Same Script, Different Behavior: Characterizing Divergent
JavaScript Execution Across Different Device Platforms

Ahsan Zafar
azafar2@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

Alexandros Kapravelos
akaprav@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

Abstract

JavaScript drives dynamic content across modern web platforms,
yet differences in browser engines, hardware, and APIs create dis-
tinct execution environments on mobile and desktop devices. This
divergence raises important concerns about platform-specific track-
ing, but its scope and impact remain underexplored. In this paper,
we present a hybrid analysis of JavaScript execution across mobile
and desktop to uncover behavioral differences in how identical
code operates. By combining static analysis of script structure with
dynamic tracing of runtime behavior, we identify execution path
divergences tied to the user’s device. Our study shows that 20.6%
of scripts on the top 10K Tranco-ranked websites exhibit platform-
specific execution. Our tracing algorithm pinpoints the sources of
divergence for 92.8% of conditional Web API calls, with 76% involv-
ing known fingerprinting APIs and 6% relying on lesser-known
but platform-revealing interfaces. We further categorize divergent
paths, finding asymmetric tracking patterns: desktop flows are dom-
inated by fingerprinting and bot detection, while mobile flows focus
more on behavioral profiling.

CCS Concepts

« Security and privacy — Web application security.

Keywords
Web Measurement; JavaScript; Static Analysis; Dynamic Analysis

ACM Reference Format:

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anu-
pam Das. 2025. Same Script, Different Behavior: Characterizing Divergent
JavaScript Execution Across Different Device Platforms. In Proceedings of
the 2025 ACM SIGSAC Conf. on Computer and Communications Security
(CCS °25), October 13-17, 2025, Taipei. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3719027.3765202

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS °25, Taipei

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765202

Junhua Su
jsu6@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

Sohom Datta
sdatta4@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

Anupam Das
anupam.das@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

1 Introduction

The web has grown into a complex ecosystem, supporting every-
thing from daily tasks like shopping and communication to ad-
vanced applications such as real-time analytics and immersive ex-
periences. To meet rising demands for interactivity, browsers have
expanded JavaScript capabilities, though execution often differs
between desktop and mobile due to hardware, input methods, and
API support. Developers use techniques like conditional loading
to optimize performance across platforms. A major driver of this
complexity is the JavaScript executed on websites, including third-
party scripts from ads and trackers. While core functionality may
remain consistent, execution paths can vary by platform, activating
different code on mobile versus desktop. These differences affect
not only usability but also how tracking and fingerprinting work,
sometimes enabling more invasive tracking depending on the de-
vice. As platform-specific tracking grows, understanding execution
differences is critical for addressing privacy and security risks.

Prior studies have explored platform-specific web tracking on
mobile and desktop platforms. Eubank et al. [16] used a browser
extension to crawl the top 500 websites across desktop and emu-
lated Android, finding substantial overlap in third-party trackers
and consistent cookie modifications, but no clear platform-specific
differences. Yang et al. [58] introduced WTPatrol, built on Open-
WPM [15] (a web privacy measurement framework), to study track-
ing on Firefox’s mobile and desktop versions. Crawling 23,000 web-
sites, they identified over 4,000 trackers, but reported no significant
platform disparities. Cassel et al. [11] developed OmniCrawl] using
mitmproxy [2] to intercept network traffic and monitor JavaScript
API usage across 20,000 sites on desktop, mobile, and emulated mo-
bile. They found that mobile platforms were more exposed to track-
ing, while highlighting the limitations of emulated crawlers. While
these studies have made valuable contributions, their instrumenta-
tion is often low-fidelity, capturing only a subset of dynamically
executed APIs. As a result, they may miss nuanced behaviors trig-
gered at runtime, limiting the visibility into the full scope of script
execution across platform. In contrast, our approach leverages an
instrumented Chromium-based browser with a modified V8 engine
(i.e., VisibleV8 [25]) to log low-level JavaScript API and property
access, providing near-complete API coverage. This design ensures
stealth and accuracy, capturing fine-grained JavaScript execution
while minimizing detection by tracking or anti-bot systems.

https://orcid.org/0000-0002-5659-2805
https://orcid.org/0000-0002-3138-9720
https://orcid.org/0009-0001-6846-101X
https://orcid.org/0000-0002-8839-8521
https://orcid.org/0000-0002-8961-9963
https://doi.org/10.1145/3719027.3765202
https://doi.org/10.1145/3719027.3765202

CCS 25, October 13-17, 2025, Taipei

We adopt a hybrid approach that combines static and dynamic
analysis to study divergent fingerprinting behavior across plat-
forms. For static analysis, we examine the structure of JavaScript
code using tools that construct Abstract Syntax Trees (ASTs) and
Program Dependency Graphs (PDGs) [17], allowing us to under-
stand the structural properties and dependencies within scripts.
Complementing this, we use dynamic analysis with VisibleV8 [25]
to monitor JavaScript execution traces at runtime to map executed
APIs to the PDGs and construct execution graphs. This combined
approach enables us to identify script routines that execute on one
platform (e.g., mobile) but not on another (e.g., desktop), despite
originating from the same codebase. More specifically, we seek to
address the following research questions in this paper.

RQ1: What is the prevalence of divergence in the execution
of JavaScript on mobile and desktop platforms? We quantify
how frequently JavaScript (identically sourced) behavior diverges
when executed on mobile versus desktop platforms. This analysis is
performed purely from the client side and establishes the baseline
extent of platform-dependent execution differences across websites.
RQ2: What information do JavaScript programs use to trigger
divergence? We analyze the data sources and conditions that drive
platform-specific branching in JavaScript code. This includes iden-
tifying what platform-related information (e.g., user-agent, screen
size) scripts access to select exclusive execution paths, and measur-
ing how much of this information is fingerprintable. RQ3: What
do platform-specific JavaScript execution paths accomplish?
We examine the functionality implemented in the divergent code
paths to understand the purpose behind platform-specific behavior.
This post-divergence analysis helps uncover whether divergence
is used for content optimization, tracking, fingerprinting, or other
behaviors. In summary, we make the following contributions:

e We introduce a hybrid analysis framework that combines graph-
ical representation of code with execution trace to outline the
conditional branching of identically-sourced JavaScript as it runs
across various platform environments. Our algorithm locates
fine-grained data-sources that contribute to these branching de-
cisions. We have open-sourced our work [1].

e We crawled the top 10,000 websites from the Tranco list [29]
using VisibleV8 on both mobile and desktop platforms. Our anal-
ysis shows that 20.6% of identically-sourced scripts exhibited
divergence across platforms. Notably, desktop environments ac-
counted for 67.9% more divergent execution flows than mobile.

e We analyze the data sources feeding conditional nodes prior to
divergence and find that 76% of the associated information chains
rely on well-known fingerprinting APIs. An additional 6% in-
volve lesser-known APIs that still expose critical device-specific
information to these conditionals. This exploratory analysis lays
the foundation for identifying emerging fingerprinting vectors.

e We categorize tracking behaviors across platform-specific di-
vergent flows and find clear trends. On desktops, browser fin-
gerprinting, bot detection, and session state tracking dominate,
making up 77% of desktop-only executions. In contrast, mobile
flows are driven largely by behavioral tracking—such as touch,
click, scroll, and tap events—accounting for 59% of all cases.

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

2 Background and Related Work
2.1 Web Crawling Tools

The web ecosystem is rapidly evolving and highly heterogeneous,
making systematic study challenging. To collect representative data,
researchers often employ web crawlers and analyze the results for
emerging patterns. Because JavaScript underpins much of the web’s
dynamic and interactive functionality, it has become a primary fo-
cus of such analyses. In turn, specialized tools have been developed
to monitor JavaScript execution during crawling, with Open WPM
and VisibleV8 among the most widely adopted in recent research.

OpenWPM. OpenWPM is a Firefox- and Selenium-based web
measurement framework designed to collect cookies and monitor
a predefined set of browser API calls. It has been widely used to
study online tracking and fingerprinting. Englehardt et al. [15]
introduced OpenWPM to investigate fingerprinting techniques like
Canvas, Audio, and WebRTC. Subsequent studies leveraged it to
examine tracking across websites and apps [5, 9], misuse of mobile
sensors [13], and tracking in the TV ecosystem [35]. More recent
work applied machine learning to detect fingerprinting scripts and
analyze browser API abuse at scale [7, 24].

VisibleV8. VisibleV8 is an instrumented version of the V8 JavaScript
engine paired with a Puppeteer-based crawler, enabling comprehen-
sive monitoring of browser API execution. Developed by Jueckstock
et al. [25], VisibleV8 has been widely used in web measurement
studies, including analyses of bot detection [25], JavaScript obfus-
cation [47], and the impact of crawling vantage points [26]. More
recent work has used VisibleV8 for fingerprinting detection [54] and
uncovering evasive malicious code through forced execution [41].

Other Crawling Studies. Several studies have employed crawling
techniques to investigate online tracking and privacy. Roesner et
al. [44] used a Firefox extension to classify third-party trackers,
while Mayer et al. [33] developed FourthParty to monitor DOM ac-
tivity, HT TP requests, and cookies. Acar et al. [6] introduced FPDe-
tective on Chromium and Phantom]S to track fingerprinting APIs,
revealing rapid growth. Snyder et al. [50] injected JavaScript via a
Firefox extension to study API usage and ad-blocker effects, and
Lerner et al. [30] combined a Chrome extension with the Wayback
Machine to analyze cookies and fingerprinting over two decades.

2.2 JavaScript Behavior Analysis

In analyzing JavaScript behavior, both static and dynamic approaches
have been used, each bringing its own strengths and limitations.

Static Analysis. Static analysis inspects the structure of JavaScript
code without executing it, making it useful for identifying finger-
printing routines and third-party dependencies. Techniques like
Abstract Syntax Trees (ASTs) and Program Dependency Graphs
(PDGs) help map control and data flows, revealing how scripts are
constructed and interconnected. While static analysis has been ex-
tensively applied to JavaScript in general [27, 31, 51], few studies
have specifically focused on its use for web fingerprinting [23].
Tools such as JStap [17] construct data flow graphs and integrate
machine learning to detect malicious patterns, while JSFlow [22, 49]
traces information flows to identify how tracking data reaches third-
party services like Google Analytics. However, static methods fall

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

short in capturing runtime behavior—such as DOM state changes
or dynamic property accesses—making them insufficient alone for
detecting divergent fingerprinting behavior.

Dynamic Analysis. Dynamic analysis monitors the runtime be-
havior of JavaScript by tracking execution traces, crucial for identi-
fying divergent code paths that cause different behaviors on mobile
and desktop platforms. While static analysis can suggest poten-
tial divergences, it often suffers from high false-positive rates [42].
For this study, we use VisibleV8 [25], an instrumented Chromium
browser that provides fine-grained, API-level tracing. Integrated
into the JavaScript engine, VisibleV8 logs every API and function
call, offering comprehensive coverage compared to other tools that
track only a limited set of APIs [11], making it ideal for our analysis.

2.3 Browser Fingerprinting

Browser fingerprinting is a stateless tracking technique that profiles
a user’s browser and device using standalone APIs (e.g., userAgent)
or JavaScript to create persistent identifiers, such as the Canvas
hash [15]. Unlike stateful tracking methods (e.g., cookies), which
users can clear, fingerprinting relies on relatively permanent device
attributes, raising significant privacy concerns. Although finger-
printing can serve legitimate purposes, such as adapting website
content to device specifications (e.g., screen resolution), it is widely
used for tracking users across the web [24]. Jonathan Mayer was
among the first to demonstrate that browser APIs could be exploited
to gather fragments of user information, which when combined,
can uniquely identify individuals [32]. Peter Eckersley [14] fur-
ther formalized this concept by showing that 18 bits of identifying
information from over 286,000 users were sufficient to create a
unique fingerprint. As awareness of fingerprinting grew, research
identified a wide range of browser and device features that can
be used for tracking, including battery status [40], browser exten-
sions [45, 49, 52], HTML5 Canvas [37], CSS [55], execution timing
and clocks [46], WebGL [10, 37], system fonts [19], mobile device
configurations [28], JavaScript engine characteristics [36, 38, 48],
differences in browser API implementations [39], and even a user’s
NoScript allowlist [36].

2.4 Cross-Platform Comparison

Eubank et al. [16] were the first to examine mobile web tracking
using a modified version of FourthParty, a web measurement ex-
tension. By crawling the top 500 websites across desktop, Android,
and emulated Android platforms, they found significant overlap in
third-party trackers and consistent cookie modifications, though
no platform-specific tracking differences emerged. Expanding the
scope, Yang et al. [58] introduced WTPatrol, built on OpenWPM,
to study tracking behavior across mobile and desktop versions of
Firefox. Their crawl of roughly 23,000 websites uncovered over
4,000 trackers leveraging browser APIs and cookies, yet similarly
found no meaningful disparity between platforms. Pushing cross-
platform analysis further, Cassel et al. [11] developed OmniCrawl, a
framework combining mitmproxy with JavaScript instrumentation
to monitor browser API usage. Their study, covering 20,000 web-
sites across desktop, mobile, and emulated mobile, revealed that
emulated or WebDriver-based crawlers reduce crawl authenticity
and that mobile browsers are more prone to fingerprinting.

CCS 25, October 13-17, 2025, Taipei

2.5 Distinction with Prior Work

Our work introduces a hybrid analysis framework that integrates
both static and dynamic techniques to uncover divergent finger-
printing behavior—cases where identical JavaScript executes dif-
ferently across platforms (e.g., on mobile but not on desktop). This
dual-layered approach allows us to not only identify structural fin-
gerprinting logic via static analysis but also confirm its execution
through runtime monitoring. For dynamic analysis, we leverage
VisibleV8 [25] that offers fine-grained, API-level tracing by logging
every JavaScript API and function call directly within the browser
engine for both desktop and mobile platforms. We align API call
offsets from VisibleV8 (dynamic) with enriched AST offsets from
JStap (static) to map executed APIs to the program dependence
graph and construct execution graphs. Unlike prior studies—such
as Cassel et al. [11]—that rely on JavaScript instrumentation or
proxies and monitor only a limited subset of APIs, VisibleV8 pro-
vides comprehensive coverage and deep visibility into JavaScript
behavior. Its tight integration into the V8 engine also makes it more
stealthy and less susceptible to detection by anti-bot mechanisms.

While our system is limited to Chromium-based browsers, this
scope is justified by current market trends: Chrome alone holds
67.08% of the global browser market, with Edge and Opera bringing
the total Chromium-based usage to over 74.39% [53]. In contrast,
Firefox’s 2.54% share indicates that our analysis captures the domi-
nant share of user-facing web activity. In summary, our work differs
from previous efforts by offering: (1) a broader and deeper view of
tracking activity via high-fidelity instrumentation, and (2) a hybrid
analysis workflow that enables robust detection of platform-specific
divergences in script behavior—an area largely underexplored in
existing literature.

3 Formalizing Execution Flow Divergence

When JavaScript executes on different platforms, such as mobile
and desktop, variations can arise due to differences in the runtime
environment, API availability, and execution order. Although the
same script may be loaded, its execution sequence can diverge due
to asynchronous operations, platform-specific optimizations, or
conditional execution paths. We refer to a sequence of executed
APIs with their character offsets (i.e., location in code) as an exe-
cution trace. To systematically quantify divergences, we define a
metric that captures both missing and reordered API calls in the
execution trace while allowing for minor execution variations.

Our approach models this problem as a sequence alignment
task, similar to edit distance computations, where one sequence
represents the execution flow on a mobile device, and the other
represents the execution flow on a desktop. Each sequence is an
ordered list of API calls, where every entry consists of an execution
offset (character position within the script) and an API identifier.
Given two such sequences, we construct a dynamic programming
(DP) algorithm to measure their dissimilarity while allowing for
slight reordering and gaps in execution.

Let F;;, and F; represent the API execution flows observed on
mobile and desktop, respectively:

Fm = [(oT",aT"), (0", ay"), ..., (o], afp)] (1)

Fg=[(0%,a?), (08, ad), ..., (0%, alp] ()

CCS 25, October 13-17, 2025, Taipei

Merge End\

Figure 1: A graphical representation of API execution trace with a
platform-dependent branch. Orange, purple, and blue nodes denote
desktop-only, mobile-only, and common APIs executed, respectively.

where o; denotes the character offset within the script, and a;
denotes the API call at that offset.

To compute divergence, we define a cost matrix D of size (N +
1) X (M + 1), where N and M represent the cardinality of F,,, and
Fy, respectively, and D[i][] represents the minimum cost to align
the first i elements of F,;, with the first j elements of F;. The goal
is to minimize the cost incurred by mismatches, missing APIs, and
significant reordering.

Figure 1 presents an example API execution trace of a script
exhibiting platform-dependent branching. The Cond node preceds
the divergence point, and in this particular example, is the last
commonly executed node. On the desktop path, nodes C1, D1, and
D2 are executed before merging. On mobile, M1 and M2 precede
C1, which appears as a re-ordered node. To account for this partial
alignment, our algorithm assigns a half-cost adjustment to C1.

Listing 1 presents a real-world example of divergence due to
device-specific behavior. The variable m (defined in line 7) acts as
the conditional node (line 10) in the PDG, executed on both platforms
before divergence begins on the desktop. The first exclusive node
executed on the desktop marks the divergence point.

We define “identical scripts” as source-code scripts loaded from
the same domain on both platforms. Each is compared one-to-one
per domain, and if it appears multiple times, divergence scores are
averaged. A “divergence point" is the first exclusively executed
API passed to the conditional algorithm, marking the start of a
“divergent subsequence" (or “divergent trace")—a platform-specific
sequence of API calls. A script may contain multiple such subse-
quences. While we do not track implicit flows, our information flow
analysis captures APIs, functions, and variables in the PDG that
explicitly influence the conditional node. This information flow
chain refers to the list of PDG nodes contributing to the conditional
node. If the conditional node includes only browser APIs, it alone
represents the information flow.

The divergence algorithm has the following steps:

@ Initialization. The first row and first column of D are initialized

to represent the cost of aligning a sequence with an empty prefix:
Dli][o] =i-g. D[o][jl=Jj-g ©)

where g is a gap penalty applied when an API call is missing in one

of the sequences.

@ Matching and Misalignment Handling. For each pair (o, al"

and (o}i, a?):

- If they are an exact match (i.e., same API at the same offset),
no penalty is applied:

DI[i][j] = Dli - 1][j - 1] 4

- If the API call is found within a small offset window k, but at
a different position, we apply a misalignment penalty p instead of

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

1 ft.isM = function(p, t) {

2 return !!p & p === "iPhone" || p === "iPad" || (p.substr
3 (0, 7) === "Linux a" && t > 0)

4 ;

5 s.D9_120 = navigator.platform;

6 5.D9_123 = navigator.maxTouchPoints || 0;

7 var m = ft.isM(s.D9_120, s.D9_123);

8 s.D9_130 = ft.flashVersion(m);

9 ft.flashVersion = function(m) {

10 if (m) { return null }

11 try {

12 var obj = new ActiveXObject("ShockwaveFlash.

13 ShockwaveFlash.6");

14 try {

15 obj.AllowScriptAccess = "always"

16 } catch (e) { return "6.0.0" }

17 } catch (e) {

18 if (navigator.mimeTypes["application/x-shockwave-flash"].
19 enabledPlugin) {

20 return navigator.plugins["Shockwave Flash 2.0"] }3}};

Listing 1: Alternative code execution behavior based on platform
environment from d9.flashtalking.com/d9core from adobe.com.

treating it as a completely missing API: !
3j" € [j — k, j + k] such that (o]", a]") = (o}i,,a;l,)

13
= Dli|[jl=Dli-1]lj’'-1l+p (5
This ensures that small reordering variations due to asynchronous
callbacks and network requests do not lead to excessive divergence
penalties.
- If no match is found, a gap penalty g is applied to account for
missing APIs:

D[il[j] = min(D[i - 1][j] +¢. D[11 +g) (6)
@ Divergence Score Computation. The final divergence score
is normalized by the maximum sequence length to ensure compa-
rability across different scripts:
DIN][M]
O(Fm. Fa) = max (N, M)
A higher value of § indicates greater divergence between mobile
and desktop execution.

This approach balances sensitivity to execution differences with
robustness to minor reordering or missing API calls. Using a looka-
head window and misalignment penalties, it captures meaningful
divergences while dynamic programming ensures efficient compar-
ison at scale.

@)

4 Methodology

We present a hybrid framework to analyze how identical JavaScript
code exhibits divergent behavior across platforms. As illustrated
in Figure 2, we combine static analysis of program structure (ASTs
and PDGs) with dynamic execution traces from VisibleV8 [25]. We
first build syntax graphs using JStap, a static analysis tool that
builds a PDG over an AST. We extend it with updated libraries
(e.g., replacing Esprima 2 with Espree 3) and additional features to
support our analysis. Next, using execution traces from VisibleVs8,
we mark PDG nodes with matching offsets as executed, based on
API calls recorded by the JavaScript engine. We refer to the resulting
combination of the PDG and execution trace as the execution graph.

'We empirically assign the following values to the parameters: p = 0.5,g = 1,k = 5
Zhttps://esprima.org/
Shttps://github.com/eslint/js/tree/main/packages/espree

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

Gathering Execution and Code Data

Constructing PDG

CCS 25, October 13-17, 2025, Taipei

Discovering Divergence

| |
it Program i

|| Dependency |,

%l 1 [

] I

i |

JavaScript Code

DN

N

- Data Sources and Conditional Node Information Flow

Information
Backtracing

| (APIs, variables,
| function names)
i

l 7 > i Mobile i }r Desktop ‘: > Analyzing Divergent Behavior

| | i Divergent ; Divergent | T -

1 Visibleve | Nodes | | Nodes | | Tracking Patterns |

[=, Execution | | | ! :

R Trace | B L ! * 49 u !

VisibleVg 1 mm------o- < ' Labelled PDG ' | Labelled PDG ! ; :
Chromium | Runtime Dynamic | | (Mobile) I (Desktop) ! N ' ! N D 6 !

L Log w T T - Mobile and Desktop Exclusive | M y

- oTThm T J A VRN Sequence T -

Figure 2: System overview. We combine dynamic execution traces with static PDGs to create a labeled execution graph (PDG). Conditional
nodes responsible for divergence are identified, along with their data sources via the iFlow analysis. We then perform: (i) pre-divergence
analysis to detect fingerprinting APIs used to infer device properties, and (ii) post-divergence analysis to categorize tracking behaviors in

platform-specific execution paths.

This enriched graph allows us to identify conditional branches and
trace the data sources (iFlow chains) that influence divergence.

Listing 1 shows a representative case from flashtalking.com
on adobe. com, where the script detects mobile devices using navi-
gator.platformand navigator.maxTouchPoints. On mobile, it
skips Flash detection; otherwise, it checks Flash support via navi-
gator.mimeTypes, ActiveXObject, and navigator.plugins.

Execution traces reflect this divergence. On mobile, only high-
level navigator properties are accessed; on desktop, Flash-related
APIs are additionally invoked. Our framework detects the divergent
node navigator.mimeTypes, locates its call site (line 18), and traces
the control condition m (line 10) back to its dependencies—revealing
that navigator.platform and navigator.maxTouchPoints are
used to classify the platform. This illustrates how our system links
execution divergence to specific browser APIs, exposing their role
in platform detection and potential fingerprinting.

4.1 Hybrid Analysis

As previously discussed, our hybrid analysis approach leverages
static analysis to generate a graphical representation of JavaScript
code, which is then enriched by labeling nodes corresponding to
APIs executed at runtime. The PDG is built on top of AST which in-
cludes all method calls across script functions. Dynamic traces from
VisibleV8—extended to capture runtime executions of all WebIDL-
defined and global object APIs—are used to annotate nodes in the
PDG of the corresponding method calls.

In an ideal case, a script executed on both mobile and desktop
platforms would yield identical execution graphs, with matching
sets of labeled nodes. However, in practice, scripts often incorporate
logic to detect device or hardware characteristics and selectively
execute platform-specific code paths. While such behavior can be
benign—such as adapting the website layout for mobile users by
resizing icons, images, or text—it may also introduce opportunities
for device-specific fingerprinting. Accordingly, we analyze these
divergences not only to understand functional adaptations but also
to identify any potential privacy-invasive tracking mechanisms
embedded within the scripts.

4.1.1 Divergence Algorithm. To identify points of divergence in
script behavior, we compare execution traces from mobile and

desktop platforms and use VisibleV8 to pinpoint the offset of the
first differing API call. Inspired by BFAD [54], we align this dynamic
information with static analysis from JStap [17], which provides
an enriched AST with token offsets. By matching offsets from both
tools, we map divergent API executions to nodes in the program
dependence graph (PDG) and construct execution graphs. To reduce
noise, we filter out traces with fewer than five API calls. This ensures
our analysis focuses on meaningful behavioral differences.

4.1.2 Conditionality Analysis. The role of our condition detection
algorithm is to first confirm whether the divergence stems from a
conditional statement and, if so, to identify the specific conditional
construct responsible for the variation in behavior. In program
execution, such divergence often arises from conditional branching
or asynchronous code execution. Our condition detection algorithm
performs static analysis on the Program Dependence Graph (PDG).

The algorithm begins by taking a node in the PDG as input
and then traversing upward to locate the nearest condition-related
parental statement (e.g., LogicalExpression, ConditionalExpression,
or IfStatement). If the parental statement is direct, meaning the
divergent node lies within the body of an if statement, it simply
returns that parental statement as the cause of divergence. However,
if the relationship is indirect, such as when the divergent node
resides in an else block, we instead return the parental statement
preceding the else branch.

In a PDG, a single node may have multiple condition-related
parental statements that govern its execution. Our algorithm selects
the closest one because the divergent node represents the first
API call that deviates from VisibleV8’s execution trace. If a higher-
level parental statement was responsible for the divergence, we
would instead observe a different divergent node—one that executes
immediately after that higher-level condition and before the current
node. This approach ensures precision in identifying the root cause
of behavioral differences. Note that it is common to put multiple
conditions with similar purpose together in one statement through
logical operator (e.g., && and ||). In this case, although there is only
one condition that actually causes the divergence, the condition
detection algorithm returns all conditions in that statement to allow
further analysis on more divergent-related conditions.

CCS 25, October 13-17, 2025, Taipei

4.1.3 Information Flow Analysis. In real-world JavaScript, it is com-
mon for conditional logic to rely on intermediate boolean variables.
These variables may be the result of complex logic, and with the
widespread use of JavaScript bundlers (e.g., Webpack [4]), minifica-
tion, and obfuscation tools, variable names often lose their semantic
clarity. As such, the information flow analysis is tasked with tracing
all possible browser APIs or string literals that contribute to the
value of the boolean variable used in the conditional statement.

The information flow algorithm begins by analyzing a condi-
tional statement node in PDG given by conditionality analysis. It
first identifies all relevant symbols (e.g., variables and functions)
that directly contribute to the conditions through assignments,
function definition, or function calls. The algorithm then recur-
sively expands its analysis to trace all possible information flow,
uncovering symbols that influence these initial contributors and
contributors from previous recursion. This recursive process con-
tinues until no additional contributing symbols can be found, at
which point the algorithm returns the full set of involved symbols.
If a conditional statement given by previous analysis is a browser
API, we directly return the browser API since this API gets infor-
mation from browser. When the conditional detection algorithm
returns multiple conditions from the same statement, we run the
information flow algorithm on all of them individually.

In our framework, information sinks are variables identified
within conditional statements—i.e., outputs of the condition detec-
tion phase. Our goal is to trace back to all information sources—APIs
or constants—that influence these variables. This backward analysis
is performed over the JStap-generated data flow graph [1].

5 Data Collection

This section outlines our experimental setup for data collection
across both mobile and desktop platforms.

5.1 Device Setup and Crawl

Our crawling infrastructure consisted of two distinct environments:
a real mobile device (Google Pixel 4a) and a desktop machine
equipped with 128 GB RAM, a 32-core CPU, and running Ubuntu
24.04. Both environments used Chromium version 128 to ensure
consistency in browser capability across platforms.

Automation of the crawling process was handled using Pup-
peteer [43] in both settings. For the desktop setting, we instru-
mented a headless Chromium instance with VisibleV8 to capture
fine-grained JavaScript execution traces. To minimize detection
by anti-bot mechanisms and ensure realistic execution, we used a
community-maintained stealth plugin [8]. We discuss the implica-
tions of using headless vs. headful settings for desktop in § 9.

For each domain, we imposed a hard timeout of one minute, dur-
ing which the page was fully loaded and allowed to execute. This
timeout was uniformly applied across both environments and was
sufficient to ensure that the majority of page resources had loaded
and relevant JavaScript activity was captured before advancing to
the next domain. To ensure consistency and minimize temporal
discrepancies in web content, we synchronized our crawls such
that each website was visited simultaneously on both platforms.
This concurrent execution allowed for a controlled comparison of

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

JavaScript behavior, enabling us to attribute any observed differ-
ences in execution solely to platform-specific factors rather than
variations in content over time.

We employed mitmproxy [2] to capture network traffic during
crawling, facilitating additional validation of resource loads and
execution behaviors. While the logs produced by VisibleV8 suf-
ficiently capture all necessary JavaScript execution data, we use
mitmproxy logs to determine the successful loading of the webpage
by looking for completed network requests in fetching the main
document of the website.

Our data collection process began on 03 November 2024, lasting
seven days. During this period, we crawled the top popular 10K
websites from the Tranco list [29, 57]. The failed domains were
revisited. Out of 10K, we successfully crawled and gathered script
execution traces from 7,811 websites on both platforms. The per-
sistently failing websites were either popular Content Delivery
Networks (CDNs) or other non-public-facing endpoints.

5.2 VisibleV8 for Android

To enable our analysis on mobile platforms, we ported the VisibleV8
patch set, originally developed for desktop Chromium, to run on
Android. A key challenge was overcoming Chromium’s default
system call restrictions, which, enforced by Android’s sandboxing,
prevent applications like VisibleV8 from writing log files directly
to the file system. We successfully modified the patch set to bypass
these restrictions, enabling comprehensive logging of JavaScript
execution without compromising the integrity of the Android se-
curity model. We have contributed our mobile-specific patch set
upstream to the open-source VisibleV8 project [3].

6 Prevalence of Divergence

In this section, we address RQ1: What is the prevalence of di-
vergence in the execution of JavaScript on mobile and desk-
top platforms? We begin by offering a high-level overview of
the prevalence and distribution of divergently executed JavaScript
(identically sourced) across the Tranco top 10K websites. Our anal-
ysis focuses on identifying and characterizing differences in script
execution between desktop and mobile environments. To support
this investigation, we develop a system that detects divergent
scripts—those uniquely executed on one platform but not the other
— using an edit-distance metric introduced in Section 3. This metric
allows us to quantify divergence by comparing the dynamically
recorded API traces of scripts across platforms.

6.1 Divergent JavaScripts

We examine the divergence in JavaScript execution between mobile
and desktop environments by analyzing dynamic execution traces
collected using VisibleV8. Divergence was computed using the algo-
rithm introduced in Section 3, and throughout the paper, we refer
to the resulting metric (i.e., divergence score) as the percentage of
divergent activity. By aligning subsequences of API calls across
platforms, we identify points of divergence occurring at the bound-
aries of these aligned sequences. We then trace these divergent
endpoints back to their corresponding conditional nodes, which
are further analyzed through information flow tracing to determine
whether device-specific data influenced the execution path.

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

1400

1200

1000

800

Number of Scripts
>
S

Divergence Score Ranges

Figure 3: Distribution of divergence scores for uniquely executed
JavaScript files across mobile and desktop platforms in the Tranco
top 10K websites. Out of the 109,071 total scripts, 22,495 had a non-
zero divergent activity.

From our crawl of the Tranco top-10K websites, we identified
109,071 unique JavaScript resources fetched in both desktop and
mobile contexts. For each resource S;, we compared its desktop
(S;,4) and mobile (S; ;) instances to compute a divergence score.
Since many scripts originate from shared libraries or third-party
services—whose behavior may vary across websites—we averaged
divergence scores across all domains where a script appears, pro-
ducing a single representative value per script. Figure 3 shows the
distribution of these scores, with values binned at 0.01 intervals and
scripts with zero divergence excluded. After filtering, 22,495 scripts
exhibited some level of divergent behavior, providing a consistent
measure of script-level variation across platforms.

The script hosted at https://www.google-analytics.com/analytics.js
was the most frequently encountered in our dataset, appearing on
1,309 websites. On average, it showed a divergence score of 15.6%,
reflecting moderate platform-specific behavior. We also observed
scripts with divergence scores nearing 1, indicating highly distinct
execution paths between platforms. These high-divergence scripts
were primarily Webpack-bundled modules or jQuery libraries, often
customized to deliver platform-adaptive functionality.

Findings 1. Of 109,071 identically sourced JavaScript files executed

during our crawl of the Tranco top 10K websites, 20.6% (22,495) ex-
hibited divergent behavior between mobile and desktop platforms.

6.2 Conditioned Divergence

It is important to note that not all divergent scripts necessarily con-
tain a conditional node that explicitly alters code execution. Diver-
gent behavior may also arise from factors such as server-side logic,
asynchronous callbacks, or network-dependent responses—cases
where no clear client-side conditional node will exist. In our analy-
sis, however, we narrow our focus to client-side scripts that explic-
itly alter the execution path through conditional logic. Our goal is
to uncover instances where scripts make device-specific decisions
that lead to divergent behavior. To achieve this, we leverage both
dynamic execution traces from VisibleV8 and static representations
of the code in the form of a Program Dependency Graph (PDG),
enabling us to identify nodes directly responsible for divergence.
The presence of such conditional nodes indicates that the script has
branched into a device-specific execution path.

CCS 25, October 13-17, 2025, Taipei

As described in Section 4, for each conditional node identified,
we apply the information flow algorithm to find the function names,
variables, and APIs passed along the execution trace leading up to
the conditional node. This information flow chain is significant as
it helps us understand whether device property information has
propagated through the execution path to reach the conditional
node and enables the script to execute a platform-dependent code
path. In the example shown in Listing 1, the analysis of dynamic
API traces from VisibleV8 reveals that Navigator.mimeTypes is
the first divergent node to execute. Here, the conditional node is the
variable ‘m’, which likely holds critical device information (such as
navigator.platformand navigator.maxTouchPoints)allowing
the script to detect a touch device and make a branching decision.

Table 1 presents a summary of the unique nodes, conditional
nodes (responsible for exclusive execution), and information flows
(associated with each conditional node). It should be noted that
while conditional nodes are commonly executed in both mobile
and desktop, in the context of divergence, a satisfied conditional
node is the node that is responsible for the execution of a diver-
gent subsequence in a platfom-specific style. To ensure that we
are truly examining unique subsequences, we ensure that none
of the APIs present in the unique subsequence in one platform
device have executed in the other device’s execution throughout
the script’s execution lifetime. In our analysis, only 849 of 75,148
divergent conditions used platform-identifying APIs (e.g., user-
AgentData.platform). Most divergence came from performance
(5,201), plugin (1,153), and screen (1,793) APIs, indicating browser-
rather than OS-level branching.

A key insight from our analysis is that desktop environments
exhibit a substantially greater number of unique execution nodes
compared to mobile platforms. Specifically, we identified 47,101
divergent subsequences on desktop, in contrast to 28,047 on mobile.
When applying our conditional node detection algorithm, we found
that 19,400 of the desktop subsequences and 11,581 of the mobile
subsequences could be linked to specific conditional nodes.

Likewise, the number of information flows (i.e., iFlow) — rep-
resenting data propagated to these conditional points—was also
higher on desktop (17,908) than on mobile (10,850). Our informa-
tion tracing algorithm successfully determined information flow
chains on almost 92.8% of the conditional nodes associated with
the divergent subsequences. We note that our algorithm failed to
account for all of the conditional nodes. Our algorithm relies on
data flow edges added by JStap to the AST. It fails when JStap misses
edges, hindering backtracking. Upon closer inspection of certain
failed iFlow executions, we observed that the JStap-generated rep-
resentations did not consistently capture accurate data and control
dependencies within the code. An example case where JStap misses
edges is provided in Appendix 10. We adapted our algorithm to
work directly on the AST to address test case issues and real-world
scripts from experiments, but fully resolving them would require
extensive manual effort to identify missing edges in complex real-
world JavaScript. Additionally, some divergence arises from timer
APIs (e.g., setTimeout), which our algorithm cannot capture. Since
our iFlow backtracking algorithm relies on these dependencies to
uncover data sources that feed the conditional node, inaccuracies in
the static representation hinder its overall effectiveness. This high-
lights a key limitation of our approach and reflects a well-known

CCS 25, October 13-17, 2025, Taipei

Table 1: Summary of divergent subsequences, conditional nodes, and
information flows identified from the analysis of 109,071 identically
sourced scripts executed across mobile and desktop platforms. Note:
While conditional nodes are commonly executed in both mobile
and desktop, in the context of divergence, a satisfied conditional
node is the node that is resonsible for the execution of a divergent
subsequence in a platfom-specific style.

Metric Mobile Desktop Overall
Divergent Subsequences 28,047 47,101 75,148
Satisfied Conditional Nodes 11,581 19,400 30,981
iFlows 10,850 17,908 28,758

challenge in performing precise static analysis on JavaScript, given
its dynamic and loosely typed nature.

These findings suggest that approximately 41% of the divergent
subsequences can be attributed to explicit conditional logic responsi-
ble for platform-specific branching. It is important to note, however,
that these figures represent lower-bound estimates, constrained
by the precision and coverage of our conditional node detection
algorithm. Additionally, due to JavaScript’s inherently dynamic
nature, divergence may also arise from other sources—such as asyn-
chronous operations or network-dependent callbacks—that may
not manifest as directly traceable subsequences in our analysis.

Overall, our findings highlight that while both mobile and desk-
top platforms share a significant portion of JavaScript execution,
the desktop environment exhibits a higher degree of unique execu-
tion paths. These differences have implications for security analysis,
fingerprinting techniques, and script detection methodologies, as
platform-specific execution behaviors must be accounted for when
assessing the behavior of JavaScript in the wild.

Findings 2. JavaScript execution divergence is 67.9% more pro-
nounced on desktop than mobile, indicating greater platform-specific
behavior. Approximately 41% (30,981/75,148) of divergent traces

stem from explicit client-side conditional logic.

7 Data-Driven Divergence

In this section, we look to answer RQ2: What information do
JavaScript programs use to trigger divergence? To understand
what information JavaScript programs use to trigger platform-
specific divergence, we analyze the conditional nodes responsi-
ble for branching behavior. For each such node, we examine its
information flow chain—a sequence of functions, variables, and
API property accesses that contribute to the branching decision.
This approach allows us to identify the specific platform-related
inputs (e.g., user-agent, screen size) that scripts use to differentiate
execution paths.

7.1 Device Information Propagation

Information flow tracking allows us to assess whether specific
API calls contribute to execution divergence across platforms. The
presence of fingerprinting APIs within these flows is particularly
notable, as it indicates that scripts may be leveraging device-specific
characteristics to dynamically alter their behavior. To explore this,
we examine the information flows leading to conditional nodes for
the presence of known fingerprinting APIs [54].

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

Table 2: Summary of information flows to conditional nodes and top
10 contributing APIs on mobile and desktop.

Metric / API Mobile Desktop Total
Unique Subsequences 28,047 47,101 75,148
iFlow Chains 10,850 17,908 28,758
Fingerprinting APIs in iFlows 8,323 13,132 21,455
Window.performance 1340 1970 3310
Window.navigator 749 2254 3003
Window.getComputedStyle 1384 799 2183
Window.location 581 1367 1948
MutationRecord.target 394 896 1290
Navigator.userAgent 349 852 1201

Window.window 185 1035 1220
Navigator.plugins 29 1030 1059
Performance.now 359 547 906

PluginArray.length 0 842 842

Table 2 provides a detailed breakdown of our analysis, including
the number of uniquely executed subsequences, total information
flow (iFlow) chains extracted, and the frequency of fingerprinting
APIs within these flows. In addition to these summary metrics, the
table lists the top 10 APIs that most frequently appeared in the iFlow
chains feeding into conditional nodes—points at which execution
branches based on platform-specific logic.

Specifically, 21,455 information flows contained at least one fin-
gerprinting API, indicating that approximately 74.6% of conditional
nodes with a derived iFlow chain involved device-specific informa-
tion at the point of divergence. This is important because when a
fingerprinting API appears in the execution chain of a unique node,
it implies that the script has acquired critical device information,
which may influence its decision to execute a different code path
based on the detected platform. Such behavior is common in scripts
designed for targeted content delivery, feature adaptation, or even
evasion techniques in web tracking.

The most prevalent contributors include Window. performance,
Window.navigator,and Window. getComputedStyle, reflecting their
widespread use in runtime introspection and layout adaptation.
Interestingly, several APIs such as Navigator.plugins and Plug-
inArray.length are overwhelmingly desktop-specific, likely due
to their limited support on mobile devices and their stronger associ-
ation with fingerprinting. Conversely, Window. getComputedStyle
appears more in mobile flows, indicating its utility in adjusting UI
logic based on rendering and layout differences across devices.

Other commonly observed APIs—such as Window. location, Mu-
tationRecord.target,and Navigator.userAgent—appear across
both platforms and serve as foundational signals for gathering con-
textual device or DOM state prior to divergence. The inclusion of
Performance. now further points to timing-based heuristics as part
of the decision-making process.

While examining iFlow chains, we observed that certain variable
and function names—such as those containing "android" or "isMo-
bile"—were suggestive of platform-related context being stored or
processed. This highlights a strength of our information flow algo-
rithm: its ability to perform fine-grained data tracing that surfaces
implicit information sources beyond explicit API calls.

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

Overall, our findings suggest that a significant portion of exe-
cution divergence can be attributed to fingerprinting mechanisms
embedded within JavaScript execution flows. The heavy use of
environment-exposing APIs prior to divergence supports the view
that scripts tailor their logic dynamically in response to runtime
conditions. These insights are crucial in understanding how scripts
differentiate between devices and can be leveraged to detect covert
tracking mechanisms or platform-specific optimization strategies.
Findings 3. Approximately 76% (21,455/28,758) of conditional nodes
with derived information flows were found to reference fingerprint-
ing APIs, indicating that the majority of divergence in JavaScript
execution is influenced by device-specific characteristics.

7.2 Detection of Novel Information Sources

While established fingerprinting techniques often rely on a well-
known set of APIs, our analysis of conditional branching reveals
that platform-specific divergence is not always driven by these
known API interfaces alone. Our analysis from the previous sub-
section revealed that 7,303 (25.4%) of conditional nodes (associated
with unique subsequences) had not acquired device information
through known fingerprinting APIs. This presents an opportunity
to uncover lesser-known APIs that scripts may use to detect device
type and enforce platform-specific behavior. While not commonly
linked to fingerprinting, these APIs can still reveal details about
device configurations.

In this subsection, we focus on API accesses within the infor-
mation flow chains of conditional nodes that do not intersect with
the canonical fingerprinting API set. We identify and aggregate
top 100 most frequently accessed APIs in these chains, specifically
those preceding branches where exclusive platform-specific logic
is executed. To better understand their utility, we categorize these
APIs by general feature usage and analyze how each feature may
enable scripts to infer device characteristics.

Table 3 presents a summary of the distribution of feature cate-
gories identified in information flows that did not contain finger-
printing APIs, along with representative API examples. In total,
we identified 1,748 information flows utilizing these lesser-known
APIs, which may provide insights into how scripts deduce the un-
derlying platform. Below, we outline how each of these feature
categories can be used to uncover device-specific properties.

DOM Manipulation. Scripts use DOM manipulation APIs to in-
spect or dynamically alter page structure. Variations in the rendered
DOM across platforms, such as element availability or layout behav-
ior, can reveal device characteristics and inform platform-specific
logic. This feature was the most frequently observed, with 3,201 in-
stances on desktop and 2,445 on mobile, highlighting its central role
in cross-platform differentiation.

Event Handling. Event-related APIs help scripts determine which
input modalities are supported. For instance, the presence of touch
versus mouse events can indicate whether the script is running
on a mobile or desktop device, guiding adaptive interaction logic.
Listing 2 demonstrates how touchstart event can trigger a signal
for the script to determine that the device likely supports touch.
We empirically evaluate the touch-based events from the dynamic
logs to ascertain such events. Listing 9 in Appendix A shows a code

CCS 25, October 13-17, 2025, Taipei

window.addEventListener("touchstart”, () => {3}, { once: true });
const isMobile = "ontouchstart" in window;

Listing 2: addEventListener being used to detect device type

snippet from a script that combines touch-event signals with a CSS
media query for a 'coarse’ pointer—typical of touch devices—to de-
tect touch support. Event handling was significantly more frequent on
desktop (1,997) than on mobile (444), suggesting that event-modality
checks can be initiated from desktop scripts attempting to detect mo-
bile contexts.

Custom API Interfaces. Scripts often access analytics-related
global objects such as gaData or gaplugins—custom interfaces
exposed by services like Google Analytics. These interfaces may
encode telemetry or plugin metadata that varies by platform, in-
directly revealing the device type or environment. For example,
certain plugins may be selectively loaded on mobile, or identifiers
within the analytics context may reflect platform usage. These inter-
faces were observed in 756 desktop and 354 mobile flows, underscoring
their utility as indirect signals for third-party scripts to infer device
characteristics.

Timing APIs. High-resolution timing APIs expose performance
characteristics such as input latency or page load timing. These
metrics can be used to detect slower execution environments typical
of mobile devices and conditionally trigger lightweight or deferred
logic. Timing APIs were accessed in 495 desktop flows and 257 mobile
flows, indicating their use in indirectly inferring platform performance
characteristics.

Viewport Observation. Observation APIs, such as ResizeQOb-
server, enable scripts to monitor changes in layout or screen di-
mensions. Variations in screen size or orientation can be leveraged
to infer device type and load platform-specific components. Al-
though these APIs are used less frequently overall, the distribution
(217 desktop flows vs. 35 mobile flows) suggests they are primarily em-
ployed to detect larger screen environments, such as desktops, which
offer greater flexibility for window resizing.

Performance Monitoring. Scripts may use navigation and ren-
dering performance APIs to assess the speed and responsiveness of
the environment. Significant discrepancies in these metrics across
platforms allow detection of mobile contexts. With 139 desktop and
92 mobile observations, these APIs likely serve as complementary
indicators of device capabilities.

Device Fingerprinting. APIs that expose detailed device or browser
properties are directly used to fingerprint the environment. De-
tection of touch capabilities, pointer types, or platform-specific
identifiers provides clear signals for device classification. Despite
lower frequency (85 desktop and 74 mobile), their targeted use suggests
scripts invoke them when a confident platform distinction is needed.

Storage Access. Differences in the availability or behavior of stor-
age mechanisms like localStorage can signal platform constraints,
such as limited quota or cross-context restrictions on mobile, guid-
ing adaptive script paths. This feature appeared in 54 desktop and 36
mobile flows, indicating niche but meaningful use in detecting mobile
platform limitations.

CCS 25, October 13-17, 2025, Taipei

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

Table 3: Summary of novel API feature usage in desktop and mobile iFlow chains with representative examples

API Feature Desktop Mobile Examples

DOM Manipulation 3,201 2,445 HTMLDocument.createElement, HTMLDocument.querySelector
Event Handling 1,997 444 Window.addEventListener

Custom API Interfaces 756 354 Window.gaData, Window.gaplugins

Timing APIs 495 257 PerformanceNavigationTiming.activationStart, Window.google_measure_js_timing
Viewport Observation 217 35 Window.ResizeObserver

Performance Monitoring 139 92 PerformanceNavigationTiming.startTime,

Device Fingerprinting 85 74 Window.isMobile, Navigator.msPointerEnabled

Storage Access 54 36 Window.localStorage

Media Queries 142 97 HTMLVideoElement.canPlayType

Information Flows 1,003 745

const isAndroid = (
video.canPlayType('video/webm; codecs="vp9"") "probably" &&
video.canPlayType('video/mp4; codecs="hvc1""') !== "probably");

Listing 3: Example of HTMLVideoElement.canPlayType being used to
infer availability of Android video codec.

Media Queries. APIs that test media capabilities enable scripts to
infer support for specific content formats. As media codec support
and rendering constraints differ between devices, these tests inform
decisions on content delivery and layout. Listing 3 shows how video
codec availability may signal Android environments. This feature
appeared in 142 desktop and 97 mobile flows, reinforcing its role
in content-specific adaptation. A representative example of media
format enumeration used as a source of divergence is shown in
Listing 8 in Appendix A.

By isolating the information flows that did not contain known

fingerprinting APIs, we uncover the lesser-known or novel APIs
that may be contributing to fingerprinting or device inference. This
exploratory analysis provides a foundation for identifying emerging
fingerprinting vectors that scripts can use to determine device
properties before executing exclusive code paths.
Findings 4. Our analysis reveals that 6% of divergent execution
paths (that are enabled by conditional nodes) are influenced by
lesser-known APIs not traditionally associated with fingerprinting.
These APIs—spanning DOM manipulation, event handling, and
performance monitoring—appear in over 1,700 information flows,
suggesting they play a significant role in enabling scripts to infer
platform characteristics and trigger device-specific logic.

8 Post Divergence

In this section, we analyze the divergent subsequences of JavaScript
executions on mobile and desktop platforms to uncover platform-
specific behaviors exhibited by these scripts. We place particular
emphasis on examining exclusive API accesses to assess whether
scripts engage in more tracking-related activities on one platform
compared to the other. Broadly, this analysis addresses RQ3: What
do platform-specific JavaScript execution paths accomplish?

Various tracking techniques can be commonly used for purposes
for benign purposes such as delivering seamless web experience
adjusted for varying platform environments. These may also be
used for fraud detection and cross-site identification. However, from
a privacy standpoint, it is important to understand how the same
scripts behave differently when executed on desktop versus mobile

devices. Our goal is to uncover disparities in tracking activity when
users switch between these platforms.

To analyze the imbalance in script behavior across platforms,
we investigate execution traces of JavaScript segments that are
common to both mobile and desktop environments but contain
subsequences that execute exclusively on one. In Section 6, we
identify these divergent scripts, pinpoint their divergence points,
and trace the flow of platform-dependent information. In Section 7,
we further examine the underlying data sources that may contribute
to this divergence. Building on this foundation, we now focus on
the platform-specific API calls that occur in the post-divergence
execution paths of the scripts identified from Section 6. Our goal is
to identify tracking-related patterns that emerge uniquely on each
platform. Specifically, we examine the exclusively executed code
from the divergence point to where the flows merge back. We begin
by categorizing fingerprinting and tracking operations observed
in these exclusive subsequences. Then, we conduct in-depth case
studies of divergent scripts to better understand the nature and
intent of their platform-specific behavior.

8.1 Behavior in Divergent Subsequences

To categorize the tracking operations present in the platform-specific
subsequences, we leverage the set of fingerprinting APIs—combining
previously known techniques from prior literature [13, 15, 23, 24,
44, 54] and industry-grade fingerprinting solutions such as Finger-
print]s [12] with the newly identified APIs uncovered in Section 7.2.
Using this expanded set, we construct tracking heuristics, following
the methodology of prior work [11, 15], to analyze the distribution
of tracking behaviors across platforms. This allows us to create 8
different categories for understanding the behavior of exclusive
activities. These categories are highlighted in Figure 4 that illus-
trates the tracking activities that occur exclusively on each device,
with the numbers atop each bar indicating the number of domains
where these activities were observed. Overall, we find that desktop-
exclusive executions lean on high-entropy, persistent identifiers
like fingerprinting, storage and network APIs. In contrast, mobile-
exclusive executions lean on event-driven behavrioal signals like
touch and swipe events. Below, we provide a summary of our ob-
servations for each of these categories.

Browser Fingerprinting. Scripts can attempt to derive a unique
device signature using low-level APIs. This includes the use of can-
vas rendering for pixel-based identifiers, font rendering to detect

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

mmm Mobile
B Desktop

Browser Fingerprinting
Network Monitoring

Cyclic Dom Manipulation

Ul Tracking

Bot Detection

Device Platform Identification

Session State Tracking

Behavioral Tracking

0 250 500 750 1000 1250 1500 1750
Number of Tracking Operations
Figure 4: Tracking activities in the exclusively run code subsequences
for each device. Numbers that proceed each bar represent the number
of domains on which these tracking operations were applied in a
platform-specific fashion.

available fonts, WebGL parameter enumeration for graphics hard-
ware profiling, audio APIs for subtle signal differences, and image
decoding or drawing routines. Divergent execution of fingerprint-
ing was more pronounced on desktop, with 221 exclusive operations
versus 67 on mobile. This disparity likely stems from the richer and
more consistent API surface on desktop platforms, making them
more suitable for high-entropy fingerprint generation. Mobile de-
vices, by contrast, often restrict access to these APIs or produce less
varied results across devices. For instance, there were 18 instances
of exclusive accesses of WebGLRenderingContext.getExtension in
desktop and none in mobile. One plausible reason for this bias is
that bot traffics are dominantly hosted on desktop environments
and WebGL extensions are a high-quality signal for bot detection. 4

Device and Platform Identification. Scripts can access APIs
that expose device-specific or environment-level properties. These
include querying user agent strings, hardware concurrency, battery
status, peer connection metadata, and time zone information—all
of which are commonly used to infer platform characteristics. This
form of tracking was observed more on desktop (1,424 exclusive
operations vs. 422 on mobile). This higher usage on the desktop is
a strong indicator that scripts may be leveraging detailed platform
and device information to optimize rendering performance, tailor
functionality, or adjust resource loading strategies—especially in
more complex desktop environments where device variability and
multi-threading capabilities are higher (e.g., more entropy in screen
sizes and CPU cores).

Behavioral Tracking. Scripts monitor user interactions, such
as mouse movement, key presses, touch gestures, scrolling behav-
ior, and event timestamps as a form of behavioral tracking. These
interactions help construct detailed behavioral profiles of users.
Behavioral tracking was disproportionately higher on mobile (1,068
exclusive operations vs. 741 on desktop), likely because mobile
usage inherently involves richer and more continuous user interac-
tion—such as swipes, taps, and multi-touch gestures—that can reveal
behavioral traits. Our crawl data support these assumptions: for
example, TouchEvent.clientX appeared 203 times in mobile, whereas

4Although WebGL extension properties can aid bot detection, we categorize them
under browser fingerprinting, following prior work [24].

CCS 25, October 13-17, 2025, Taipei

ClickEvent.clientX occured just 56 times on desktop in the same
set of scripts. Scripts may preferentially enable such tracking on
mobile to leverage these nuanced interaction signals. A represen-
tative example of such behavioral tracking appears in Listing 7 in
Appendix A, where touch events were triggered on mobile, but the
corresponding click events were absent in the desktop execution.

Session State Tracking. We examine the platform-specific at-
tempts by scripts to store or retrieve session-specific information
using web storage, IndexedDB, cookies, or database APIs. These
methods enable the persistence of identifiers across page reloads
or visits, facilitating continuous user recognition. This tracking
method diverged heavily toward desktop, with 1,796 operations com-
pared to only 466 on mobile. The likely incentive is that desktop
browsers offer more reliable, persistent storage mechanisms less
constrained by OS-level policies or ephemeral browsing modes,
making them a preferred environment for stateful tracking [21].

Network Connection Monitoring. This type of tracking uses
a user’s network environment to create a profile. It accesses in-
formation like connection speed, network type, and background
communication from beacon APIs. Network monitoring appeared
more frequently on desktop (601 exclusive operations vs. 87 on mo-
bile). This may be because desktop devices tend to have stable and
more varied network environments, such as wired connections or
corporate networks, making them more informative for profiling
and traffic shaping. Mobile networks are often transient (e.g., 4G
and 5G), reducing their utility for fine-grained network inference.

UI Tracking. Element observers and event listeners monitor
changes in the DOM or user interface. The use of mutation ob-
servers, intersection observers, and event registration routines indi-
cates close tracking of how users engage with the interface. DOM
tracking was more prevalent on desktop (571 exclusive operations
vs. 260 on mobile), likely due to the complexity and interactivity of
desktop interfaces. Desktop websites often feature more dynamic
components and responsive layouts suited for instrumentation,
while mobile interfaces are simpler and more optimized for touch.

Cyclic DOM Manipulation. We identify scripts that cyclically
(more than 5 iterations) add and remove DOM elements—such as
creating an element, appending it to the document body, and then
removing it—which may indicate attempts to detect whether cer-
tain elements (e.g., ads) are being successfully rendered or blocked.
This behavior is often used to infer the presence of content blockers
or to adjust ad delivery strategies accordingly. We observed 230
divergent executions of this pattern on desktop and 152 on mo-
bile. The slightly higher usage in desktop is likely due to the more
complicated nature of the web on the desktop that renders more
content at default. Mobile’s often use lazy loading before completely
rendering resources.

Automated Bot Detection. Scripts may determine whether the
user is a real human or an automated agent. These include checks
for WebDriver flags, precise timing via performance APIs, and
animation frame analysis to detect scripted interactions. Divergent
execution of bot detection was far greater on desktop (1,084 exclusive
operations vs. 411 on mobile), likely reflecting the common use
of headless or automated browsers in desktop environments for

CCS 25, October 13-17, 2025, Taipei

0 = { blockId: I, limit: E, designld: g, size: y, bannerld v,
backpackData: u, elHeight: f, diff: h, blockName: d,

url: C, isTouchScreenDevice: a.isTouchScreenDevice, userAgent: T };
a.isTouchScreenDevice &&
o.addEventListener(o.trackElement, "touchmove", (function() {

return o.onTouchmove()

RO N I O

3

Listing 4: Code snippet from https://yastatic.net/partner-code-
bundles/1146736/3fbe7c4448a81e40b6cc.js that runs behavioral
tracking on touch devices (mostly mobiles).

scraping and testing, prompting scripts to conditionally execute
bot detection only when they detect a desktop context.

The platform-specific execution of tracking behaviors under-
scores how scripts adapt to the capabilities and limitations of their
operating environments. While not inherently malicious, these be-
haviors disproportionately impact desktop users—subjecting them
to more persistent and high-entropy tracking methods such as
browser fingerprinting, device profiling, and long-term storage. In
contrast, mobile users are more often targeted through interaction-
based tracking that leverages rich, gesture-driven input. These
findings reveal that tracking is selectively deployed rather than uni-
formly applied, raising concerns about transparency, user consent,
and the uneven distribution of privacy risks across platforms.
Findings 5. Browser fingerprinting, bot detection, and session state
tracking are significantly more prevalent in desktop-exclusive exe-
cutions, accounting for 77% of all such tracking in this category. In
contrast, behavioral tracking—such as touch, click, scroll, and tap
interactions—is more dominant on mobile platforms, comprising
59% of all occurrences.

8.2 Case Studies

Our hybrid analysis provides deep insights into the branching logic
of scripts, revealing how device-specific properties are used to trig-
ger specialized behaviors. In this subsection, we manually examine
key data sources, the conditional branches they influence, and the
resulting platform-specific API executions to better contextualize
the actions scripts take within their exclusive code paths.

To support interpretation, we focus on case studies featuring un-
obfuscated, human-readable code snippets, allowing us to present
them in their original form that preserves their authenticity. List-
ing 4 provides an excerpt from a script loaded on interfax.ru,
which leverages custom APIs and the userAgent string to infer
device characteristics and register event listeners for touch-based
interactions. This script was loaded exclusively on mobile devices,
explicitly checking for touch support before execution. Within the
mobile-specific dynamic trace, we observed message events used to
transmit viewport-related data back to the server. Overall, we iden-
tified three distinct API subsequences triggered at different stages
of the script’s lifecycle, all tied to mobile execution and focused on
behavioral UI tracking.

Listing 5 presents a bot detection script discovered on europas-
press. com, which performs canvas fingerprinting to infer low-level
graphics capabilities. The browser profiling logic— particularly the
sequence of WebGL and canvas-based APIs—was triggered exclu-
sively on the desktop platform. The script detects the missing sup-
port for canvas for the headless browser at line 9 and then, as a
fallback, starts populating browser_info (line 11 and onwards). The

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

1 async function _() {

2 performance.mark("stop"),

3 performance.measure("elapsed_time", "start", "stop");
4 let e = function() {

5 let e = document.createElement("canvas");

6 return !!(e.getContext("webgl") ||

7 e.getContext("experimental-webgl"))

8

9

Y05

e ? (webgl_vendor = k().vendor, webgl_renderer = k().renderer)
10 : (webgl_vendor = "Not Available",
11 webgl_renderer = "Not Available"), window.browser_info = {
12 Color_Depth: screen.colorDepth, Browser: navigator.appName,

< Browser_Version: navigator.appVersion, Browser_Engine:
< navigator.product,

13 Webdriver: navigator.webdriver
14 // Profiling some more fingerprinting APIs
15 }, report_info = {
16 browser_info: window.browser_info
17 };
18 3}
Listing 5: Code snippet from https://
madrid.report.botm.transparentedge.io/static/js/bm.js that
profiles various device configurations and properties.
1 function d(b) {
2 return a.includes("Chrome") && a.includes("Android") }
3 e.exports = { checkIsAndroidChrome: d }
4 var 1 = d.checkIsAndroidChrome
5 e.exports = new b(function(b, c) {
6 b = i(a.navigator.userAgentData, j);
7 if (b == null) {
8 a.navigator.userAgentData != null && g(new Error("[ClientHint
< Error] UserAgentData coerce error")); return
9 } else if (!1(a.navigator.userAgent)) return;
10 b = a.navigator.userAgentData.getHighEntropyValues(["model",
< "platformVersion", "fullVersionList"]).then(function(a) {
11 var b = c.asyncParamFetchers.get(q);
12 b != null && b.result == null && (b.result = a,
< c.asyncParamFetchers.set(q, b));
13 return a
14 B ["catch"I(function(a) {
15 a.message = "[ClientHint Error] Fetch error" + a.message, g(a) });
16 c.asyncParamFetchers.set(q, { request: b, callback: v });
17 c.asyncParamPromisesAllSettled = !1 })

Listing 6: Code snippet from https://connect.facebook.net/signals/
config/823166884443641 that checks if navigator.userAgentData
reports an Android Chrome environment, then asynchronously
fetches high-entropy client hints

mobile browser provides the canvas renderer and vendor informa-
tion and therefore avoids the fallback.

Listing 6 shows another example of divergent code from Meta’s
Pixel tracking library [34]. The function at line 1 sets up a detection
mechanism for Android Chrome. At line 9, non-Android Chrome
devices return a null value, while on Android Chrome, the script
reports high-entropy client hints—such as model, platformVersion,
and fullVersionList—at line 10. These examples highlight two key
takeaways. First, fingerprinting scripts can leverage fine-grained
environmental cues to selectively trigger profiling logic based on
perceived platform traits. Second, our tool effectively surfaces such
divergences, making it valuable not only for privacy analysis but
also for bot detection system developers aiming to evaluate platform
environments accurately for user experience. While our headless
setup may introduce minor variations, our analysis shows that its
behavior closely mirrors headful execution (see Section 9 for more
details). In contrast, the differences between headless/desktop and
mobile environments are far more pronounced.

https://yastatic.net/partner-code-bundles/1146736/3fbe7c4448a81e40b6cc.js
https://yastatic.net/partner-code-bundles/1146736/3fbe7c4448a81e40b6cc.js
https://madrid.report.botm.transparentedge.io/static/js/bm.js
https://madrid.report.botm.transparentedge.io/static/js/bm.js
https://connect.facebook.net/signals/config/823166884443641
https://connect.facebook.net/signals/config/823166884443641

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

9 Discussion

Significance of Platform-Specific JavaScript Divergence. Un-
derstanding how JavaScript adapts to different execution environ-
ments is crucial for addressing security, privacy, and transparency
risks on the web. Although platform-specific divergence often
serves legitimate purposes—like optimizing rendering, adapting
to input methods, or managing resources—it can also lead to asym-
metric privacy impacts depending on the user’s device. While this
work does not definitively demonstrate that such divergences cause
asymmetric tracking, it reveals the scale, mechanisms, and con-
sequences of such divergence, showing how seemingly benign
adaptations can potentially be exploited for targeted tracking.

Our findings show that platform-specific divergence is both
widespread and systematically skewed. Over 20.6% of identically
sourced scripts exhibit divergent execution between desktop and
mobile, with desktop accounting for 67.9% more of these cases. This
indicates that users on different devices are subject to different
JavaScript behaviors. Our behavioral analysis of platform-specific
execution flows further reveals potential asymmetric tracking be-
haviors. Desktop users are disproportionately targeted by browser
fingerprinting, session replay, and bot detection scripts, with 77%
of such operations appearing in desktop-exclusive paths. In con-
trast, mobile-exclusive flows more frequently employ behavioral
profiling—leveraging gesture events and input traces such as scroll,
tap, and touch to construct user interaction models.

A key contribution of our work is a hybrid analysis framework
that combines static code analysis with dynamic execution traces to
detect platform-specific branching in script behavior. Unlike prior
approaches that treat fingerprinting as a binary presence of known
APIs, our method traces data dependencies to reveal the conditions
and information sources driving divergence. We find that 76% of
such branches involve known fingerprinting APIs, while 6% rely
on lesser-known but platform-revealing APIs—exposing a broader,
underexplored attack surface. Our framework also uncovers sub-
tle or emerging behaviors that may bypass traditional detection.
By enabling high-fidelity, cross-platform execution analysis and
moving beyond static API lists, our approach provides a scalable
path forward. It opens new opportunities for transparency and
accountability in web privacy and security, shifting the focus from
merely detecting trackers to understanding how and when they
adapt across users.

Selection of Tools for Hybrid Analysis. We selected VisibleV8 [25]
for dynamic analysis over OpenWPM [15] due to its broader browser
API coverage, enabling more complete execution graphs while mini-
mizing detection risk. For static analysis, we chose JStap [17], which
shares the PDG generation process with DoubleX [18], because its
AST-level manipulation allows seamless integration with VisibleV8
logs via offsets. Although CodeQL [20] is a powerful static analyzer,
its query language lacks the flexibility needed for our tasks, compli-
cating modifications, and it does not integrate well with VisibleV8
data. Additionally, AST-based analysis with JStap is faster than
CodeQL queries for our purposes.

Headless vs. Headful Crawling. To ensure our desktop headless
browser emulates organic browsing, we show that results also
generalize to headful mode. We re-crawled the top 10K Tranco

CCS 25, October 13-17, 2025, Taipei

Table 4: Jaccard similarity of script sets across platforms.

mobile headless headful
mobile 1.000 0.621 0.602
headless 0.621 1.000 0.871
headful 0.602 0.871 1.000

domains using three modes (mobile, headless, headful) and analyzed
the 6,957 domains successfully rendered by all modes. Over a 10-day
period, the mobile crawl retrieved the most unique scripts (303K),
while headful and headless fetched slightly fewer (281K and 275K,
respectively), likely due to mobile-specific resources.

To understand the similarity of script distribution across plat-
forms, we compare the distinct scripts across platforms by comput-
ing the Jaccard similarity scores across different modes, with results
highlighted in Table 4. Headless and headful crawls load largely the
same script set—(Jaccard ~ 0.87)—indicating that headless Chrome
is a good stand-in for real desktop browsing. By contrast, the mo-
bile crawl overlaps with either desktop mode by only about 60-62%,
underscoring a clear mobile-versus-desktop split in script usage.

Using the divergence method from Section 3, we analyzed identic-
ally-sourced scripts across desktop (headless, headful) and mo-
bile environments based on their dynamic execution. The head-
less—headful pair exhibits low divergence (mean = 0.097, median =
0.068; std. dev. = 0.09), suggesting consistent control-flow behavior
across desktop automation and full-browser modes. In contrast, the
headful-mobile pair exhibits markedly higher divergence (mean
= 0.46, median = 0.42; standard deviation = 0.31), with the head-
less—mobile comparison displaying a similarly elevated divergence
(mean = 0.49, median = 0.47; standard deviation = 0.29). These
results indicate that desktop-based headless automation closely
replicates headful execution, while mobile introduces significantly
more variation.

Temporal Stability. To evaluate temporal stability, we compared
headless-mobile divergence from two crawls (Nov 2024 and July
2025). The first crawl yielded a mean deviation of 0.52 (median
= 0.49; std. dev. = 0.29), and the second a mean deviation of 0.49
(median = 0.47; std. dev. = 0.29) A two-sample t-test revealed no
significant difference (p = 0.37), supporting consistency over time.

Limitations. Our analysis, while comprehensive, has several lim-
itations. First, our information flow tracing (i.e., iFlow) relies on
JStap [17], which may miss data flow edges due to its static nature
and incomplete modeling of dynamic JavaScript features such as
eval, higher-order functions, and runtime code generation. As a
result, iIFlow may not capture all information chains contributing
to divergence. Second, VisibleV8 [25] logs all WebIDL-defined APIs
but does not log JavaScript built-in functions (e.g., Math.round()),
and user-defined functions if these functions are not attached to
global objects (e.g., Window). While built-in functions are excluded,
they are not central to our divergence analysis, as their behavior is
typically consistent across OSes and execution contexts. Moreover,
user-defined functions without access to WebIDL APIs generally
lack sufficient information to distinguish between platforms. These
limitations may result in under-reporting of divergence and in-
complete attribution of information sources. Third, when multiple
conditions are grouped, our algorithm flags all related nodes, which

CCS 25, October 13-17, 2025, Taipei

can overestimate the responsible data sources. While this intro-
duces noise, all flagged sources may still contribute to divergence.
Fourth, we recognize that incomplete support for certain Canvas
features may have introduced spurious divergence signals. Never-
theless, the headless—mobile and headful-mobile mean divergence
scores remain nearly similar despite this limitation. Finally, 25.4%
of iFlows lacked known fingerprinting APIs, but manual inspection
of the top 100 APIs in other flows revealed that 6% used lesser-
known device indicators. Other unanalyzed APIs may also contain
platform-revealing heuristics. Future work can extend our frame-
work to uncover additional latent profiling behaviors.

10 Conclusion

In this paper, we examine platform-dependent divergences in JavaScript

execution across mobile and desktop environments. Leveraging
large-scale dynamic instrumentation combined with static infor-
mation flow (iFlow) analysis, we uncover conditional branching
in identically sourced scripts and trace the data inputs that drive
such behavior. Our analysis reveals that over 20.6% of scripts exhibit
platform-specific divergence, with desktop users disproportionately
subjected to aggressive tracking—most notably through fingerprint-
ing and bot detection. By pinpointing the data sources behind these
conditional branches, we expose both established and emerging
fingerprinting vectors, shedding light on privacy asymmetries that
often elude conventional detection.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback
and the shepherd for their guidance throughout the process. This
material is based upon work supported in parts by the National
Science Foundation (NSF) under grant number CNS-2138138 and
CNS-2047260. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

References

[1] 2025. JSPrism. https://github.com/ahsan238/JSPrism.
[2] 2025. Mitmproxy. https://mitmproxy.org/.
[3] 2025. VisibleV8 for Android. https://github.com/wspr-ncsu/visiblev8/pull/35.
[4] 2025. Webpack. https://webpack.js.org/.
[5] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security. 674-689.
Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Giirses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprinters.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 1129-1140.
[7] Pouneh Nikkhah Bahrami, Umar Igbal, and Zubair Shafiq. 2022. FP-Radar: Longi-
tudinal Measurement and Early Detection of Browser Fingerprinting. Proceedings
on Privacy Enhancing Technologies (PETS) 2022, 2 (2022), 557-577.
[8] berstend. 2023. puppeteer-extra-plugin-stealth. https://www.npmjs.com/package/
puppeteer-extra-plugin-stealth
[9] Reuben Binns, Jun Zhao, Max Van Kleek, and Nigel Shadbolt. 2018. Measuring
third-party tracker power across web and mobile. ACM Transactions on Internet
Technology (TOIT) 18, 4 (2018), 1-22.
[10] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-) browser fingerprinting
via OS and hardware level features. In Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society.
Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,
Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. 2022. Omnicrawl:
Comprehensive measurement of web tracking with real desktop and mobile
browsers. Proceedings on Privacy Enhancing Technologies (2022).

l6

=

[11

Ahsan Zafar, Junhua Su, Sohom Datta, Alexandros Kapravelos, and Anupam Das

Fingerprint]S Contributors. 2025. Fingerprint]S. https://github.com/fingerprintjs/
fingerprintjs. Accessed: 2025-07-22.

] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The web’s

sixth sense: A study of scripts accessing smartphone sensors. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1515-1532.

Peter Eckersley. 2010. How unique is your web browser?. In Privacy Enhancing
Technologies: 10th International Symposium, PETS 2010, Berlin, Germany, July
21-23, 2010. Proceedings 10. Springer, 1-18.

Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. 1388-1401.

Christian Eubank, Marcela Melara, Diego Perez-Botero, and Arvind Narayanan.
2013. Shining the floodlights on mobile web tracking-a privacy survey. In Pro-
ceedings of the IEEE Workshop on Web.

] Aurore Fass, Michael Backes, and Ben Stock. 2019. Jstap: a static pre-filter for

malicious javascript detection. In Proceedings of the 35th Annual Computer Security
Applications Conference. 257-269.

] Aurore Fass, Doliére Francis Somé, Michael Backes, and Ben Stock. 2021. Doublex:

Statically detecting vulnerable data flows in browser extensions at scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 1789-1804.

] David Fifield and Serge Egelman. 2015. Fingerprinting web users through font

metrics. In Financial Cryptography and Data Security: 19th International Confer-
ence, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers
19. Springer, 107-124.

] GitHub, Inc. 2021. CodeQL. https://codeql.github.com/. Accessed: 2025-08-03.
] Google Chrome Developers. 2025.

chrome.storage APL https://
developer.chrome.com/docs/extensions/reference/storage/

] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:

Tracking information flow in JavaScript and its APIs. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing. 1663-1671.

[23] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kaafar, Anirban Ma-

hanti, and Balachander Krishnamurthy. 2017. Towards Seamless Tracking-Free
Web: Improved Detection of Trackers via One-class Learning. Proceedings on
Privacy Enhancing Technologies 2017, 1 (2017), 79-99.

Umar Igbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
fingerprinters: Learning to detect browser fingerprinting behaviors. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 1143-1161.

Jordan Jueckstock and Alexandros Kapravelos. 2019. Visiblev8: In-browser moni-
toring of javascript in the wild. In Proceedings of the Internet Measurement Con-
ference. 393-405.

Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis Pa-
padopoulos, Matteo Varvello, Ben Livshits, and Alexandros Kapravelos. 2021.
Towards Realistic and Reproducible Web Crawl Measurements. In Proceedings of
The Web Conference (WWW). 80-91.

Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAL: A static analy-
sis platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT international
symposium on Foundations of Software Engineering. 121-132.

Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling.
2016. Fingerprinting mobile devices using personalized configurations. Proceed-
ings on Privacy Enhancing Technologies (2016).

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS).

[30] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.

2016. Internet jones and the raiders of the lost trackers: An archaeological study
of web tracking from 1996 to 2016. In 25th USENIX Security Symposium (USENIX
Security 16).

[31] Magnus Madsen, Frank Tip, and Ondfej Lhotak. 2015. Static analysis of event-

driven Node. js JavaScript applications. ACM SIGPLAN Notices 50, 10 (2015),
505-519.

Jonathan R Mayer. 2009. Any person... a pamphleteer”: Internet Anonymity in
the Age of Web 2.0. Undergraduate Senior Thesis, Princeton University 85 (2009).
Jonathan R. Mayer and John C. Mitchell. 2012. Third-Party Web Tracking: Policy
and Technology. In 2012 IEEE Symposium on Security and Privacy. 413-427.
Meta Platforms, Inc. 2025. About Signals Gateway Pixel | Meta Business Help
Center. Meta Business Help Center. https://www.facebook.com/business/help/
514664901027990?id=921478266803729

Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess, Arunesh Mathur,
Danny Yuxing Huang, Nick Feamster, Edward W Felten, Prateek Mittal, and
Arvind Narayanan. 2019. Watching you watch: The tracking ecosystem of over-
the-top tv streaming devices. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 131-147.

Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting information in JavaScript implementations. Proceedings of W2SP 2,

https://github.com/ahsan238/JSPrism
https://mitmproxy.org/
https://github.com/wspr-ncsu/visiblev8/pull/35
https://webpack.js.org/
https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://codeql.github.com/
https://developer.chrome.com/docs/extensions/reference/storage/
https://developer.chrome.com/docs/extensions/reference/storage/
https://www.facebook.com/business/help/514664901027990?id=921478266803729
https://www.facebook.com/business/help/514664901027990?id=921478266803729

Same Script, Different Behavior: Characterizing Divergent JavaScript Execution Across Different Device Platforms

11 (2011).

[37] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas

in HTMLS5. Proceedings of W2SP 2012 (2012).

Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian

Schrittwieser, Edgar Weippl, and FC Wien. 2013. Fast and reliable browser

identification with javascript engine fingerprinting. In Web 2.0 Workshop on

Security and Privacy (W2SP), Vol. 5. Citeseer, 4.

Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,

Frank Piessens, and Giovanni Vigna. 2013. Cookieless monster: Exploring the

ecosystem of web-based device fingerprinting. In 2013 IEEE Symposium on Secu-

rity and Privacy. IEEE, 541-555.

[40] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The
leaking battery: A privacy analysis of the HTML5 Battery Status APL In 10th
International Workshop on Data Privacy Management, and Security Assurance.
Springer, 254-263.

[41] Nikolaos Pantelaios and Alexandros Kapravelos. 2024. FV8: A Forced Execution
JavaScript Engine for Detecting Evasive Techniques. In Proceedings of the USENIX
Security Symposium.

[42] Joonyoung Park, Inho Lim, and Sukyoung Ryu. 2016. Battles with false positives
in static analysis of JavaScript web applications in the wild. In Proceedings of the
38th International Conference on Software Engineering Companion. 61-70.

[43] Puppeteer Contributors. 2025. Puppeteer. https://pptr.dev

[44] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
Defending Against Third-Party Tracking on the Web. In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 155-168.

[45] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension

breakdown: Security analysis of browsers extension resources control policies.

In 26th USENIX Security Symposium (USENIX Security 17). 679-694.

Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2018. Clock around

the clock: Time-based device fingerprinting. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 1502-1514.

Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020. Hiding in

Plain Site: Detecting JavaScript Obfuscation through Concealed Browser API Us-

age. In Proceedings of the ACM Internet Measurement Conference (IMC). 648-661.

[48] Michael Schwarz, Florian Lackner, and Daniel Gruss. 2019. JavaScript Template

Attacks: Automatically Inferring Host Information for Targeted Exploits.. In

Proceedings of the 26th Annual Network and Distributed System Security Symposium

(NDSS).

Alexander Sjosten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering

browser extensions via web accessible resources. In Proceedings of the Seventh

ACM on Conference on Data and Application Security and Privacy. 329-336.

Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser

feature usage on the modern web. In Proceedings of the 2016 Internet Measurement

Conference. 97-110.

[51] Thodoris Sotiropoulos and Benjamin Livshits. 2019. Static Analysis for Asyn-

chronous JavaScript Programs. In 33rd European Conference on Object-Oriented

Programming (ECOOP 2019), Vol. 134. 8:1-8:29.

Oleksii Starov and Nick Nikiforakis. 2017. Xhound: Quantifying the fingerprint-

ability of browser extensions. In 2017 IEEE Symposium on Security and Privacy

(SP). IEEE, 941-956.

[53] StatCounter. 2025. Browser Market Share
https://gs.statcounter.com/browser-market-share.

[54] Junhua Su and Alexandros Kapravelos. 2023. Automatic Discovery of Emerg-
ing Browser Fingerprinting Techniques. In Proceedings of The Web Conference
(WWW). 2178-2188.

[55] Naoki Takei, Takamichi Saito, Ko Takasu, and Tomotaka Yamada. 2015. Web
browser fingerprinting using only cascading style sheets. In 2015 10th Interna-
tional Conference on Broadband and Wireless Computing, Communication and
Applications (BWCCA). IEEE, 57-63.

[56] tft. 2012. PlayReady DRM. Google Groups, “android-platform”. https:
//groups.google.com/g/android- platform/c/OX2a3Z2jtf8 Accessed: 2025-08-02.

[57] Tranco. 2025. https://tranco-list.eu/list/PN5Q]J. Accessed: 2025-07-22.

[58] Zhiju Yang and Chuan Yue. 2020. A Comparative Measurement Study of Web
Tracking on Mobile and Desktop Environments. Proceedings on Privacy Enhancing
Technologies (PETS) 2020 (2020).

[38

[39

[46

[47

[49

o
=

[52

Worldwide.

A Extended Case Studies

Listing 7 shows code that embeds a wrapper that turns an ele-
ment into a touch-draggable item by capturing touch events. The
particular code snippet shared is setting event listeners that report
touch movements and update offsets of the gestures routinely.

Listing 8 shows an example of a script that checks for various
media formats that are supported. While the divergence occurs
at Window.navigator (offset: 132,950), the enumeration of these

CCS 25, October 13-17, 2025, Taipei

1 function Draggable(e) {

2 return (9, le.A)(Draggable, e), (@, ce.A)(Draggable, [{

3 key: "initialize",

4 value: function initialize(e) {

5 this.ref = e, this.ref.addEventListener("touchstart",
< this.handleStart, {

6 passive: !0 }), this.ref.addEventListener("touchmove",

< this.handleMove, {

7 passive: 10 })

8 // more touch event handlers

9 |

10)}

Listing 7: Code snippet from res.365scores.com/static/js/
1452.6aaeee32.chunk.js that defines eventListeners for touch-
based devices.

1 var vt = {
2 "com.widevine.alpha": "Widevine", "com.microsoft.playready":
< "PlayReady", "com.apple.fps": "FairPlay" };
3 var yt = {
4 eme: Object.keys(vt).reduce(function(e, t) {
5 e[t] = { name: vt[t], persistentState: false, support: false };
6 return e }, {
7 support: Boolean(e.navigator.requestMediaKeySystemAccess ||
< e.MSMediaKeys && e.MSMediaKeys.isTypeSupported ||
— e.WebKitMediaKeys && e.WebKitMediaKeys.isTypeSupported) })
8 i

Listing 8: Code snippet from players.brightcove.net/5348771529001/
938M1Zecs_default/index.min.js that checks for playable media

types.

1 hasTouch: function() {

2 return !!navigator.maxTouchPoints || !!navigator.msMaxTouchPoints ||
< (l.matchMedia ? 1l.matchMedia("(any-pointer: coarse)").matches :
< "ontouchstart" in 1)

3 }, isMobile: function() {
4 var e = navigator.userAgent;
5 return /Android|web0S|iPhone|iPad|iPod|Windows Phone|IEMobile|Opera

< Mini|Mobile|mobile|Tablet [*PC]|Cri0S/i.test(e)

Listing 9: Code snippet from afcs.dellcdn.js that creates helper func-
tions that detect whether the device is a touch-capable device using
touch-based events.

1 var a = 1;
2 var b = 0;
3 b=b+a+2;

Listing 10: An example JavaScript code snippet that JStap failed to
establish data flow edges

media types is part of the information flow and contributes to the
information available to the conditional node (offset: 132,928). It
should be noted that not all of these formats are supported by
Android devices. For instance, Microsoft’s PlayReady is not part of
the standard Android OS distribution [56].

Listing 9 is a code snippet from a script that uses these touch-
event signals along with CSS media queries for any ’coarse’ pointer
(typical of touch devices) to determine if a device supports touch.

Listing 10 is an example showing missing data flow edges of
JStap [17]. In this example, the value of the variable b on the left-
hand side of the assignment on line 3 depends on the variables a,
b, and a number 2. The PDG built with JStap shows no data-flow
edges between b on lines 2 and 3.

https://pptr.dev
https://groups.google.com/g/android-platform/c/OX2a3Z2jtf8
https://groups.google.com/g/android-platform/c/OX2a3Z2jtf8
https://tranco-list.eu/list/PN5QJ
res.365scores.com/static/js/1452.6aaeee32.chunk.js
res.365scores.com/static/js/1452.6aaeee32.chunk.js
players.brightcove.net/5348771529001/938M1Zecs_default/index.min.js
players.brightcove.net/5348771529001/938M1Zecs_default/index.min.js
afcs.dellcdn.js

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Web Crawling Tools
	2.2 JavaScript Behavior Analysis
	2.3 Browser Fingerprinting
	2.4 Cross-Platform Comparison
	2.5 Distinction with Prior Work

	3 Formalizing Execution Flow Divergence
	4 Methodology
	4.1 Hybrid Analysis

	5 Data Collection
	5.1 Device Setup and Crawl
	5.2 VisibleV8 for Android

	6 Prevalence of Divergence
	6.1 Divergent JavaScripts
	6.2 Conditioned Divergence

	7 Data-Driven Divergence
	7.1 Device Information Propagation
	7.2 Detection of Novel Information Sources

	8 Post Divergence
	8.1 Behavior in Divergent Subsequences
	8.2 Case Studies

	9 Discussion
	10 Conclusion
	Acknowledgments
	References
	A Extended Case Studies

