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Birth of the Web
• Created by Tim Berners-Lee while he was 

working at CERN
– First CERN proposal in 1989
– Finished first website end of 1990

• Weaving the Web: The Original Design 
and Ultimate Destiny of the World Wide 
Web, Tim Berners-Lee

5



Design
• Originally envisioned as a way to share 

research results and information at CERN
• Combined multiple emerging technologies

– Hypertext
– Internet (TCP/IP)

• Idea grew into “universal access to a large 
universe of documents”
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Three Central Questions
• How to name a resource?
• How to request and serve a resource?
• How to create hypertext?
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Three Central Technologies
• How to name a resource?

– Uniform Resource Identifier (URI/URL)
• How to request and serve a resource?

– Hypertext Transfer Protocol (HTTP)
• How to create hypertext?

– Hypertext Markup Language (HTML)
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Uniform Resource Identifier
• Essential metadata to reach/find a 

resource
• Answers the following questions:

– Which server has it?
– How do I ask?
– How can the server locate the resource?

• Latest definition in RFC 3986 (January 
2005)
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URI – Syntax 
<scheme>:<authority>/<path>?<query>#<fragment>
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URI – Syntax
<scheme>:<authority>/<path>?<query>#<fragment>

• scheme
– The protocol to use to request the resource

• authority
– The entity that controls the interpretation of the rest of the URI
– Usually a server name

• <username>@<host>:<port>
• path

– Usually a hierarchical pathname composed of “/” separated strings
• query

– Used to pass non-hierarchical data
• fragment

– Used to identify a subsection or subresource of the resource
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URI – Syntax 
<scheme>:<authority>/<path>?<query>#<fragment>

Examples:
foo://example.com:8042/over/there?test=bar#nose

ftp://ftp.ietf.org/rfc/rfc1808.txt

mailto:akaprav@ncsu.edu

https://example.com/test/example:1.html?/alex
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URI – Reserved Characters
:
/
?
#
[
]
@
!
$

&
‘
(
)
*
+
,
;
=
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URI – Percent Encoding
• Must be used to encode anything that is 

not of the following:
Alpha [a-zA-Z]
Digit [0-9]
- 
. 
_ 
~
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URI – Percent Encoding
• Encode a byte outside the range with percent sign 

(%) followed by hexadecimal representation of 
byte
– & -> %26
– % -> %25
– <space> -> %20
– …

• Let’s fix our previous example:
– https://example.com/test/example:1.html?/alex
– https://example.com/test/example%3A1.html?%2Falex
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URI – Absolute vs. Relative
• URI can specify the absolute location of the resource

– https://example.com/test/help.html

• Or the URI can specify a location relative to the current 
resource
– //example.com/example/demo.html

• Relative to the current network-path (scheme)
– /test/help.html

• Relative to the current authority
– ../../people.html

• Relative to the current authority and path
• Context important in all cases

– http://localhost:8080/test
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Hypertext Transport Protocol
• Protocol for how a web client can request 

a resource from a web server
• Based on TCP, uses port 80 by default
• Version 1.0

– Defined in RFC 1945 (May 1996)
• Version 1.1

– Defined in RFC 2616 (June 1999)
• Version 2.0

– Based on SPDY, still under discussion
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HTTP – Overview
• Client

– Opens TCP connection to the server
– Sends request to the server

• Server
– Listens for incoming TCP connections
– Reads request
– Sends response
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Architecture

HTTP Reply

HTTP Request

Client Server
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Architecture

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy
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Architecture
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Requests
• An HTTP request consists of:

– method
– resource (derived from the URI)
– protocol version
– client information
– body (optional)
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Requests – Syntax
• Start line, followed by headers, followed by 

body
– Each line separated by CRLF

• Headers separated by body via empty line 
(just CRLF)
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Requests – Methods
• The method that that client wants applied to 

the resource
• Common methods

• GET – Request transfer of the entity referred to by the 
URI

• POST – Ask the server to process the included body 
as “data” associated with the resource identified by the 
URI

• PUT – Request that the enclosed entity be stored 
under the supplied URI

• HEAD – Identical to GET except server must not 
return a body
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Requests – Methods
• OPTIONS – Request information about the 

communication options available on the 
request/response chain identified by the URL

• DELETE – Request that the server delete the 
resource identified by the URI

• TRACE – used to invoke a remote, 
application-layer loop-back of the request 
message and the server should reflect the 
message received back to the client as the body 
of the response

• CONNECT – used with proxies
• … 

– A webserver can define arbitrary extension methods
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Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*
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Modern Requests
GET / HTTP/1.1
Host: www.google.com
Accept-Encoding: deflate, gzip
Accept: 
text/html,application/xhtml+xml,applica
tion/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; 
Intel Mac OS X 10_10_1) 
AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/39.0.2171.95 Safari/537.36
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Responses
• An HTTP response consists of:

– protocol version
– status code
– short reason
– headers
– body
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Responses – Syntax
• Status line, followed by headers, followed 

by body
– Each line separated by CRLF

• Headers separated by body via empty line 
(just CRLF)

• Almost the same overall structure as 
request
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Responses – Status Codes
• 1XX – Informational: request received, 

continuing to process
• 2XX – Successful: request received, 

understood, and accepted
• 3XX – Redirection: user agent needs to take 

further action to fulfill the request
• 4XX – Client error: request cannot be fulfilled 

or error in request
• 5XX – Server error: the server is aware that it 

has erred or is incapable of performing the 
request
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Responses – Status Codes
• "200"   ; OK
• "201"   ; Created
• "202"   ; Accepted
• "204"   ; No Content
• “301"   ; Moved Permanently
• "307"   ; Temporary Redirect
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Responses – Status Codes
• "400"   ; Bad Request
• "401"   ; Unauthorized
• "403"   ; Forbidden
• "404"   ; Not Found
• "500"   ; Internal Server Error
• "501"   ; Not Implemented
• "502"   ; Bad Gateway
• "503"   ; Service Unavailable
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Requests – Example
GET / HTTP/1.1

User-Agent: curl/7.37.1

Host: www.google.com

Accept: */*
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Responses – Example
HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 03:57:26 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: … 
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic,p=0.02
Accept-Ranges: none
Vary: Accept-Encoding
Transfer-Encoding: chunked

<!doctype html><html itemscope="" 
itemtype="http://schema.org/WebPage" lang="en"><head><meta 
content="Search the world's information, including webpages, 
images, videos and more. Go …
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HTTP Authentication
• Based on a simple challenge-response 

scheme
• The challenge is returned by the server as 

part of a 401 (unauthorized) reply message 
and specifies the authentication schema to be 
used

• An authentication request refers to a realm, 
that is, a set of resources on the server

• The client must include an Authorization 
header field with the required (valid) 
credentials
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HTTP Basic Authentication
• The server replies to an unauthorized request 

with a 401 message containing the header field
WWW-Authenticate: Basic realm="ReservedDocs"

• The client retries the access including in the 
header a field containing a cookie composed of 
base64 encoded (RFC 2045) username and 
password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

• Can you crack the username/password?
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HTTP 1.1 Authentication
• Defines an additional authentication scheme 

based on cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the 

username, the password, the given nonce value, 
the HTTP method, and the requested URL

• To authenticate the users the web server has 
to have access to clear-text user passwords
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Monitoring and Modifying HTTP 
Traffic

• HTTP traffic can be analyzed in different ways
– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the content received from 

a server
– Client-side/server-side proxies can be used to analyze the 

traffic without having to modify the target environment
• Client-side proxies are especially effective in 

performing vulnerability analysis because they allow 
one to examine and modify each request and reply
– Firefox extensions: LiveHTTPHeaders, Tamper Data
– Burp Proxy

• This is a professional-grade tool that I use

40



Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable 

from one platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0 

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML) 
(January 2000)

• HTML 5.0
– Proposed as W3C recommendation (October 2014)

• HTML 5.1
– Under development
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HTML – Overview
• Basic idea is to “markup” document with tags, 

which add meaning to raw text
• Start tag:

– <foo>

• Followed by text
• End tag:

– </foo>

• Self-closing tag:
– <bar />

• Void tags (have no end tag):
– <img>
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HTML – Tags
• Tag are hierarchical
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HTML – Tags 
<html>
  <head>
    <title>Example</title>
  </head>
  <body>
    <p>I am the example text</p>
  </body>
</html>
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HTML – Tags 
• <html>

– <head>

•<title>
–Example

– <body>

•<p>
–I am the example text
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HTML – Tags 
• Tags can have “attributes” that provide metadata about 

the tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">
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HTML – Hyperlink
• anchor tag is used to create a hyperlink
• href attribute is used provide the URI 
• Text inside the anchor tag is the text of the 

hyperlink

• <a href="http://google.com">Example</a>

Example
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HTML – Basic HTML 5 Page
<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>CSC 591</title>
  </head>

  <body>
    <a href="http://example.com/">Text</a>
  </body>
</html>
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HTML – Browsers
• User agent is responsible for parsing and 

interpreting the HTML and displaying it to 
the user
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HTML – Parsed HTML 5 Page

DEMO
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HTML – Character References
• How to include HTML special characters as text/data?
< > ' " & = 
– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity 

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined_name>;

– Decimal numeric character reference
• &#<decimal_unicode_code_point>;

– Hexadecimal numeric character reference
• &#x<hexadecimal_unicode_code_point>;

• Note: This will be the root of a significant number of 
vulnerabilities and is critical to understand
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HTML – Character References 
Example

• The ampersand (&) is used to start a 
character reference, so it must be 
encoded as a character reference

• &amp;
• &#38;
• &#x26;
• &#x00026;
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HTML – Character References 
Example

• é
• &eacute;
• &#233;
• &#xe9;
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HTML – Character References 
Example

• Why must ‘<’ be encoded as a character 
reference?

• &lt;
• &#60;
• &#x30;
• &#x00030;
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Your Security Zen

Adversarial Patch
An image-independent patch that is extremely salient to 

a neural network. This patch can then be placed 
anywhere within the field of view of the classifier, and 

causes the classifier to output a targeted class.

55Source: https://arxiv.org/pdf/1712.09665.pdf

http://www.youtube.com/watch?v=i1sp4X57TL4
https://arxiv.org/pdf/1712.09665.pdf


HackPack Meetings

• 6:00-7:15 PM at 2220 EB3 on Wednesdays
• 4:10-6:15 PM at 2220 EB3 on Fridays

• https://ncsu-hackpack.slack.com/messages/general
• https://getinvolved.ncsu.edu/organization/HackPack/

• Get some practical experience in discovering and 
exploiting security problems by playing CTFs!
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