
Reverse Engineering with Ghidra

Dr. Alexandros Kapravelos
akaprav@ncsu.edu

John (Jack) Allison
President, HackPack

jeallis2@ncsu.edu

mailto:akaprav@ncsu.edu
mailto:jeallis2@ncsu.edu

“What’s a Ghidra?”

“A software reverse engineering (SRE) suite of tools
developed by NSA's Research Directorate in support of the

Cybersecurity mission”

(It’s a tool for reverse engineering stuff)
(declassified after it’s existence was leaked by WikiLeaks ;))

https://ghidra-sre.org/CheatSheet.html

What can it do?

- x86 decompilation (and ARM… and MIPS… and a lot
more…)
- Pretty much any architecture that’s commonly used

- Debugging binaries under Windows and Linux (WinDbg
and GDB)

- Scripting with Python (not covered here) to extend the
feature set or automate tasks

Extending Ghidra

- https://github.com/AllsafeCyberSecurity/awesome-ghidr
a

- https://github.com/topics/ghidra-scripts

- https://github.com/federicodotta/ghidra-scripts

https://github.com/AllsafeCyberSecurity/awesome-ghidra
https://github.com/AllsafeCyberSecurity/awesome-ghidra
https://github.com/topics/ghidra-scripts

It’s free and open source

- Possibly limited feature set compared to…
- IDA Pro (multiple thousands), state of the art
- Binary Ninja ($300 personal license)

- But, it’s free

- And now has a debugger, which was a missing feature
till recently

What it can be used for

- Malware analysis

- CTF Challenges 👀

- Learning how your favorite program works, under the
hood

Let’s do a quick demonstration.

Let’s poke around a bit

*Note that the stripped binary (no debug symbols) is a tad
bit smaller

Let’s poke around a bit

Create a project

Import your binary you want to analyze
(let’s start with the unstripped binary)

On the left is a list of
functions, including
‘main’

Assembly and decompilation

Note that this is PCode, Ghidra’s IR specified by SLEIGH.
We’ll call it that from now on.

Decompiled code

- Best effort attempt
- NOT 1:1
- Still, very helpful

Let’s try something a bit more complex

What’s the difference here?
- Compiling a stripped version
- Optimizations turned down with -O0 to make it (ideally)

more similar to the source once decompiled

Size differences, revisited

What do we think this does?

It probably…
- Takes an input string
- Returns it, with modifications

Our main function

We can rename stuff!

- Rename selected
variables with ‘l’
(lowercase L)

- Can double-click
that
‘do_some_stuff’
function to jump to
it

- Lots of random
compiler stuff
going on, ignore it

Do Some Stuff?

- Ghidra obviously got
some stuff wrong

- We know the first
parameter was a
char *, but the
function
decompilation lists it
as a long

- Let’s clean this up.
*we can retype variables
with CTRL-L

Do Some Stuff?

Now we have a
significantly easier to

decipher function

What does it do? Any
guesses?

Here’s some of the PCode of
do_some_stuff

