## CSC 405 Introduction to Computer Security

### **TCP/IP Security**

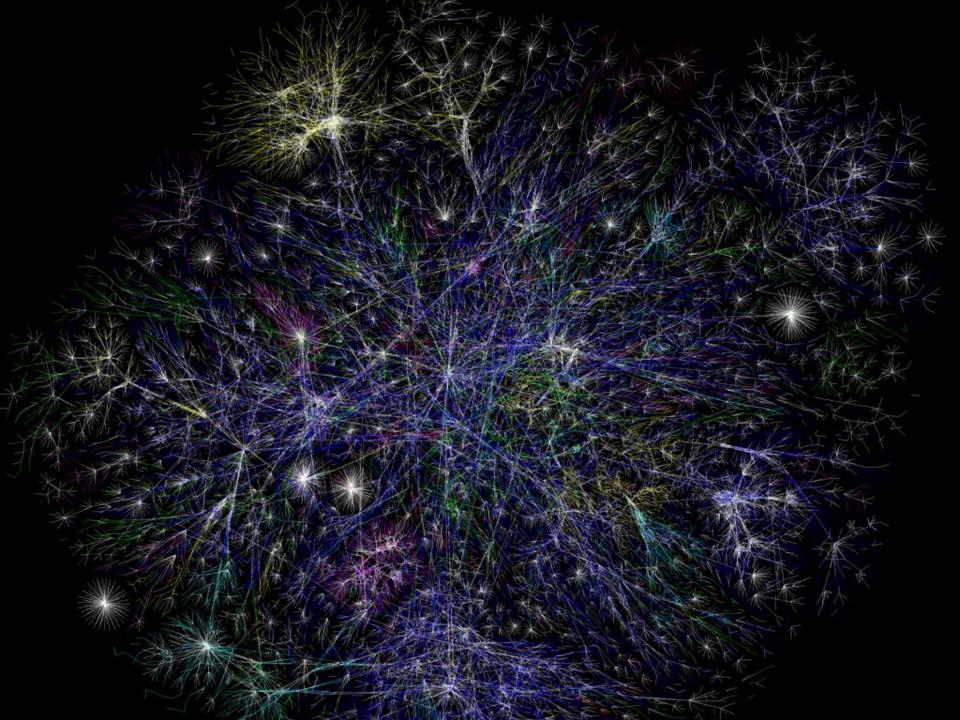
Alexandros Kapravelos akaprav@ncsu.edu

(Derived from slides by Will Enck and Micah Sherr)

### **Network Stack**

**Application Transport** Network Data Link **Physical** 

### Networking


- Fundamentally about transmitting information between two devices
- Communication is now possible between any two devices anywhere (just about)
  - Lots of abstraction involved (see previous slide)
  - Lots of network components (routers)
  - Standard protocols (e.g., IP, TCP, UDP)
  - Wired and wireless
- What about ensuring security?

### **Network Security**

- Every machine is connected
  - No barrier to entry
  - Not just limited to dogs as users



"On the Internet, nobody knows you're a dog."

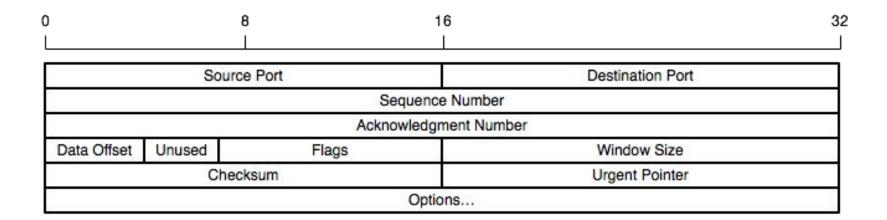


### **Exploiting the network**

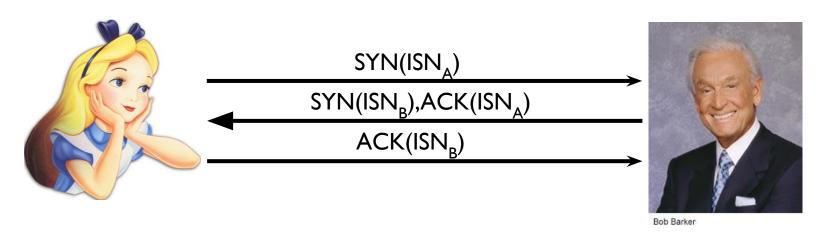
- The Internet is extremely vulnerable to attack
  - it is a huge open system ...
  - which adheres to the end-to-end principle
    - smart end-points, dumb network
- Can you think of any large-scale attacks that would be enabled by this setup?

### **Network Security: The high bits**

- The network is ...
  - ... a collection of interconnected computers
  - ... with resources that must be protected
  - ... from unwanted inspection or modification
  - ... while maintaining adequate quality of service.

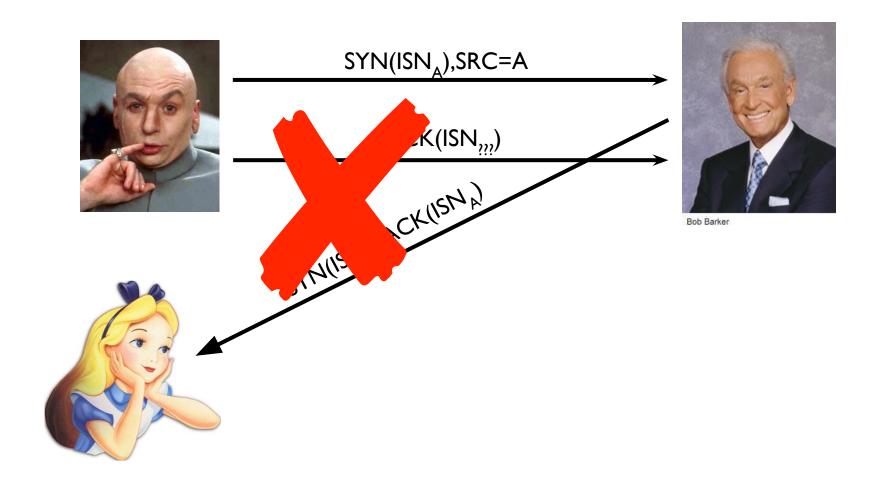

### **Network Security: The high bits**

- Network Security (one of many possible definitions):
  - Securing the network infrastructure such that the integrity, confidentiality, and availability of the resources is maintained.


### Steven Bellovin's Security Problems in the TCP/IP Protocol Suite

- Bellovin's observations about security problems in IP
  - Not really a study of how IP is misused (e.g., IP addresses for authentication), but rather what is inherently bad about the way in which IP is set up
- A really, really nice overview of the basic ways in which security and the IP design is at odds

### **TCP** Header




### **TCP Sequence Numbers**

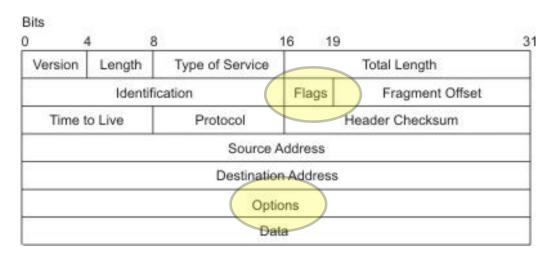


- TCP's "three-way handshake":
  - each party selects Initial Sequence Number (ISN)
  - shows both parties are capable of receiving data
  - offers some protection against forgery -- WHY?

### **TCP Sequence Numbers**



### **TCP Sequence Numbers**




#### How do we fix this?

- More rapidly change ISNs
- Randomize ISNs

### **Source Routing**

- Standard IP Packet Format (RFC791)
- Source Routing allows sender to specify route
  - Set flag in Flags field
  - Specify routes in Options field



### **Source Routing**





Bob Barker





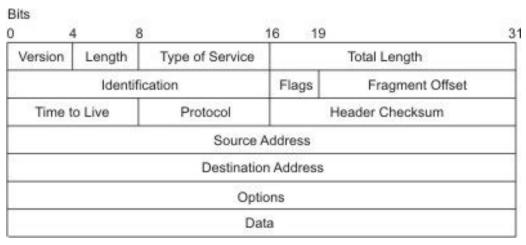
**R4** 



### **Source Routing**

- Q: What are the security implications of Source Routing?
  - Access control?
  - DoS?
- Q: What are the possible defenses?
  - A: Block packets with source-routing flag

### **Routing Manipulation**


- RIP Routing Information Protocol
  - Distance vector routing protocol used for the local network
  - Routers exchange reachability and "distance" vectors for all the sub-networks within (a typically small) domain
  - Use vectors to decide which route is best
- Problem: Data (vectors) are not authenticated
  - Forge vectors to cause traffic to be routed through adversary
  - or cause DoS
- Solutions: ? (still an open problem)

### Internet Control Message Protocol (ICMP)

- ICMP is used as a control plane for IP messages
  - Ping (connectivity probe)
  - Destination unreachable (error notification)
  - Time-to-live exceeded (error notification)
- Some ICMP messages cause clients to alter behavior
  - e.g., TCP RSTs on destination unreachable or TTL-exceeded
- ICMP messages are easy to spoof: no handshake
- Enables attacker to remotely reset others' connections
- Solution:
  - Verify/sanity check sources and content
  - Filter most of ICMP

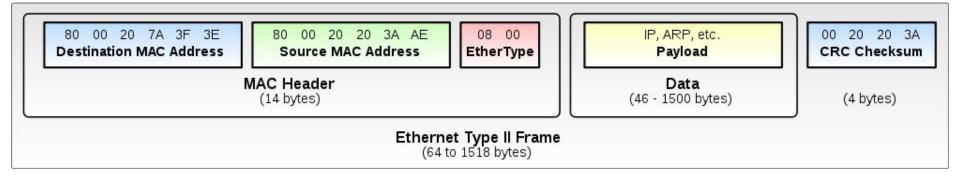
### **Background: IP Fragmentation**

- 16-bit "Total Length" field allows 2<sup>16</sup>-1=65,535 byte packets
- Data link (layer 2) often imposes significantly smaller Maximum Transmission Unit (MTU) (normally 1500 bytes)
- Fragmentation supports packet sizes greater than MTU and less than 2<sup>16</sup>
- 13-bit Fragment Offset specifies offset of fragmented packet, in units of 8 bytes
- Receiver reconstructs IP packet from fragments, and delivers it to Transport Layer (layer 4)
   after reassembly



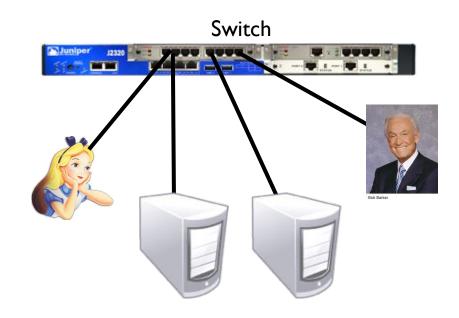
### **Ping-of-Death**

- Maximum packet size: 65,535 bytes
- Maximum 13-bit offset is  $(2^{13} 1) * 8 = 65,528$
- In 1996, someone discovered that many operating systems, routers, etc. could be crash/rebooted by sending a **single** malformed packet
  - If packet with maximum possible offset has more than 7 bytes, IP buffers allocated with 65,535 bytes will be overflowed
  - ...causing crashes and reboots
- Not really ICMP specific, but easy
  - % ping -s 65510 your.host.ip.address
- Most OSes and firewalls have been hardened against PODs
- This was a popular pastime of early hackers


#### WARNING!

The system is either busy or has become unstable. You can wait and see if the system becomes available again and continue working or you can restart your computer.

- \* Press any key to return to Windows and wait.
- \* Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.


Press any key to continue \_

### ARP Spoofing: Background: Ethernet Frames



### ARP Spoofing: Background: ARP

- Address Resolution Protocol (ARP): Locates a host's link-layer (MAC) address
- Problem: How does Alice communicate with Bob over a LAN?
  - Assume Alice (10.0.0.1) knows Bob's (10.0.0.2) IP
  - LANs operate at layer 2 (there is no router inside of the LAN)
  - Messages are sent to the switch, and addressed by a host's link-layer (MAC) address
- Protocol:
  - Alice broadcasts: "Who has 10.0.0.2?"
  - Bob responses: "I do! And I'm at MAC f8: I e:df:ab:33:56."



### **ARP Spoofing**

- Each ARP response overwrites the previous entry in ARP table -- <u>last response wins!</u>
- Attack: Forge ARP response
- Effects:
  - Man-in-the-Middle
  - Denial-of-service
- Also called ARP Poisoning or ARP Flooding

### **ARP Spoofing: Defenses**

- Smart switches that remember MAC addresses
- Switches that assign hosts to specific ports

### **Port Scanning**

- Side-channel attack on network protocol and implementation properties
- Used to efficiently gather information on target networks
  - Network topology
  - Access control policy
  - Network service availability, versions
- Classic network reconnaissance technique
  - Sometimes a precursor to actual attacks

### **Portscan Types**

- Connect scan
  - Use connect syscall to attempt full three-way TCP handshake
  - Available to unprivileged users, but slow
- SYN scan
  - Use raw sockets to directly inject a TCP SYN packet and wait for SYN-ACK response
  - Much more efficient
- UDP scan
  - Send UDP packets and wait for ICMP error response

### **Port Knocking**

- Port knocking: a technique for hiding the existence of server ports from reconnaissance techniques like port scans
  - Client must issue a secret sequence of packets before being able to connect to a service, like a secret knock
- Many variations
  - Simple: TCP SYN to ordered list of ports before connecting to real port
  - Can also incorporate rate limiting, multiple protocols, cryptographic challenges, ...

#### **OS Detection**

- Differences in TCP/IP implementations useful for *fingerprinting* remote machines
  - Due to flaws or specification ambiguity
- Fingerprints recorded for known systems, collectively form a fingerprint database
  - Database can be matched against runtime responses to identify a likely remote OS
  - Both active (nmap) and passive (p0f) classifiers

#### POP/SMTP/FTP

- Post office protocol mail retrieval
  - Passwords passed in the clear
  - Solution: SSL, SSH, Kerberos
- Simple mail transport protocol (SMTP) email
  - Nothing authenticated: SPAM
  - Nothing hidden: eavesdropping
  - Solution: ?
- File Transfer protocol file retrieval
  - Passwords passed in the clear
  - Solution: SSL, SSH, Kerberos

#### **Lessons Learned?**

- The Internet was built for robust communication
- Smartness occurs at the end-hosts
- Does this design support or hinder network security?

# And if we had to start all over again, could we do better?