NC STATE UNIVERSITY

CSC 405
Computer Security

Reverse Engineering
Part 2

Alexandros Kapravelos
akaprav@ncsu.edu



NC STATE UNIVERSITY

Anti-Disassembly
« Against static analysis (disassembiler)

« Confusion attack
— targets linear sweep disassembler
— insert data (or junk) between instructions and
let control flow jump over this garbage
— disassembler gets desynchronized with true instructions



NC STATE UNIVERSITY

Anti-Disassembly

« Advanced confusion attack
— targets recursive traversal disassembler
— replace direct jumps (calls) by indirect ones (branch functions)

— force disassembler to revert to linear sweep, then use previous
attack



Anti-Debugging
« Against dynamic analysis (debugger)
— debugger presence detection techniques
* API based

 thread/process information
* registry keys, process names, ...

— exception-based techniques

— breakpoint detection
» software breakpoints
* hardware breakpoints

— timing-based and latency detection



Anti-Debugging

Debugger presence checks

e Linux
— a process can be traced only once
if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)
exit(1);

 Windows
— APl calls
OutputDebugString()
IsDebuggerPresent()
... many more ...

— thread control block
» read debugger present bit directly from process memory



Anti-Debugging

Exception-based techniques

SetUnhandledExceptionFilter()

After calling this function, if an exception occurs in a process
that is not being debugged, and the exception makes it to the
unhandled exception filter, that filter will call the exception filter

function specified by the IpTopLevelExceptionFilter parameter. [
source: MSDN ]

— ldea

set the top-level exception filter, raise an unhandled exception,
continue in the exception filter function



Anti-Debugging

Breakpoint detection

— detect software breakpoints
* look for int 0x03 instructions
if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)
exit(1);

» checksum the code
if (checksum(text_segment) != valid_checksum)
exit(1);

— detect hardware breakpoints
» use the hardware breakpoint registers for computation



NC STATE UNIVERSITY

Reverse Engineering

* Goals
— focused exploration
— deep understanding

« Case study
— copy protection mechanism
— program expects name and serial number
— when serial number is incorrect, program exits
— otherwise, we are fine

« Changes in the binary
— can be done with hexedit or radare2



NC STATE UNIVERSITY

Reverse Engineering

* Focused exploration
— bypass check routines
— locate the point where the failed check is reported
— find the routine that checks the password
— find the location where the results of this routine are used
— slightly modify the jump instruction

« Deep understanding
— Kkey generation
— locate the checking routine
— analyze the disassembly
— run through a few different cases with the debugger

— understand what check code does and develop code that
creates appropriate keys



NC STATE UNIVERSITY

Malicious Code Analysis

Static analysis vs. dynamic analysis

« Static analysis
— code is not executed
— all possible branches can be examined (in theory)
— quite fast

* Problems of static analysis
— undecidable in general case, approximations necessary

— binary code typically contains very little information
+ functions, variables, type information, ...

— disassembly difficult (particularly for Intel x86 architecture)
— obfuscated code, packed code
— self-modifying code



NC STATE UNIVERSITY

Malicious Code Analysis

* Dynamic analysis
— code is executed
— sees instructions that are actually executed

* Problems of dynamic analysis
— single path (execution trace) is examined
— analysis environment possibly not invisible
— analysis environment possibly not comprehensive

* Possible analysis environments
— instrument program
— instrument operating system
— instrument hardware



NC STATE UNIVERSITY

Malicious Code Analysis

* Instrument program
— analysis operates in same address space as sample
— manual analysis with debugger
— Detours (Windows APl hooking mechanism)

— binary under analysis is modified
* breakpoints are inserted
« functions are rewritten
» debug registers are used
— not invisible, malware can detect analysis

— can cause significant manual effort



NC STATE UNIVERSITY

Malicious Code Analysis

* |nstrument operating system

— analysis operates in OS where sample is run
— Windows system call hooks

— invisible to (user-mode) malware
— can cause problems when malware runs in OS kernel
— limited visibility of activity inside program

» cannot set function breakpoints

* Virtual machines

— allow to quickly restore analysis environment
— might be detectable (x86 virtualization problems)



NC STATE UNIVERSITY

Malicious Code Analysis

 |nstrument hardware

provide virtual hardware (processor) where sample
can execute (sometimes including OS)

software emulation of executed instructions

analysis observes activity “from the outside”

completely transparent to sample (and guest OS)
operating system environment needs to be provided
limited environment could be detected

complete environment is comprehensive, but slower

Anubis uses this approach



NC STATE UNIVERSITY

Stealthiness

 One obvious difference between machine and emulator
— time of execution

 Time could be used to detect such system
— emulation allows to address these issues
— certain instructions can be dynamically modified to return
iInnocently looking results
— for example, RTC (real-time clock) - RTDSC instruction



NC STATE UNIVERSITY

Challenges

* Reverse engineering is difficult by itself
— a lot of data to handle
— low level information
— creative process, experience very valuable
— tools can only help so much

« Additional challenges
— compiler code optimization
— code obfuscation
— anti-disassembly techniques
— anti-debugging techniques



NC STATE UNIVERSITY

Your Security Zen
Dive into Database

L=l Malicious Sources

ﬁ Brute Force Dictionaries

% Configuration Changes
OS Commands

Attack Obfuscation
@ Data Exfiltration

Ransomware

source: https://www.imperva.com/blog/2018/03/deep-dive-database-attacks-scarlett-johanssons-picture-used-for-crypto-mining-on-postgre-database/



