results
– if resource is fit, access it

• Often occurs in Unix file system accesses
– check permissions for a certain file name (e.g., using access(2))
– open the file, using the file name (e.g., using fopen(3))
– four levels of indirection (symbolic link - hard link - inode - file descriptor)

• Windows uses file handles and includes checks in the API open call

https://man7.org/linux/man-pages/man2/access.2.html
https://www.man7.org/linux/man-pages/man3/fopen.3.html
https://learn.microsoft.com/en-us/windows/win32/api/mswmdm/nf-mswmdm-imdspobject-open

TOCTOU Example
/* access returns 0 on success */

if(!access(file, W_OK)) {

 f = fopen(file, "wb+");

 write_to_file(f);

} else {

 fprintf(stderr, "Permission denied \

 when trying to open %s.\n", file);

}

W_OK: Flag meaning test for write permission.
access return value is 0 if the access is permitted

Application checks if a file is safe to write to, if so then writes to it.

TOCTOU Example
/* access returns 0 on success */

if(!access(file, W_OK)) {

 f = fopen(file, "wb+");

 write_to_file(f);

} else {

 fprintf(stderr, "Permission denied \

 when trying to open %s.\n", file);

}

$ touch dummy; ln -s dummy pointer

$ rm pointer; ln -s /etc/passwd pointer

W_OK: Flag meaning test for write permission.
access return value is 0 if the access is permitted

Attack creates symbolic link to dummy
Application makes access() call on dummy

System says dummy is okay to write to

Application checks if a file is safe to write to, if so then writes to it.

TOCTOU Example
/* access returns 0 on success */

if(!access(file, W_OK)) {

 f = fopen(file, "wb+");

 write_to_file(f);

} else {

 fprintf(stderr, "Permission denied \

 when trying to open %s.\n", file);

}

$ touch dummy; ln -s dummy pointer

$ rm pointer; ln -s /etc/passwd pointer

W_OK: Flag meaning test for write permission.
access return value is 0 if the access is permitted

Attack creates symbolic link to dummy
Application makes access() call on dummy

System says dummy is okay to write to
Before fopen() operation occurs, attacker

deletes the symbolic link on dummy and creates it
on /etc/passwd

Application checks if a file is safe to write to, if so then writes to it.

TOCTOU Example
• setuid Scripts

– exec() system call invokes seteuid() call prior to executing program
– program is a script, so command interpreter is loaded first
– program interpreted (with root privileges) is invoked on script name
– attacker can replace script content between step 2 and 3

#!/bin/bash

Check if the user has read permissions on sensitive_file
if [-r "sensitive_file"]; then
 echo "User has read permissions. Executing privileged operation..."
 # Perform privileged operation
 cat "sensitive_file"
else
 echo "User does not have read permissions. Operation aborted."
fi

TOCTOU Example
• setuid Scripts

– exec() system call invokes seteuid() call prior to executing program
– program is a script, so command interpreter is loaded first
– program interpreted (with root privileges) is invoked on script name
– attacker can replace script content between step 2 and 3

#!/bin/bash

Check if the user has read permissions on sensitive_file
if [-r "sensitive_file"]; then
 echo "User has read permissions. Executing privileged operation..."
 # Perform privileged operation
 cat "sensitive_file"
else
 echo "User does not have read permissions. Operation aborted."
fi

User triggers execution of script…

TOCTOU Example
• setuid Scripts

– exec() system call invokes seteuid() call prior to executing program
– program is a script, so command interpreter is loaded first
– program interpreted (with root privileges) is invoked on script name
– attacker can replace script content between step 2 and 3

#!/bin/bash

Check if the user has read permissions on sensitive_file
if [-r "sensitive_file"]; then
 echo "User has read permissions. Executing privileged operation..."
 # Perform privileged operation
 cat "sensitive_file"
else
 echo "User does not have read permissions. Operation aborted."
fi

$ ln -s /etc/passwd sensitive_file

But before execution, attacker creates a symbolic link named
sensitive_file pointing to /etc/passwd

TOCTOU Example

• Directory operations
– rm can remove directory trees,

traverses directories depth-first

– issues chdir("..") to go one level
up after removing a directory branch

– by relocating subdirectory to another
directory, arbitrary files can be
deleted

#!/bin/bash

Create a temporary file
touch /tmp/example

Check if the directory exists
if [-f "/tmp/example"]; then
 # Prompt the user before removing
 echo "File exists. Are you sure? (y/n)"
 read answer
 if ["$answer" == "y"]; then
 # Remove the file
 rm -rf /tmp/example
 echo "File removed."
 else
 echo "File not removed."
 fi
else
 echo "File does not exist."
fi

TOCTOU Example

• Directory operations
– rm can remove directory trees,

traverses directories depth-first

– issues chdir("..") to go one level
up after removing a directory branch

– by relocating subdirectory to another
directory, arbitrary files can be
deleted

#!/bin/bash

Create a temporary file
touch /tmp/example

Check if the directory exists
if [-f "/tmp/example"]; then
 # Prompt the user before removing
 echo "File exists. Are you sure? (y/n)"
 read answer
 if ["$answer" == "y"]; then
 # Remove the file
 rm -rf /tmp/example
 echo "File removed."
 else
 echo "File not removed."
 fi
else
 echo "File does not exist."
fi

After checking the file exists…
1. Attacker deletes /tmp/example
2. Creates a symbolic link

ln -s /etc /tmp/example
3. Process proceeds to execute

rm -rf /etc

TOCTOU Example
• Temporary files

– commonly opened in /tmp or /var/tmp
– often guessable file names
– if the attacker can intercept the process between permission check and

operation, and the /tmp file is trivially named, they may be able to
manipulate it

Common Trivial Names:
● cache.dat
● temp_file
● data.txt
● apache2.pid
● sshd.pid

Temporary Files

• "Secure" procedure for creating temporary files
– pick a prefix for your filename

– generate at least 64 bits of high-quality randomness

– base64 encode the random bits

– concatenate the prefix with the encoded random data

– set umask appropriately (0066 is usually good, readable/writable only by you)

– use fopen(3) to create the file, opening it in the proper mode

– delete the file immediately using unlink(2) (deletes file after you're done with it)

– perform reads, writes, and seeks on the file as necessary

– finally, close the file

https://www.man7.org/linux/man-pages/man3/fopen.3.html
https://man7.org/linux/man-pages/man2/unlink.2.html

Prevention
• Immutable bindings

– rather than using the file's variable, operate on file descriptors (fstat)

int main() {
 ...
 int fd = open(filename, O_RDONLY);
 ...
 struct stat st;
 fstat(fd, &st)
 ...
 if (!S_ISREG(st.st_mode)) { ... }
 ...
 printf("File size: %ld bytes\n", st.st_size);
 close(fd);
 return 0;
}

Ensures that we're not attempting
to word with a special file type
(directory, symbolic link)

https://linux.die.net/man/2/fstat

Prevention
• Use the O_CREAT | O_EXCL flags to create a new file with open(2)

– be prepared to have the open call fail

int main() {
 ...
 int fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0066);
 ...
 close(fd);
 return 0;
}

Automatically creates the file if it
does not exist and fails if it does

https://linux.die.net/man/2/open

Prevention

Series of papers on the access system call

Fixing races for fun and profit: how to use access(2)
D. Dean and A. Hu
Usenix Security Symposium, 2004

Fixing races for fun and profit: how to abuse atime
N. Borisov, R. Johnson, N. Sastry, and D. Wagner
Usenix Security Symposium, 2005

Portably Solving File TOCTTOU Races with Hardness Amplification
D. Tsafrir, T. Hertz, D. Wagner, and D.Da Silva
Usenix Conference on File and Storage Technologies (FAST), 2008

https://www.usenix.org/legacy/event/sec04/tech/full_papers/dean/dean_html/
https://www.usenix.org/legacy/event/sec05/tech/full_papers/borisov/borisov.pdf
https://www.usenix.org/legacy/event/fast08/tech/full_papers/tsafrir/tsafrir.pdf

Locking
• Ensures exclusive access to a certain

resource

• Used to circumvent accidental race
conditions
– advisory locking (processes need to cooperate)
– not mandatory, therefore not secure

• Often, files are used for locking
– portable (files can be created nearly

everywhere)
– “stuck” locks can be easily removed

• Simple method
– create file using the O_EXCL flag

struct flock lock;

// Open or create a file
fd = open("example.txt",
 O_RDWR | O_CREAT,
 0666);

// Prepare lock structure
lock.l_type = F_WRLCK; // Write lock
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0; // Lock entire file

// Try to acquire the lock
if (fcntl(fd, F_SETLK, &lock) == -1) {
 // error
}

// Do some operations

// Unlock the file
lock.l_type = F_UNLCK;

Shell
• Shell

– one of the core Unix application

– both a command language and programming language

– provides an interface to the Unix operating system

– rich features such as control-flow primitives, parameter passing, variables,
and string substitution

– communication between shell and spawned programs via redirection and
pipes

– different flavors
• bash and sh, tcsh and csh, ksh, zsh

Shell Attacks
• Environment Variables

– $HOME and $PATH can modify behavior of programs that
operate with relative path names

– $IFS – internal field separator
• used to parse tokens
• usually set to [\t\n] but can be changed to "/"
• "/bin/ls" is parsed as "bin ls" calling bin locally
• IFS now only used to split expanded variables

– preserve attack (/usr/lib/preserve is SUID)
• called "/bin/mail" when vi crashes to preserve file
• change IFS, create bin as link to /bin/sh, kill vi

$ IFS=';' ./vulnerable_script.sh
Enter a filename:
/tmp/secret_file; ls /

IFS=$'\n'
ln -s /bin/sh
 /usr/lib/preserve/bin
vi /usr/lib/preserve/some_file

Used to be super common but IFS
has been removed since actual
use is rare

Shell Attacks
• Control and escape characters

– can be injected into command string
– modify or extend shell behavior
– user input used for shell commands has to be rigorously sanitized
– easy to make mistakes
– classic examples are ';' and '&'

• Applications that are invoked via shell can be targets as well
– increased vulnerability surface

• Restricted shell
– invoked with -r or rbash
– more controlled environment

find /some_path -name "filename.txt; ls /"

Shell Attacks
• system(char *cmd)

– function called by programs to execute other commands

– invokes shell

– executes string argument by calling /bin/sh –c string

– makes binary program vulnerable to shell attacks

– especially when user input is utilized

• popen(char *cmd, char *type)

– forks a process, opens a pipe and invokes shell for cmd

File Descriptor Attacks
• SUID program (everyone uses, root permissions) opens file

• forks external process
– sometimes under user control

• on-execute flag
– if close-on-exec flag is not set, then new process inherits file descriptor
– malicious attacker might exploit such weakness

• Linux Perl 5.6.0
– getpwuid() leaves /etc/shadow opened (June 2002)
– could attack this with Apache or mod_perl
– web browsers and flash

Resource Limits

• File system limits
– quotas

– restrict storage blocks and number of inodes

– hard limit
• can never be exceeded (operation fails)

– soft limit
• can be exceeded temporarily

– can be defined per mount-point

– defend against resource exhaustion (denial of service)

• Process resource limits
– number of child processes, open file descriptors

#!/bin/bash

Limit CPU time to 10 seconds
ulimit -t 10
Limit virtual memory to 100 MB
ulimit -v 100000

Infinite loop consumes CPU and memory
while true; do
 :
done

Signals

Signal
• asynchronous notification; simple form of interrupt

• can happen anywhere for process in user space

• used to deliver segmentation faults, reload
commands, …

• kill command

Signal handling
• process can install signal handlers

• when no handler is present, default behavior is used
– ignore or kill process

• possible to catch all signals except SIGKILL (-9)

#!/bin/bash

Start the vulnerable script in the background
./vulnerable_script.sh &

Obtain the PID of the vulnerable script
pid=$!

Wait for a few seconds to ensure the
vulnerable script is running
sleep 2

Send a SIGINT signal to the vulnerable script
echo "Sending SIGINT signal to PID $pid..."
kill -2 $pid

Signals
• Security issues

– code has to be re-entrant (code running, signal jump, then come back)
• atomic modifications

• no global data structures

– race conditions

– unsafe library calls, system calls

– examples
• wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006

• Secure signals
– write handler as simple as possible

– block signals in handler

Shared Libraries
• Library

– collection of object files

– included into (linked) program as needed

– code reuse

• Shared library
– multiple processes share a single library copy

– save disk space (program size is reduced)

– save memory space (only a single copy in memory)

– used by virtually all Unix applications (at least libc.so)

– check binaries with ldd

Shared Libraries
• Static shared library

– address binding at link-time
– not very flexible when library changes
– code is fast

• Dynamic shared library
– address binding at load-time
– uses procedure linkage table (PLT) and global offset table (GOT) to hold references to code
– code is slower (redirection)
– loading is slow (binding has to be done at run-time)
– classic .so or .dll libraries

• PLT and GOT entries are very popular attack targets
– buffer overflows

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

Shared Libraries
• Management

– stored in special directories (listed in /etc/ld.so.conf)

– manage cache with ldconfig

• Preload
– override (substitute) with other version

– use /etc/ld.so.preload

– can also use environment variables for override

– possible security hazard

– now disabled for SUID programs (old Solaris vulnerability)

Advanced Security Features
• Address space protection

– address space layout randomization (ASLR)
– non-executable stack (based on NX bit or PAX patches)

• Mandatory access control extensions
– SELinux/AppArmor
– role-based access control extensions
– capability support

• Miscellaneous improvements
– hardened chroot jails
– better auditing

• https://wiki.ubuntu.com/Security/Features

https://wiki.ubuntu.com/Security/Features

Security Zen - You Knew It Was Bound to Happen…

Source: Google Update Reveals AI Will Read All Your Private Messages

https://www.forbes.com/sites/zakdoffman/2024/01/28/new-details-free-ai-upgrade-for-google-and-samsung-android-users-leaks

