
CSC 405
Writing Assembly

and
Binary Patching

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

The Netwide Assembler (NASM)

section .text

 global _start ;entry point for program

 _start: ; starting point

As mentioned in our last lecture, Assembly level programs can be
broken down into three distinct sections

.text contains the actual logic of the program

The Netwide Assembler (NASM)

section .text

 global _start ;entry point for program

 _start: ; starting point

One thing this section also includes is an entry point for where the
code actually begins

This is handled with the global _start

The Netwide Assembler (NASM)

section .bss

 ; variables

section .text

 global _start ; entry point for program

 _start: ; starting point

Next the block starting symbol (.bss) section stores the
variables that may / may not change during the execution of the

program

The Netwide Assembler (NASM)

section .bss

 ; variables

section .data

 ; constants

section .text

 global _start ; entry point for program

 _start: ; starting point

Finally, the .data section handles constants that will not change

The Netwide Assembler (NASM)

section .bss

 ; variables

section .data

 hello:

section .text

 global _start ; entry point for program

 _start: ; starting point

Let's say we want to print "Hello World" in Assembly…

Our first task is to design a label for the String

The Netwide Assembler (NASM)

section .bss

 ; variables

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

We can use define byte (or db) to define the String into memory

The 10 afterwards refers to the decimal notation for a null
terminator

The Netwide Assembler (NASM)

section .bss

 ; variables

section .data

 hello: 48 65 6C 6C 6F 20 57 6F 72 6C 64 0A

section .text

 global _start ; entry point for program

 _start: ; starting point

We could have also omitted the db command and placed the
characters of the String as raw hexadecimal values

H e l l o W o r l d null

The Netwide Assembler (NASM)

section .bss

 ; variables

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

Now it's time to actually print "Hello World"

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

We'll start by moving 1 into the rax general register

1 corresponds in Linux to the sys_write command

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

Note, you'll often see rax, eax, and ax but they all
refer to the same thing, only with a smaller bit space

rax
64-bit general
register

eax
32-bit general
register

ax
16-bit general
register

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

Likewise, we can place other integers into rax to
execute different system calls

0 sys_read

1 sys_write

2 sys_open

... ...

41 sys_socket

... ...

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

Then, we'll write 1 to the rdi general register

This time, 1 in rdi corresponds to the terminal's
standard output

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

Since I'm using rax to establish sys_write, rdi
can be viewed as the argument for sys_write

https://man7.org/linux/man-pages/man2/syscall.2.html

https://man7.org/linux/man-pages/man2/syscall.2.html

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

Next, we specify the message we intend to write to
the terminal by using our label from .data

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

However, Assembly isn't smart enough to know how
much to print

All we said was where to start printing from
(remember, variables are simply memory addresses)

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

 mov rdx, 12 ; message length

So, we need to specify to the program how many
bytes to read from the memory address of hello by

giving sys_write the memory address as a parameter

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

 helloLen: equ $-hello

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

 mov rdx, helloLen; message length

Some additional witchcraft could be done to calculate
the length of a String by referencing the current

memory location of hello ($) and calculating its
offset (length) in memory (-)

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

 mov rdx, 12 ; message length

We don't need the rest of these registers
for our application, but the Linux manual
for syscall also notes where additional

parameters can be found

The Netwide Assembler (NASM)

section .data

 hello: db "Hello World", 10

section .text

 global _start ; entry point for program

 _start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

 mov rdx, 12 ; message length

 syscall ; execute rax

Now that we've loaded everything
needed into memory, we can finally tell

the CPU to call sys_write

The Netwide Assembler (NASM)

_start: ; starting point

 mov rax, 1 ; sys_write

 mov rdi, 1 ; stdout

 mov rsi, hello ; message to write

 mov rdx, 12 ; message length

 syscall ; execute rax

 mov rax, 60 ; sys_exit

 mov rdi, 0 ; error code 0 (success)

 syscall ; execute rax

This last bit of instruction is to "correctly"
end our program, because the CPU

expects a sys_exit system call

Compiling Assembly

Similar to other languages, Assembly needs to be translated into machine code

> nasm -f elf64 hello.asm

We can use NASM to generate our 64-bit binary (In elf format specifically,
we'll talk more about it next lecture)

We need to do one final task: link our binary to an executable file

> ld -o hello hello.o

> ./hello

Hello World

https://www.nasm.us/

The Netwide Assembler (NASM)
.data

 hello: .string "Hello World"

.text

.global _start # entry point for program

 _start: # starting point

 mov $1, %rax # sys_write

 mov $1, %rdi # stdout

 mov $hello, %rsi # message to write

 mov $12, %rdx # message length

 syscall # execute rax

 mov $60, %rax # sys_exit

 mov $0, %rdi # error code 0 (success)

 syscall # execute rax

Now in AT&T (Linux format)!

Compiling Assembly

If we're using AT&T syntax then NASM won't work!

However, we can utilize gcc to do the exact same thing

> gcc -c -no-pie hello.s -o hello.o

> ld -o hello hello.o

> ./hello

Hello World

-c = generate an object, but don't link

-no-pie = disable Position Independent
Executable (PIE), which is a security
feature that randomizes the base
address of the program

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

hello: 48 65 6C 6C 6F 20 57 6F 72 6C 64 0A

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

hello: 48 65 6C 6C 6F 20 57 6F 72 6C 64 0A

But that also means if we change
this section in memory, we can

~change the world~

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

By directly manipulating the binary, we can replace
"Hello World" with any text that fits into 12 bytes

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

Note "Hola Mundo" is only 10 characters, so I also
injected another null character into the code to keep

things as the program expects

Ensuring Program Integrity

This leads to a new question:
How do I ensure a program has not been tampered with?

Ensuring Program Integrity

This leads to a new question:
How do I ensure a program has not been tampered with?

Answer:
We can calculate a checksum of the program's original binary

Ensuring Program Integrity

This leads to a new question:
How do I ensure a program has not been tampered with?

Answer:
We can calculate a checksum of the program's original binary

> sha256sum hello

6688884c7518fb722e560c2b29866c5bbf97228e10d98966cd17fa4470da224c hello

— or —

> md5sum hello

5c0499e5aec8b99a22e4723cbdc5c199 hello
We can then save this checksum to
always ensure the program has not

been tampered with

Ensuring Program Integrity

This leads to a new question:
How do I ensure a program has not been tampered with?

Answer:
We can calculate a checksum of the program's original binary

> sha256sum hello

6688884c7518fb722e560c2b29866c5bbf97228e10d98966cd17fa4470da224c hello

— We edit the hello binary —

> sha256sum hello

6c2ff4ed235045a645f188630ac59ca3e826a94e0468b2f1896d6fe85ac350a6 hello

Security Zen - "Unix ELF Parasites and Viruses" by Silvio Cesare (1998)
(A History Lesson) https://packetstormsecurity.com/files/12327/elf-pv.txt.html

Companion Video: "Revolutionizing
ELF Binary Patching" by Ryan

"ElfMaster" O'Neill (2023)

https://packetstormsecurity.com/files/12327/elf-pv.txt.html
https://www.youtube.com/watch?v=TDMWejaucdg
https://www.youtube.com/watch?v=TDMWejaucdg
https://www.youtube.com/watch?v=TDMWejaucdg

