
CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

2

3

Sir Tim Berners-Lee

ACM Turing
Award 2016

4

Birth of the Web
• Created by Tim Berners-Lee while he was

working at CERN
– First CERN proposal in 1989
– Finished first website end of 1990

• Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide
Web, Tim Berners-Lee

5

Design
• Originally envisioned as a way to share

research results and information at CERN
• Combined multiple emerging technologies

– Hypertext
– Internet (TCP/IP)

• Idea grew into “universal access to a large
universe of documents”

6

Three Central Questions
• How to name a resource?
• How to request and serve a resource?
• How to create hypertext?

7

Three Central Technologies
• How to name a resource?

– Uniform Resource Identifier (URI/URL)
• How to request and serve a resource?

– Hypertext Transfer Protocol (HTTP)
• How to create hypertext?

– Hypertext Markup Language (HTML)

8

URI

HTTP

HTML

9

URI

HTTP

HTML

10

Uniform Resource Identifier
• Essential metadata to reach/find a

resource
• Answers the following questions:

– Which server has it?
– How do I ask?
– How can the server locate the resource?

• Latest definition in RFC 3986 (January
2005)

11

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

12

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>
• path

– Usually a hierarchical pathname composed of “/” separated strings
• query

– Used to pass non-hierarchical data
• fragment

– Used to identify a subsection or subresource of the resource

13

URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

Examples:
foo://example.com:8042/over/there?test=bar#nose

ftp://ftp.ietf.org/rfc/rfc1808.txt

mailto:akaprav@ncsu.edu

https://example.com/test/example:1.html?/alex

14

URI – Reserved Characters
:
/
?
#
[
]
@
!
$

&
‘
(
)
*
+
,
;
=

15

URI – Percent Encoding
• Must be used to encode anything that is

not of the following:
Alpha [a-zA-Z]
Digit [0-9]
-
.
_
~

16

URI – Percent Encoding
• Encode a byte outside the range with percent sign

(%) followed by hexadecimal representation of
byte
– & -> %26
– % -> %25
– <space> -> %20
– …

• Let’s fix our previous example:
– https://example.com/test/example:1.html?/alex
– https://example.com/test/example%3A1.html?%2Falex

17

URI – Absolute vs. Relative
• URI can specify the absolute location of the resource

– https://example.com/test/help.html

• Or the URI can specify a location relative to the current
resource
– //example.com/example/demo.html

• Relative to the current network-path (scheme)
– /test/help.html

• Relative to the current authority
– ../../people.html

• Relative to the current authority and path
• Context important in all cases

– http://localhost:8080/test

18

Hypertext Transport Protocol
• Protocol for how a web client can request

a resource from a web server
• Based on TCP, uses port 80 by default
• Version 1.0

– Defined in RFC 1945 (May 1996)
• Version 1.1

– Defined in RFC 2616 (June 1999)
• Version 2.0

– Based on SPDY, still under discussion

19

HTTP – Overview
• Client

– Opens TCP connection to the server
– Sends request to the server

• Server
– Listens for incoming TCP connections
– Reads request
– Sends response

20

Architecture

HTTP Reply

HTTP Request

Client Server

21

Architecture

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

22

Architecture

Application
 Server

Application

Gateway
Program

Application-specific
requestBrowser

Extension

JavaScript,
ActiveX,
Flash,
Java

CGI, PHP,
ASP, Servlet

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

23

Requests
• An HTTP request consists of:

– method
– resource (derived from the URI)
– protocol version
– client information
– body (optional)

24

Requests – Syntax
• Start line, followed by headers, followed by

body
– Each line separated by CRLF

• Headers separated by body via empty line
(just CRLF)

25

Requests – Methods
• The method that that client wants applied to

the resource
• Common methods

• GET – Request transfer of the entity referred to by the
URI

• POST – Ask the server to process the included body
as “data” associated with the resource identified by the
URI

• PUT – Request that the enclosed entity be stored
under the supplied URI

• HEAD – Identical to GET except server must not
return a body

26

Requests – Methods
• OPTIONS – Request information about the

communication options available on the
request/response chain identified by the URL

• DELETE – Request that the server delete the
resource identified by the URI

• TRACE – used to invoke a remote,
application-layer loop-back of the request
message and the server should reflect the
message received back to the client as the body
of the response

• CONNECT – used with proxies
• …

– A webserver can define arbitrary extension methods
27

Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*

28

Modern Requests
GET / HTTP/1.1
Host: www.google.com
Accept-Encoding: deflate, gzip
Accept:
text/html,application/xhtml+xml,applica
tion/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_10_1)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.95 Safari/537.36

29

Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body

30

Responses – Syntax
• Status line, followed by headers, followed

by body
– Each line separated by CRLF

• Headers separated by body via empty line
(just CRLF)

• Almost the same overall structure as
request

31

Responses – Status Codes
• 1XX – Informational: request received,

continuing to process
• 2XX – Successful: request received,

understood, and accepted
• 3XX – Redirection: user agent needs to take

further action to fulfill the request
• 4XX – Client error: request cannot be fulfilled

or error in request
• 5XX – Server error: the server is aware that it

has erred or is incapable of performing the
request

32

Responses – Status Codes
• "200" ; OK
• "201" ; Created
• "202" ; Accepted
• "204" ; No Content
• “301" ; Moved Permanently
• "307" ; Temporary Redirect

33

Responses – Status Codes
• "400" ; Bad Request
• "401" ; Unauthorized
• "403" ; Forbidden
• "404" ; Not Found
• "500" ; Internal Server Error
• "501" ; Not Implemented
• "502" ; Bad Gateway
• "503" ; Service Unavailable

34

Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*

35

Responses – Example
HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 03:57:26 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: …
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic,p=0.02
Accept-Ranges: none
Vary: Accept-Encoding
Transfer-Encoding: chunked

<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage" lang="en"><head><meta
content="Search the world's information, including webpages,
images, videos and more. Go …

36

HTTP Authentication
• Based on a simple challenge-response

scheme
• The challenge is returned by the server as

part of a 401 (unauthorized) reply message
and specifies the authentication schema to be
used

• An authentication request refers to a realm,
that is, a set of resources on the server

• The client must include an Authorization
header field with the required (valid)
credentials

37

HTTP Basic Authentication
• The server replies to an unauthorized request

with a 401 message containing the header field
WWW-Authenticate: Basic realm="ReservedDocs"

• The client retries the access including in the
header a field containing a cookie composed of
base64 encoded (RFC 2045) username and
password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

• Can you crack the username/password?

38

HTTP 1.1 Authentication
• Defines an additional authentication scheme

based on cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the

username, the password, the given nonce value,
the HTTP method, and the requested URL

• To authenticate the users the web server has
to have access to clear-text user passwords

39

Monitoring and Modifying HTTP
Traffic

• HTTP traffic can be analyzed in different ways
– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the content received from

a server
– Client-side/server-side proxies can be used to analyze the

traffic without having to modify the target environment
• Client-side proxies are especially effective in

performing vulnerability analysis because they allow
one to examine and modify each request and reply
– Firefox extensions: LiveHTTPHeaders, Tamper Data
– Burp Proxy

• This is a professional-grade tool that I use

40

Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable

from one platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML)
(January 2000)

• HTML 5.0
– Proposed as W3C recommendation (October 2014)

• HTML 5.1
– Under development

41

HTML – Overview
• Basic idea is to “markup” document with tags,

which add meaning to raw text
• Start tag:

– <foo>

• Followed by text
• End tag:

– </foo>

• Self-closing tag:
– <bar />

• Void tags (have no end tag):
–

42

HTML – Tags
• Tag are hierarchical

43

HTML – Tags
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>I am the example text</p>
 </body>
</html>

44

HTML – Tags
• <html>

– <head>

•<title>
–Example

– <body>

•<p>
–I am the example text

45

HTML – Tags
• Tags can have “attributes” that provide metadata about

the tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">

46

HTML – Hyperlink
• anchor tag is used to create a hyperlink
• href attribute is used provide the URI
• Text inside the anchor tag is the text of the

hyperlink

• Example

Example

47

http://google.com

HTML – Basic HTML 5 Page
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>CSC 591</title>
 </head>

 <body>
 Text
 </body>
</html>

48

HTML – Browsers
• User agent is responsible for parsing and

interpreting the HTML and displaying it to
the user

49

HTML – Parsed HTML 5 Page

DEMO

50

HTML – Character References
• How to include HTML special characters as text/data?
< > ' " & =
– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined_name>;

– Decimal numeric character reference
• &#<decimal_unicode_code_point>;

– Hexadecimal numeric character reference
• &#x<hexadecimal_unicode_code_point>;

• Note: This will be the root of a significant number of
vulnerabilities and is critical to understand

51

HTML – Character References
Example

• The ampersand (&) is used to start a
character reference, so it must be
encoded as a character reference

• &
• &
• &
• &

52

HTML – Character References
Example

• é
• é
• é
• é

53

HTML – Character References
Example

• Why must ‘<’ be encoded as a character
reference?

• <
• <
• 0
• 0

54

Your Security Zen

Adversarial Patch
An image-independent patch that is extremely salient to

a neural network. This patch can then be placed
anywhere within the field of view of the classifier, and

causes the classifier to output a targeted class.

55Source: https://arxiv.org/pdf/1712.09665.pdf

http://www.youtube.com/watch?v=i1sp4X57TL4
https://arxiv.org/pdf/1712.09665.pdf

HackPack Meetings

• 6:00-7:15 PM at 2220 EB3 on Wednesdays
• 4:10-6:15 PM at 2220 EB3 on Fridays

• https://ncsu-hackpack.slack.com/messages/general
• https://getinvolved.ncsu.edu/organization/HackPack/

• Get some practical experience in discovering and
exploiting security problems by playing CTFs!

56

https://ncsu-hackpack.slack.com/messages/general
https://getinvolved.ncsu.edu/organization/HackPack/

