VisibleV8: In-browser Monitoring
of JavaScript in the Wild

Jordan Jueckstock
North Carolina State University
jjuecks@ncsu.edu

ABSTRACT

Modern web security and privacy research depends on accurate
measurement of an often evasive and hostile web. No longer just a
network of static, hyperlinked documents, the modern web is alive
with JavaScript (JS) loaded from third parties of unknown trustwor-
thiness. Dynamic analysis of potentially hostile JS currently presents
a cruel dilemma: use heavyweight in-browser solutions that prove
impossible to maintain, or use lightweight inline JS solutions that
are detectable by evasive JS and which cannot match the scope of
coverage provided by in-browser systems. We present VisibleV8,
a dynamic analysis framework hosted inside V8, the JS engine of the
Chrome browser, that logs native function or property accesses dur-
ing any JS execution. At less than 600 lines (only 67 of which modify
V8’s existing behavior), our patches are lightweight and have been
maintained from Chrome versions 63 through 72 without difficulty.
VV8 consistently outperforms equivalent inline instrumentation,
and it intercepts accesses impossible to instrument inline. This com-
prehensive coverage allows us to isolate and identify 46 JavaScript
namespace artifacts used by JS code in the wild to detect automated
browsing platforms and to discover that 29% of the Alexa top 50k
sites load content which actively probes these artifacts.

ACM Reference Format:

Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In Internet Measurement Conference
(IMC °19), October 21-23, 2019, Amsterdam, Netherlands. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3355369.3355599

1 INTRODUCTION

“Software is eating the world” [16], and that software is increasingly
written in JavaScript (JS) [6, 12]. Computer applications increasingly
migrate into distributed, web-based formats, and web application
logic increasingly migrates to client-side JS. Web applications and
services collect and control vast troves of sensitive personal informa-
tion. Systematic measurements of web application behavior provide
vital insight into the state of online security and privacy [35]. With
modern web development practices depending heavily on JS for even
basic functionality, and with increasingly rich browser APIs [50]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

IMC 19, October 21-23, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6948-0/19/10...$15.00
https://doi.org/10.1145/3355369.3355599

Alexandros Kapravelos
North Carolina State University
akaprav@ncsu.edu

providing an inviting attack surface for fingerprinting [13] and track-
ing [22], effective security and privacy measurement of the web must
include some degree of JS behavioral analysis.

Asifdealing with the quirky, analysis-hostile dynamism of JS itself
were not enough, researchers are also locked in an arms race with eva-
sive and malicious web content that frequently cloaks [24] itself from
unwanted clients. The ad-hoc approaches to JS instrumentation com-
mon in the literature suffer obvious shortcomings. Heavy-weight
systems built by modifying a browser’s JS engine can provide ade-
quate coverage and stealth, but suffer from high development costs
(on the order of thousands of lines of C/C++ code [33, 41, 53]) and
poor maintainability, with patches rarely or never ported forward
to new releases. Lighter-weight systems built by injecting in-band,
JS-based instrumentation hooks directly into the target application’s
namespace avoid these pitfalls but suffer their own drawbacks: struc-
tural and policy limits on coverage, and vulnerability to well-known
detection and subversion techniques (Section 2).

We argue in this paper that a maintainable in-browser JS instru-
mentation that matches or exceeds in-band equivalents in coverage,
performance, and stealth is possible. As proof, we present Visi-
bleV8 (VV8): a transparently instrumented variant of the Chromium
browser! for dynamic analysis of real-world JS that we have suc-
cessfully maintained across eight Chromium release versions (63 to
72). VV8 lets us passively observe native (i.e., browser-implemented)
API feature usage by popular websites with fine-grained execution
context (security origin, executing script, and code offset) regardless
of how a script was loaded (via static script tag, dynamic inclusion,
or any form of eval). Native APIs are to web applications roughly
what system calls are to traditional applications: security gateways
through which less privileged code can invoke more privileged code
to access sensitive resources. As such, VV8 provides a JS analog to the
classic Linux strace utility. VV8 can be used interactively like any
other browser, but is primarily intended for integration with auto-
mated crawling and measurement frameworks like OpenWPM [22].

We demonstrate VV8 by recording native feature usage across
the Alexa top 50k websites, identifying feature probes indicative
of bot detection, and analyzing the extent of such activity across
all domains visited. Our collection methodology takes inspiration
from Snyder et al. [49], using an automated browser instrumen-
tation framework to visit popular domains, to randomly exercise
JS-based functionality on the landing page, and to collect statistics
on JS feature usage. Our identification and analysis of bot detection
artifacts used in the wild showcases VV8’s unique advantages over
traditional JS instrumentation techniques: improved stealth in the

!Chromium is the open-source core of Chrome, equivalent in functionality but
lacking Google’s proprietary branding and service integration. We use the names
interchangeably in this paper.

https://doi.org/10.1145/3355369.3355599
https://doi.org/10.1145/3355369.3355599

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

face of evasive scripts, and universal property access tracking on
native objects that do not support proxy-based interposition.
Our contributions include:

e We demonstrate that state-of-the-art inline JS instrumenta-
tion fails to meet classical criteria for reference monitors [15]
and cannot prevent evasive scripts from deterministic detec-
tion of instrumentation.

e We present the first maintainable in-browser framework for
transparent dynamic analysis of JS interaction with native
APIs. Using instrumented runtime functions and interpreter
bytecode injection, VV8 monitors native feature usage from
inside the browser without disrupting JIT compilation or leav-
ing incriminating artifacts inside JS object space. We will open
source our patches and tools upon publication.

e We use VV8’s universal property access tracing to discover
non-standard features probed by code that detects “bots” (i.e.,
automated browsers, such as those used by researchers). We
find that on 29% of the Alexa top 50k sites, at least one of 49
identified bot artifacts is probed. This is clear evidence that
web measurements can be affected by the type of browser or
framework that researchers use.

2 BACKGROUND & MOTIVATION
2.1 Trends and Trade-offs

The state of the art in web measurements for security and privacy
relies on full browsers, not simple crawlers or browser-simulators,
to visit web sites. Experience with the OpenWPM framework [22]
indicated measurements from standard browsers (e.g., Firefox and
Chromium) to be more complete and reliable than those from light-
weight headless browsers (e.g., Phantom]JS [10]). However, the ques-
tion of how best to monitor and measure JS activity within a browser
remains open. Assuming an open-source browser, researchers can
modify the implementation itself to provide in-browser (i.e., out-of-
band) JS instrumentation. Alternatively, researchers can exploit the
flexibility of JS itself to inject language-level (i.e., in-band) instru-
mentation directly into JS applications at run-time.

We provide a summary of recent security and privacy related
research that measured web content using JS instrumentation in
Table 1. Note that here “taint analysis” implies “dynamic analysis”
but additionally includes tracking tainted data flows from source to
sink. Fine-grained taint analysis is a heavy-weight technique, as is
comprehensive forensic record and replay, so it is not surprising that
these systems employed out-of-band (in-browser) implementations
in native (C/C++) code. Lighter weight methodologies that simply
log (or block) use of selected API features have been implemented
both in- and out-of-band, but the in-band approach is more popular,
especially in more recent works.

2.2 Fundamental Criteria

The problem of monitoring untrusted code dates to the very dawn
of computer security and inspired the concept of a reference mon-
itor [15], a software mediator that intercepts and enforces policy
on all attempted access to protected resources. The traditional cri-
teria of correctness for reference monitors are that they be tamper
proof, be always invoked (i.e., provide complete coverage), and
be provably correct, though this last element may be lacking in

Jordan Jueckstock and Alexandros Kapravelos

"User Space"
(JavaScript Code)

"Kernel Space"
(Browser Code)

Execution
Context

Execution
Context

Inlined RM

<> = Protected Browser API|

<:> = Instrumentation Layer

Figure 1: Reference monitors (RM) in traditional OS &
application security

practical implementations. For security and privacy measurements,
we add the additional criterion of stealth: evasive or malicious code
should not be able to trivially detect its isolation within the reference
monitor and hide its true intentions from researchers, since such an
evasion could compromise the integrity of the derived results.

A classic example of a practical reference monitor is an operating
system kernel: it enforces access control policies on shared resources,
typically using a rings of protection scheme (Figure 1) assisted by
hardware. In order to enforce security policies like access controls
and audits, the kernel must run in a privileged ring. Untrusted user
code runs in a less-privileged ring, where the kernel (i.e., the ref-
erence monitor) can intercept and thwart any attempt to violate
system policy. Alternatively, inlined reference monitors (IRMs) [23]
attempt to enforce policy while cohabiting the user ring with the
monitored application, typically by rewriting and instrumenting the
application’s code on the fly at load or run time.

On the web, the browser and JS engine provide the equivalent of
akernel, while JS application code runs in a “user ring” enforced by
the semantics of the JS language. JS instrumentation in general is a
kind of reference monitor; implemented in-band, it constitutes an
IRM. We argue that the JS language’s inherent semantics and current
implementation details make it impossible to build sound, efficient,
general-purpose IRMs in JS on modern web browsers.

2.3 The Case Against In-Band

JS Instrumentation
The standard approach to in-band JS instrumentation, which we call
“prototype patching,” is to replace references to target JS functions
or objects with references to instrumented wrapper functions or
proxy objects?. The wrappers can access the original target through

2Other forms of JS IRM exist, like nested interpreters [18, 52] and code-rewriting sys-
tems [20], but these have not yet proven fast enough for real-world measurement work.

VisibleV8: In-browser Monitoring
of JavaScript in the Wild

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

System Implementation Role Problem Platform Availability
OpenWPM [21, 22, 38]1 In-band Dynamic analysis Various Firefox SDK? [)
Snyder et al., 2016 [49] In-band Dynamic analysis Attack surface Firefox SDK O
FourthParty [35] In-band Dynamic analysis Privacy/tracking Firefox SDK [
TrackingObserver [45] In-band Dynamic analysis Privacy/tracking =~ WebExtension o
JavaScript Zero [47] In-band Policy enforcement Side-channels WebExtension o
Snyder et al., 2017 [50] In-band Policy enforcement Privacy/tracking Firefox SDK O
Li et al, 2014 [34] Out-of-band Dynamic analysis Malware Firefox (unspecified) O
FPDetective [13] Out-of-band Dynamic analysis Privacy/tracking ~ Chrome 323 [
WebAnalyzer [48] Out-of-band Dynamic analysis Privacy/tracking Internet Explorer 8 O
JSgraph [33] Out-of-band Forensic record/replay ~Malware/phishing Chrome 48 o
WebCapsule [41] Out-of-band Forensic record/replay ~Malware/phishing Chrome 36 [
Mystique [19] Out-of-band Taint analysis Privacy/tracking ~ Chrome 58 [
Lekies et al. [31, 32] Out-of-band Taint analysis XSS Chrome (unspecified) O
Stock et al. [51] Out-of-band Taint analysis XSS Firefox (unspecified) O
Tran et al., 2012 [53] Out-of-band Taint analysis Privacy/tracking Firefox 3.6 O

! Including only OpenWPM usage depending on JS instrumentation

2 Supported only through Firefox 52 (end-of-life 2018-09-05)

3 Used both Phantom]S and Chrome built from a common patched WebKit
4 Binaries only

Table 1: Survey of published JS instrumentation systems

references captured in a private scope inaccessible to any other code.
Note that the target objects themselves are not replaced or instru-
mented, only the references to them (a potential pitfall highlighted
in prior work [37]).

Structural Limits. The JS language relies heavily on a global
object (window in browsers) which doubles as the top level names-
pace. There is no mutable root reference to the global object, and
thus no way to replace it with a proxy version. Specific properties
of the global object may be instrumented selectively, but this pro-
cess naturally requires a priori knowledge of the target properties.
In-band instrumentation cannot be used to collect arbitrary global
property accesses, as required for our methodology in Section 5. This
limitation means that in-band JS instrumentation fails the complete
coverage criterion.

Policy Limits. Not all Chrome browser API features can be
patched or wrapped by design policy. These features can be iden-
tified using the WebIDL [7] (interface definition language) files in-
cluded in the Chromium sources. For Chrome 64, these files defined
5,755 API functions and properties implemented for use by web
content (there are more available only to internal test suites). 21
are marked Unforgeable and cannot be modified at all. Notably, this
set includes window. location and window.document, preventing
in-band instrumentation of arbitrary-property accesses on either
of these important objects. Again, such a restriction would have
eliminated many of our results in Section 5.

Patch Detection. Prototype patches of native API functions (or
property accessors) can be detected directly and thus fail the criterion
of stealth. JS functions are objects and can be coerced to strings.
In every modern JS engine, the resulting string reveals whether
the function is a true JS function or a binding to a native function.
Patching a native function (e.g., window. alert) with a non-native
JS wrapper function is a dead giveaway of interposition.

/* from https://cdn.flashtalking.com/xre/275/
2759859/1948687/ js/j-2759859-1948687. js */
/* (all variable names original) =x/
var badWrite = !(document.write
instanceof Function && ~document.write.toString().
indexOf ('[native code]"'));

/* (later on, among other logic checks) =*/

if (badWrite || o.append) {
o.scriptLocation.parentNode.insertBefore(
/*x omitted for brevity =*/);

} else {
document.write(div.outerHTML);

}

Listing 1: Prototype patch evasion in the wild

The function-to-string probe has been employed to detect finger-
printing countermeasures [55] and appears commonly in real-world
JS code. In many cases, such checks appear strictly related to testing
available features for browser compatibility. But there also exist
cases like Listing 1, in which the script changes its behavior in di-
rect response to a detected patch. Function-to-string probe evasions
abound, from the obvious (patch the right toString function, too)
to the subtle. In Listing 2, the "[native code]" string literal in the
patch function appears in the output of toString and will fool a
sloppy function-to-string probe that merely tests for the presence
of that substring.

Let us assume a “perfect” patching system invisible to toString
probes has been used to instrument createElement, the single most
popular browser API observed in our data collection across the Alexa
50k (Section 4). Such a patch is still vulnerable to a probe that exploits
JS’s type coercion rules with a Trojan argument to detect patches on
the call stack at runtime (Listing 3).

For brevity, the provided proof-of-concept calls the Error con-
structor, which could itself be patched, but there are other ways
of obtaining a stack trace in JS. The Byzantine complexity of JS’s

O RPN WN R

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

/% from
https://clarium.global.ssl.fastly.net ("..." comment
means irrelevant portions elided for brevity) */
patchNodeMethod: function(a) {
var b = this,
c = Node.prototypel[al;
Node.prototypelal = function(a) {
" [native codel] ";
var d = a.src || "";
return /x ... */
c.apply(this, arguments)

/x L. %/

Listing 2: Function patches hiding in plain sight

function paranoidCreateElement(tag) {
return document.createElement ({
toString: function() {
var callers = new Error().stack.split('\n').slice(1);
if (/at paranoidCreateElement /.test(callers[1])) {
return tag; /* no patch =*/
} else {
throw new Error("evasive action!");

33,053

/* patched! =%/

Listing 3: Trojan argument attack (Chrome variant)

pathologically dynamic type system offers many opportunities for
callback-based exposure of patches and proxies via stack traces. Here
prototype patches face a cruel dilemma: either invoke the toString
operation and open the gates to side-effects (allowing detection and
evasion), or refuse to invoke it and break standard JS semantics
(allowing detection and evasion).

Patch Subversion. Finally, prototype patches can be subverted
through abuse of <iframe> elements. Each <iframe> is an inde-
pendent browser window with its own global object, unaffected
by prototype patches in other frames. We have observed scripts
exploiting this fact to evade patches they have detected.

/* from https
://an.yandex.ru/resource/context_static_r_4583.js */
/* (some names changed
for clarity; cachedJSON is initially null) =/
if (window.JSON
&& a.checkNativeCode (JSON.stringify)
&& a.checkNativeCode (JSON.parse))
return window.JSON;
if (!cachedJSON) {
var t = getInjectedIFrameElement();
cachedJSON = t.contentWindow.JSON;
var e = t.parentNode;
e.parentNode.removeChild(e)

Listing 4: Patch subversion in the wild

In Listing 4, the script resorts to frame injection to avoid patched
JSON encoding/decoding functions. Short of blocking the creation of
all <iframe>s (and thus breaking much of the web), the only defense
against this evasion is to ensure that prototype patching code is
always run inside newly created frames before any other code can
access its contents. Such an invariant can be established through
some browser automation and debugging frameworks, like Chrome
DevTools. But the web extension APIs of both Firefox and Chrome, as
currently implemented, do not provide such a guarantee to extension

Jordan Jueckstock and Alexandros Kapravelos

Optimized

Source
AST
P ™ JIT Compiler —» Machine
gl Code

Source—

Turbofan

w8
Bytecode > i
Generator Eviecocs
A2
V8 Runtime Library

ws
Bytecode . . A
Interpreter 4

Ignition
> VV8 Logging

Figure 2: V8 architecture with VV8’s additions

authors, effectively crippling privacy or security (or research [45,
47, 49]) extensions that rely on this technique. (The author of a
prior related work [50] reported this bug to both the Firefox [3] and
Chrome [4] projects; neither report has been resolved at the time of
this writing, and we have confirmed that Chrome 71 is still affected.)

2.4 Summary

Robust JS instrumentation systems must be tamper proof, must pro-
vide comprehensive coverage, and must not introduce unmistakable
identifying artifacts. At present, JS language semantics and browser
implementation details prevent in-band implementations from meet-
ing these criteria. We believe that security-critical JS instrumentation,
like traditional operating system auditing and enforcement logic,
belongs in “kernel space,” i.e., within the browser implementation
itself. But to be useful such a system must be cost-effective, both to
develop and to maintain.

3 SYSTEM ARCHITECTURE

We present cost-effective out-of-band JS instrumentation via Visi-
bleV8, a variant of Chrome that captures and logs traces of all native
API accesses made by any JS execution during browsing. Here we ex-
plain VV8’sinternal design, relate our experience maintaining it over
several Chrome update cycles, evaluate its raw performance against
several alternatives, and describe the data collection and analysis
system we have built around VV8 to demonstrate its potential for
real-world measurement work.

3.1 Chromium/V8 Internals

Chromium is a massive project (over 20 million lines of code at time
of writing), actively developed, and frequently updated. Fortunately,
the Chromium browser’s architecture is modular, as is the design
of its V8 JS engine, so we can restrict our changes to a tiny subset
of the entire browser code base.

Modern versions of V8 handles JS parsing and execution via the
Ignition bytecode interpreter and the TurboFan JIT compiler (Figure
2). Ignition parses JS source code, generates bytecode, and executes
bytecode; its design is optimized for low latency, not high throughput.
When run-time statistics indicate that JIT compilation is desired, Tur-
boFan aggressively optimizes and translates the relevant bytecode
into native machine code.

VisibleV8: In-browser Monitoring
of JavaScript in the Wild

Ignition and TurboFan rely on a large supporting run-time library
(RTL) that includes a foreign-function interface allowing JS code to
call into native (i.e., C++) code via type-safe API function bindings
created by the hosting application (e.g., Chrome). Functionality not
implemented by JS code or by V8 built-in code (e.g., Math.sqrt)
must use an API binding to native browser code. V8’s RTL thus
forms a software-enforced JS/native boundary not unlike a system
call boundary in a traditional OS kernel.

In V8’s 2-stage implementation, source code translation happens
once, and the run-time behavior of that source code is fixed (mod-
ulo JIT compiler optimizations) at the point of bytecode generation.
This predictable workflow keeps our patches to V8 small and self-
contained.

3.2 VisibleV8 Implementation

VV38 intercepts and logs all native API access from JS execution dur-
ing browsing. Native API accesses comprise API function calls and
all get and set operations on properties of JS objects constructed
by native (i.e., C++) code in the browser itself. The resulting traces
include context information (e.g., the source code location triggering
this event), feature names, and some abbreviated activity details like
function call parameters and the value being stored during property
writes. Our patches are small: 67 lines of code changed or added
inside V8 itself to insert our instrumentation hooks, and 472 lines
of new code for filtering and logging.

Instrumenting Native Function Calls. All foreign function
calls through the JS/native boundary are routed through a single
V8 runtime function that handles the transition from the bytecode
interpreter to native execution and back. By adding a single call state-
ment invoking our centralized tracing logic to this C++ function,
we can hook all such calls made under Ignition bytecode interpre-
tation. However, when the bytecode is JITted to optimized machine
code, one of TurboFan’s hundreds of optimization transforms will
reduce the call through that hooked runtime function into a more
direct alternative. This transformation would disrupt our function
call tracing, so we disabled that single specific reduction, leaving the
rest of the JIT compiler untouched. This removal slows V8 down by
1.3% on the Mozilla Dromaeo micro-benchmark suite (Section 3.3),
with margins of error near 1% as well. For the cost of two trivial code
modifications and very modest overhead, we gain full visibility of
JS calls into native API bindings under both bytecode interpretation
and JITted code execution.

Instrumenting Native Property Accesses. V8 provides no sim-
ilarly convenient single choke-point from which all native object
property accesses can be observed. Property access is a frequent
and complicated operation in JS, and V8 has multiple fast-paths for
different access scenarios. Therefore, we target not the execution of
any bytecode here, but rather the generation of property-accessing
bytecode.

JS code entering V8 is first processed by Ignition’s source-to-
bytecode compiler before any execution. The bytecode compiler
uses a classic syntax-directed architecture. First, a parser constructs
an abstract syntax tree (AST) from JS source code. Then, the bytecode
generator walks this AST while generating bytecode to implement
the semantics required by the original JS syntax.

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

We instrument property access to native objects by patching the
bytecode generator. Specifically, we add statements to the AST vis-
itor logic for property get and set expressions to emit additional
bytecode instructions in each case. These instructions call a custom
V8 runtime function containing our tracing logic. Since such runtime
calls are effectively opaque black boxes to the TurboFan optimizer,
our hook instruction cannot be automatically optimized away during
JIT compilation. So our injected hook’s semantics are preserved from
bytecode generation, through interpretation and JIT compilation, to
optimized machine code execution. For completeness, we also hook
the built-in implementation of Reflect.get and Reflect.set in
the RTL using the same approach as for native function calls. Thus,
we also capture property accesses via calls to the JS Reflection API,
not only through member-access expressions.

Capturing Execution Context. All of our hooks, whether in
runtime functions or ininjected bytecode, call into our central tracing
logic. Written in C++ and compiled into V3, this code is responsible
for filtering events and capturing execution context information for
the trace log.

Native API calls are always logged. But since our property-access
hooks intercept all syntax- and reflection-based property accesses,
we must filter those events. We log only property accesses on na-
tive objects as indicated by V8’s internal object metadata API. V8
treats the JS global object as a unique special case, but we treat it as
a standard native object for logging purposes.

Fine-grained feature-usage analysis requires a significant amount
of execution context to be logged along with each function call or
property access. We link feature usage not just with a visited domain,
but also with the active security origin, active script, and location
within that script. We use V8’s C++ APIs to extract the invoking
script and location from the top frame of the JS call stack and the se-
curity origin from the origin property of the active global object. V8
and Blink sometimes execute internal JS code in a non-Web context,
where the global object hasno origin property or it has a non-string
value. In this case an “unknown” origin is recorded (and we can later
discard this activity from our analysis). The visit domain (i.e., from
the URL displayed in the browser’s address bar) is associated with
the log during post-processing.

Logging Trace Data. Reliably recording JS trace data at low cost
introduced its own engineering challenges. Repeatedly looking up
and logging identical context for successive events wastes CPU time,
1/0 bandwidth, and storage space. We therefore track execution con-
text state (such as active script) over time, and log it only when it has
changed since the last logged event. This optimization introduces
state-tracking and synchronization issues.

Chrome uses multiple processes and threads to achieve good
performance and strong isolation. Even with just a single browser
tab open, JS code can be executing simultaneously across multiple
threads. To keep our traces coherent, we must track context and log
events on a per-thread basis. To store our separate trace log streams
without races or synchronization bottlenecks, we create per-thread
log files.

3.3 Performance

With every JS object property access intercepted and possibly logged,
we expected VV8 to be significantly slower than stock Chrome in

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

B Chrome 64 (plain)
@ Chrome 64 (w/in-band)

s VisibleV8 (light)
KB VisibleV8 (full)

1.01

0.8

0.6 1

0.4 4

Relative to Normalized Baseline

0.21

0.0 -

JetStream ARES-6 MotionMark Speedometer Dromaeo

Figure 3: Instrumentation performance on Browser-
Bench.org [8] and Mozilla Dromaeo [9]

the worst case. We verified this expectation by measuring the over-
head by benchmarking a set of Chrome and VV8 variants with both
the WebKit project’s BrowserBench [8] and Mozilla’s Dromaeo [9].
Unless otherwise noted, tests were performed under Linux 4.19.8 on
an Intel Core i7-7700 (4 cores, 3.6GHz) with 16GiB RAM and an SSD.
See Figure 3.

We tested four variants of Chrome 64 for Linux, including a base-
line variant with no JS instrumentation at all (plain). We include two
VV8 builds: the complete system as described above (full) and a vari-
ant with property access interception disabled (light). VV8-light is
roughly equivalent in coverage and logging to our final variant, stock
Chrome running a custom prototype-patching extension roughly
equivalent to the (unreleased) instrumentation used by Snyder et al.
to measure browser feature across the Alexa top 10K [49]. This last
variant (w/in-band) attempts to provide an apples-to-apples com-
parison of in-band and out-of-band instrumentation instrumenting
a comparable number of APIs (functions only) and recording compa-
rably rich trace logs. All Chrome builds were based on the Chrome 64
stable release for Linux and use the same settings and optimizations.

BrowserBench tests the JS engine in isolation (JetStream, ARES-
6),JS and the DOM (Speedometer), and JS and Web graphics (Mo-
tionMark). VV8-light either meets or decisively beats its in-band
equivalent in every case. VV8-full consistently suffers 60% to 70%
overhead vs. the baseline, but on the whole-browser tests (Speedome-
ter, MotionMark) it performs comparably to the in-band variant,
which captures significantly less data (i.e., no property accesses).
These numbers match our experience interacting with VV8, where
we observe it providing acceptable performance on real-world, JS-
intensive web applications like Google Maps. Significantly, VV8-full
on the workstation compared favorably (i.e., equal or better Browser-
Bench scores) to Chrome 64 plain on a battery-throttled laptop
running Linux 4.18.15 on an Intel Core i7-6500 (2 cores, 2.5GHz) with
16GiB RAM and an SSD.

The Mozilla Dromaeo suite of micro-benchmarks focuses exclu-
sively on JS engine performance. It avoids the browser’s layout and
render logic as much as possible, and reveals more slowdowns for

Jordan Jueckstock and Alexandros Kapravelos

all instrumented variants. Dromaeo’s recommended test suite com-
prises 49 micro-benchmarks, too many to effectively visualize in
a single figure, so we provide only the reported aggregate score.?
VV8-light still handily outperforms in-band instrumentation, but
VV8-full is significantly slower than the baseline (6x in aggregate).
VV8-full showed a wide range of performance on Dromaeo micro-
benchmarks, from six showing no slowdown at all to three showing
pathological slowdown over 100x.

3.4 Maintenance & Limitations

Thanks to the small size and minimal invasiveness of VV8’s patches,
maintenance has thus far proved inexpensive. Development began
on Chrome 63, then easily transitioned to Chrome 64, which was
used for primary data collection. We have since ported our patches
through Chrome 72 and encountered only trivial issues in the pro-
cess (e.g., whitespace changes disrupting patch merge, capitalization
changes in internal API names).

Our trace logs must be created on the fly as new threads are en-
countered. Since the Chrome sandbox prevents file creation, we
currently run VV8 with the sandbox disabled as an expedience. In
production, we run VV8 inside isolated Linux containers, mitigating
the loss of the sandbox somewhat. Future development will include
sandbox integration should the need arise.

Past work [39, 40] on fingerprinting JS engines indicates that
sophisticated adversaries could use relative scores across micro-
benchmarks as a side-channel to identify VV8. However, such bench-
marks and evasions would be detectable in VV8’s trace logs, and JS
timing side-channel attacks can be disrupted [17, 47]. In any case,
it is unlikely that an adversary sophisticated enough to fingerprint
VV8 in the wild would not also be able to fingerprint in-band instru-
mentation, which also shows measurable deviation from baseline
performance.

Furthermore, we expect to improve VV8 performance in future
iterations by exploring asynchronous log flushing, log-filtering tests
placed in the injected bytecode (where they can be JIT optimized),
and cheaper forms of context tracking.

3.5 Collection System

To collect data atlarge scale using VV8, we built the automated crawl-
ing and post-processing system diagrammed in Figure 4. Worker
nodes (for collection, post-processing, and work queues) are de-
ployed across a Kubernetes cluster backed by 80 physical CPU cores
and 512GiB of RAM distributed across 4 physical servers. Initial
jobs (i.e., URLSs to visit) are placed in a Redis-based work queue to
be consumed by collection worker nodes. Post-processing jobs (i.e.,
archived logs to parse and aggregate) are placed in another work
queue to be consumed by post-processing worker nodes. Collection
metadata and trace logs are archived to a MongoDB document store.
Aggregate feature usage data is stored in a PostgreSQL RDBMS for
analytic queries.

The collection worker node Docker image contains the VV8 bi-
nary itself and a pair of accompanying programs written in Python 3:
Carburetor and Manifold. Carburetor is responsible for fueling VV8:

3The full results can be viewed at http://dromaeo.com/?1d=276022,276023,276026,
276027; the four columns are Chrome (plain), Chrome (w/in-band), VisibleV8 (light),
and VisibleV8 (full), respectively.

http://dromaeo.com/?id=276022,276023,276026,276027
http://dromaeo.com/?id=276022,276023,276026,276027

VisibleV8: In-browser Monitoring
of JavaScript in the Wild

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

Collection Worker Nodes

@

Carburetor

= - Chrome
s) | DevTools
URL | = Remote

Control API

Uncompressed Manifold
Trace Log Files

N o
VisibleVs % — |

Collection Custom Chromium Build
Work Queue

Post-Processing Worker Nodes

Compressed
Log Data

Aggregates ﬁ -
— . - Logs
b i <:| ﬁ L O PR MongoDB
[Archives
Log Parser/Aggregator Dispatcher H
PostgreSQL [! A Post-Processing H
Analysis H Work Queue H
Database H H
E Compressed E
H Log Data H

Figure 4: The complete data collection and post-processing system

using the Chrome DevTools API to open a tab, navigate to a URL,
and monitor progress of the job. Manifold handles the byproducts
of execution, compressing and archiving the trace log files emitted
during automated browsing.

The post-processor worker node Docker image contains a work
queue dispatcher and the main post-processor engine. The dispatcher
interfaces with our existing work queue infrastructure and is writ-
ten in Python 3. The post-processor engine is written in Go, which
provides ease-of-use comparable to Python but significantly higher
performance.

4 DATA COLLECTION
4.1 Methodology

Overview. We collected native feature usage traces and related data
by automating VV8 via the Chrome DevTools interface to visit the
Alexa top 50k web domains. We began each visit to DOMAIN using
the simple URL template http://DOMAIN/. We visited each domain
in our target list 5 times (see below); each planned visit constituted
a job. We recorded headers and bodies of all HTTP requests and
responses along with the VV8 trace logs. Trace log files were com-
pressed and archived immediately during jobs, then queued for post-
processing. Post-processing associated logs with the originating
job/domain and produced our analytic data set.

User Input Simulation. Simply visiting a page may result in
much JS activity, but there is no guarantee that this activity is
representative. The classic challenge of dynamic analysis—input

generation—rears its head. We borrowed a solution to this prob-
lem from Snyder et al. [49]: random “monkey testing” of the UI
using the open source gremlins. js library [5]. To preserve some
degree of reproducibility, we used a deterministic, per-job seed for
gremlins. js’s random number generator.

Once a page’s DOM was interaction-ready, we unleashed our
gremlins. js interaction for 30 seconds. We blocked all main-frame
navigations if they led to different domains (e.g., from example.com
to bogus.com). When allowing intra-domain navigation (e.g., from
example.com to www.example.com), we stopped counting time until
we loaded the new destination and resume the monkey testing. We
immediately closed any dialog boxes (e.g., alert()) opened during the
monkey testing to keep JS execution from blocking. This 30 second
mock-interaction procedure was performed 5 times, independently,
per visited domain. (Snyder et al. [49] arrived at these parameters
experimentally.)

4.2 DataPost-Processing

We parsed the trace logs to reconstruct the execution context of
each recorded event and to aggregate results by that context. The
resulting output included all the distinct scripts encountered and
aggregate feature usage tuples.

Script Harvesting. VisibleV8 records the full JS source of every
script it encounters in its trace log (exactly once per log). We ex-
tracted and archived all such scripts, identifying them by script hash
and lexical hash. Script hashes are simply the SHA256 hash of the

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

full script source (encoded as UTF-8); they served as the script’s
unique ID. Lexical hashes were computed by tokenizing the script
and SHA256-hashing the sequence of JS token type names that result.
These are useful because many sites generate “unique” JS scripts
that differ only by timestamps embedded in comments or unique
identifiers in string literals. Such variants produced identical lexical
hashes, letting us group variant families.

Feature Usage Tuples. We recorded a feature usage tuple for
each distinct combination of log file, visit domain, security origin,
active script, access site, access mode, and feature name. The log file
component let us distinguish collection runs. The visit domain is the
Alexa domain originally queued for processing. The security origin
was the value of window.origin in the active execution context,
which may be completely different from the visit domain in the con-
text of an <iframe>. The active script is identified by script hash. The
access site is the character offset within the script that triggered this
usage event. The access mode is how the feature was used (get, set,
or call). The feature name is a name synthesized from the name of
the receiver object’s constructor function (effectively its type name)
and the name of the accessed member of that object (i.e., the property
or method name).

4.3 Results

Success and Failure Rates. Our methodology called for 5 visits
to the Alexa 50k, so the whole experiment consisted of 250,000
distinct jobs. Successful jobs visited the constructed URL, launched
gremlins. js,andrecorded atleast 30 seconds of pseudo-interaction
time. Jobs resulting in immediate redirects (by HTTP or JS) to a differ-
ent domain before any interaction began were deemed “dead ends”.
From job status we extract the per-domain coverage listed in Table
2. For “active” domains, all 5 jobs succeed and we observed native JS
API usage. For “silent”: all 5 jobs succeed, but we observed no native
JS APLusage. For “facade”: all 5 jobs were “dead ends” (i.e., the domain
is an alias). All of the above are considered “successful” domains.
Some domains were “broken,” with all 5 jobs failing; a tiny number
were “inconsistent,” with a mix of failed/succeeded jobs. This failure
rate is not out of line with prior results crawling web sites. Snyder
et al. [49] reported a lower per-domain failure rate (2.7%), but this
was over the Alexa top 10,000 only. On the other extreme, a recent
measurement study by Merzdovnik et al. [36] reported successful
visits to only about 100k out of the top Alexa 200k web domains.
Aggregate Feature Usage. Over the entire Alexa 50k, we ob-
served 53% of Chrome-IDL-defined standard JS API features used
at least once. Note that our observations comprise a lower bound on
usage, since we did not crawl applications requiring authentication
(e.g., Google Documents), which we intuitively anticipate may use a
wider range of APIs than generic, public-facing content. Most mod-
ern sites use JS heavily, but no site uses all available features. The

*5 3 Active 42,845 85.69%
% | § Silent 1,702 3.40% 92.11%
g & Facade 1,508 3.02% 98.54%
O Broken 3,214 6.43%
Inconsistent 731 1.46%
TOTAL 50,000 100.00%

Table 2: Final domain status after collection

Jordan Jueckstock and Alexandros Kapravelos

Cumulative Observed Feature Usage

100%
—— Cumulative Feature Usage
90% A —==- 53% (Over top 50k)

80% -
70% A
60% -
50%

40%

30%

WebIDL Features Observed

20%

10% A

0%

10000 20000 30000 40000
Alexa Domain Rank

Figure 5: Cumulative feature use over the Alexa 50k

plot in Figure 5 thus climbs steeply before leveling out into a gentle
upward slope. The small but distinctive “cliffs” observed at rocket-
league.com (Alexa 16,495) and noa.al (Alexa 22,184) are caused by
large clumps of SVG-related features being used for the first time.

5 BOT DETECTION ARTIFACTS

Modern websites adapt their behavior based on the capabilities of the
browser that is visiting them. The identification of a specific browser
implementation is called user-agent fingerprinting and it is often used
for compatibility purposes. To provide a case study of VV8’s unique
abilities, we use it to automatically discover artifacts employed by a
form of user-agent fingerprinting used by some websites in the wild
to detect automated browser platforms.

The technique we study exploits the presence of distinctive, non-
standard features on API objects like Window (which doubles as the
JS global object) and Navigator as provided by automated browsers
and browser simulacra. (Since even modern search engine indexers
need some degree of JS support[1], we do not consider mechanisms
used to identify “dumb,” non-JS-executing crawlers like wget.) Here
VV8&’s ability to trace native property accesses without a priori knowl-
edge of the properties to instrument sets it apart from in-band in-
strumentation, which cannot wrap a proxy around the global object
or the unforgeable window. document property. Note that “native
API property access” here means a property access on an object that
crosses the JS/native API boundary, regardless of whether or not
that specific property is standardized or even implemented.

Bot detection is a special case of user-agent fingerprinting, where
“bots” are automated web clients not under the direct control of
a human user (e.g., headless browsers used as JS-supporting web
crawlers). Bots may be a nuisance or even a threat to websites [25],
and they may cause financial loss to advertisers via accidental (or
intentional) impression and/or click fraud. If the visitor’s user-agent
fingerprint matches a known bot, a site can choose to “defend” itself
against undesired bot access by taking evasive action (e.g., redi-
recting to an error page) [24]. Non-standard features distinctive
to known bot platforms, then, constitute bot artifacts. We exploit

VisibleV8: In-browser Monitoring
of JavaScript in the Wild

Artifact Name Bot Platform Indicated

Window._phantom
Window.webdriver
Window.domAutomation

Phantom]S [10]
Selenium [11] WebDriver
ChromeDriver (WebDriver for Chrome)

Table 3: Bot detection seed artifacts

VV8’s comprehensive API-property-access tracing to systematically
discover novel artifacts.

5.1 Artifact Discovery Methodology

We discover previously unknown bot artifacts by clustering the ac-
cess sites (i.e., script offsets of feature accesses) for candidate features
near those of known “seed” artifacts. The key insight underlying our
approach is code locality: in our experience, artifact tests tend to be
clustered near each other in user-agent fingerprinting code encoun-
tered across the web. We exploit this locality effect to automate the
process of eliminating noise and identifying a small set of candidates
for manual analysis.

Candidate Feature Pool. Before searching for artifacts, we prune
our search space to eliminate impossible candidates. We eliminate
features defined in the Chrome IDL files, since these are standard-
derived features unlikely to be distinctive to a bot platform. We also
eliminate features seen set or called: these are likely distinctive to
JS libraries, not the browser environment itself. This second round
of pruning is especially important because JS notoriously conflates
its global namespace with its “global object.” Thus, in web browsers,
global JS variables are accessible as properties of the window object
along with all the official members of the Window interface. Retain-
ing only features we never see set or called eliminates significant
noise (e.g., references to the Window.jQuery feature) from our pool
of candidate features: from 7,928,522 distinct names to 1,907,499.

Seed Artifact Selection. We further narrow our candidate pool
using access site locality clustering around “seed” artifacts (Table 3).
These features are among the most commonly listed in anecdotal bot
detection checklists found in developer hubs like Stack Exchange [2],
reflecting the popularity of Selenium’s browser automation suite
and the lighter-weight Phantom]S headless browser.

Candidate Artifact Discovery. With a pruned candidate fea-
ture pool and a set of seed artifacts in hand, we can automatically
discover candidate artifacts by following these steps: (1) find all dis-
tinct access sites for seed artifacts in all archived scripts, (2) find all
candidate feature access sites no more than 1,024 characters away
from one of the located seed access sites and (3) extract the set of all
candidate features whose access sites matched the seed locality re-
quirement. From our initial set of 3 seed artifacts, the above process
yields a set of 209 candidate artifacts (0.01% of the candidate pool)
found near seed access sites in 7,528 distinct scripts (of which only
1,813 scripts were lexically-distinct).

Modern Browser Artifacts. We next eliminated from our candi-
dates any artifacts found in a current, major web browser. We tested
a total of nine browser variants manually: two for Chrome (v70 on
Linux, v69 on macOS), three for Firefox (v63 on Linux, v62 on macOS,
v63 on macOS), one for Safari (v12.0 on macOS), one for Edge (v17
on Windows 10), and two for Internet Explorer (v8 on Windows 7,

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

Count Category

3 Seed Bot Artifact
46 New Bot Artifact
10 Possible Bot Indicator
19 Device/Browser Fingerprint
46 Property Pollution/Iteration
11 Type Error/Misspelling

Missing Dependency
5 Other

Table 4: Candidate artifacts classified

v11 on Windows 10). In total we found 61 of the candidates present
on at least one tested browser, leaving 148 candidates that might be
indicative of a distinctive bot platform. The only 2 present on all 9
browsers were in fact standard JS (but not WebIDL-defined) features
in the global object: Object and Function.

Manual Classification. The remaining 148 candidate artifacts
we classified manually. Intuitively, if for every one of a candidate
artifact’s access sites there exists a data flow from that site to ap-
parent data exfiltration or evasion logic, we consider that candidate
a true artifact. If there exist benign or inconclusive examples, we
conservatively assume the candidate is not a true artifact. (We also
attempt to categorize false positives, but that process often depends
on subjective judgment of programmer intent.)

To assist this process, we classified artifact access sites into 3
categories: direct if the feature name appears in the source code at
the exact offset of the access site; indirect if the name appears only
elsewhere in the code; and hidden if the name does not appear at all.
A candidate found in a small number of distinct scripts and accessed
mostly via hidden, monomorphic access sites almost always proved
to be a bot detection artifact. Conversely, candidates found far and
wide and accessed mostly via direct or polymorphic sites usually
proved to not be true bot artifacts.

Table 4 shows the breakdown of manual classifications. We iden-
tified a total of 49 artifacts (including our seeds) used exclusively,
as far as we could tell, for bot detection. We identified 10 more that
we did see used for bot detection activity but not exclusively so.
(To avoid false positives, we exclude these “maybe” artifacts from
our aggregate results.) An additional 19 appeared to be known or
suspected fingerprinting artifacts of specific browsers or devices
(e.g., standard features with vendor prefixes like moz- and WebGL
information query constants).

Almost all of the remaining candidate artifacts appear to be side-
effects of JS language quirks and sloppy programming. An example,
extracted from a lightly obfuscated bot detection routine, explains
some of the 46 artifacts we attribute to property pollution in itera-
tion (Listing 5). This code iterates over an array of property names
to check (in this case, all true bot artifacts). However, JS arrays
intermingle indexed values with named properties, and this code
fails to exclude properties (e.g., findAll)inherited from the array’s
prototype. As a result, a single polymorphic access site within our
clustering radius would access both true bot artifacts and unrelated
array method names, bloating our initial candidate artifact pool with
spurious features that had to be weeded out manually.

[RN e N RN

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

Visit Domain Alexa Rank
youtube.com 2
yahoo.com 6
reddit.com 7
amazon.com 11
tmall.com 13
weibo.com 21
google.de 23
ebay.com 45
mail.ru 50
stackoverflow.com 55

Table 5: Highest ranked visit domains probing identified bot
artifacts

Fortunately, the small size of the candidate set combined with
the insights provided by access site classification made this task
straightforward and tractable. Other identifiable sources of noise in
the final candidate set include obvious type errors or misspellings
(11) and what appear to be missing dependencies (8).

5.2 Artifact Analysis Results

Across Visited Domains. Our trace logs recorded probes of at least
one definite bot artifact during visits to 14,575 (29%) of the Alexa top
50k. This number includes artifact accesses from both monomorphic
(sites accessing only one feature; 24%) and polymorphic access sites
(those accessing more than one feature name; 5%). If we consider
only monomorphic access sites, the number drops to 11,830 visited
sites, which is under 24% of the top 50k. The modest size of that drop
implies that most bot detection scripts, even if obfuscated, perform
artifact probes on a one-by-one basis rather than through changing,
loop-carried indirect member accesses. Table 5 shows the top 10
visited domains (by Alexa ranking at the time of data collection) on
which bot artifact probes were detected.

Across Security Origin Domains. When we consider security
origin domains as well as visit domains, we find that the majority
(over 73%) of bot artifact accesses happen inside third-party sourced
<iframe>s, as is typical of advertisements, third-party widgets, and
trackers. Here we are defining “first-party” as having a security
origin domain containing the visit domain as a suffix and “third-
party” as everything else. Using a stricter, exact-match definition
like the browser’s Same-Origin Policy would result in an even higher
third-to-first-party ratio.

/* originally
obfuscated via string opaque concatenation */
var d
= ["_phantom","__nightmare"," _selenium","callPhantom
","callSelenium","_Selenium_IDE_Recorder"],
e = window;

for (var 1 in d) {
var v = d[1];
if (elvl]) return v

Listing 5: Noisy artifact probing

Jordan Jueckstock and Alexandros Kapravelos

Origin Domain Visit Domains
tpc.googlesyndication.com 10,291
googleads.g.doubleclick.net 3,980
ad.doubleclick.net 1,853
secure.ace.advertising.com 1,150
www.youtube.com 1,041
nym1-ib.adnxs.com 699
media.netseer.com 321
adserver.juicyads.com 175
openload.co 168
aax-us-east.amazon-adsystem.com 121

Table 6: Top security origin domains probing bot artifacts

Visit Security

Artifact Feature Name Domains Origins
HTMLDocument.$cdc_asdjflasutopfhveZLmecfl 11,409 887
Window.domAutomationController 11,032 2,317
Window.callPhantom 10,857 5,088
Window._phantom 10,696 5,052
Window.awesomium 10,650 203
HTMLDocument.$wdc_ 10,509 18
Window.domAutomation 7,013 2,674
Window. WEBDRIVER_ELEM_CACHE 6,123 1,803
Window.webdriver 2,756 1,832
Window.spawn 1,722 1,559
HTMLDocument.__webdriver_script_fn 1,526 1,390
Window.__phantomas 1,363 1,103
HTMLDocument.webdriver 1,244 529
Window.phantom 953 820
Window.__nightmare 909 628

Table 7: Most-probed bot artifacts

We found bot artifact probes in the contexts of 6,257 distinct
security origin domains. Table 6 lists the top 10 origin domains for
bot detection activity. Naturally, four of the top five are affiliated
with Google’s advertising platform. Scripts running in the context
of the top domain, tpc.googlesyndication.com, probed no less
than 42 of our 49 confirmed artifacts (85%).

We believe most of these instances to be benign in intent. Ad-
vertisers have legitimate incentive to avoid paying for pointless ad
impressions by blocking bots. But large-scale (i.e., automated) web
measurement accuracy may become collateral damage in this arms
race. The future is not bright for naive, off-the-shelf web crawling
infrastructure.

Popular Artifacts. In Table 7 we list our 15 most popular (by visit
domain cardinality) bot detection artifacts. Unsurprisingly, given
our seed artifacts, most results appear associated with variants of
Selenium and Phantom]S. But our locality search pattern also dis-
covered artifacts of additional automation platforms: Awesomium,
Nightmare]JS, and Rhino/HTMLUnit. The full list of discovered arti-
facts includes a superset of all the Selenium and Phantom]S artifacts
tested for in the latest available version [54] of Fp-Scanner [55].

—_

0N NG AW N R

O O TV WN =

VisibleV8: In-browser Monitoring
of JavaScript in the Wild

detectExecEnv:
var e = "";
return
(window. _phantom
|| /* more PhantomJS probes */)
&& (e += "phantomjs"),
window.Buffer && (e += "nodejs"),
window.emit && (e += "couchjs"),
window.spawn && (e += "rhino"),
window.webdriver && (e += "selenium"),
(window.domAutomation
|| window.domAutomationController)
&& (e +=
"chromium-based-automation-driver"), e

function() {

Listing 6: Artifact attribution in the wild

Most of the artifact names are highly suggestive and/or self-
explanatory, with the single most common association being Se-
lenium, but a few require explanation. The $cdc_. . . artifact is an
indicator of ChromeDriver, as $wdc_ is of WebDriver; notably, these
are among the relative minority of artifacts found on non-global
objects like window.document. spawn is an artifact of the Rhino
JS engine, which is itself an indicator of the HTMLUnit headless
browser system.

5.3 Case Studies

Explicit Bot Identification. Listing 6 shows part of a script loaded
from http://security.iqiyi.com/static/cook/v1/cooksdk.js which we
observed on visits to iqiyi.com, qiyi.com, zol.com, and pps. tv.
The script, which appeared to be the result of automatically bundling
many related library modules together, was minified but not obfus-
cated. It provides a rare example in which the attribution logic is
fairly obvious: the presence of specific artifacts directly triggers what
appears to be bot labeling via string concatenation. Note that this
example uses Window.Buffer, one of our “possible” bot artifacts,
which implies execution in the Node.js environment. Code locality
strikes again: the code immediately adjacent to this excerpt includes
functions that collect attributes of a containing <iframe>and and
detect the activation of “private browsing.”

Evasive Action. Listing 7 includes the core of an aggressively
obfuscated script loaded exactly once, from http://www.school .kotar.
co.il/. 73 other scripts in our collection share the same lexical hash.
These were loaded on visits to 10 different Alexa domains, including
https://www.payoneer.com/ and several . i1 domains. This script
provides a clear example of artifact-based bot deflection. The ob-
fuscation is distinctive, layering typical string garbling techniques
behind a tangle of trivial functions performing simple operations

/* Original obfuscated code excerpt =*/
_ = window;
if (u82222.w(u82222.0(/* ... */))) {3}
else location[u82222.f(u82222.r(11)+/x ...
/* Deobfuscated version x/
if (_["phantom"] || /* more PhantomJS probes =*/
|l _["Buffer"] || _["emit"] || _["spawn"]
|l _["webdriver"] || _["domAutomation"]
|| _["domAutomationController"]) {3}
else location["reload"]1(Q);

*/10);

Listing 7: Bot deflection in the wild

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

like addition, comparison, or nothing at all. The deobfuscated script
is trivial: if any of its artifact probes succeed, it does nothing; if they
all fail, it reloads the current frame/page (presumably, with new
content deemed too valuable for consumption by bots).

6 RELATED WORK

Security and Sandboxing. JStill [56] used static code signatures to
detect known classes of JS obfuscation commonly employed by mal-
ware. Revolver [28] employed static lexical fingerprints and spatial
clustering to detect and track the evolution of JS malware samples
as their authors modified them to evade detection by the Wepawet
browser honeypot/sandbox. Saxena et al. used off-line symbolic ex-
ecution [46] to discover cross-site-scripting (XSS) vulnerabilities in
JS code from web applications. The Rozzle [29] malware detection
system employed a pragmatic form of symbolic execution to dra-
matically enhance the effectiveness of existing malware classifiers
based on both dynamic and static analysis. Hulk [27] employed JS
dynamic analysis techniques to elicit and detect malicious behavior
of extensions for the Chrome browser.

Taint analysis of]S has been used to identify cross-site-scripting
(XSS) vulnerabilities [31, 51] or leaks of private data to third par-
ties [19, 53]. Taint analysis typically depends on substantial patches
to a fixed (and soon obsolete) version of a browser; an exception [20]
uses JS source rewriting to achieve inline flow monitoring without
JS engine modifications, but the overhead is prohibitive.

Ambitious forensic browsing record and replay systems built via
browser modification include WebCapsule [41] and JSgraph [33]. JS-
graph in particular provides sophisticated causality tracking across
related HTTP, DOM, and JS events (although it does not provide the
breadth of APIlogging VV8 does). These systems provide impres-
sive capabilities, but they quickly become obsolete as the upstream
browser code bases rapidly evolve and the patches are left unmain-
tained (if made available at all).

Published JS sandboxing systems include both in-band systems
like JSand [14] and Phung et al. [43] and out-of-band systems like
ConScript [37]. Attempts [18, 52] to fully sandbox JS execution inside
aJS engine implemented in JS, while technically sound, inevitably
exhibit unacceptable performance.

Measurements. Richards’ ironically titled survey [44] of real-
world usage of JS’s infamous eval feature provides an exhaustive
catalog of uses and abuses and prompted at least one direct follow-up
mitigation effort [26]. Nikiforakis’s measurement [42] of remote JS
script inclusions on top web sites, while not technically an analysis
of JS code per se, clearly documented the distributed nature of JS web
applications and many practical trust and security issues raised by
that structure. Mayer and Mitchell produced the influential Fourth-
Party web measurement framework and demonstrated the value
of comprehensive web measurements while measuring third-party
web tracking [35].

Acar et al. used in-browser instrumentation of select features to
detect and measure browser fingerprinting with FPDetective [13].
Englehardt and Narayanan’s survey of online trackers [22] served as
a showcase for the mature and popular [21, 38] OpenWPM web pri-
vacy measurement platform built around Firefox. Like FourthParty
before it, OpenWPM favors the flexibility of JS-based instrumenta-
tion over the in-browser approach taken by VV8. For the specific

http://security.iqiyi.com/static/cook/v1/cooksdk.js
http://www.school.kotar.co.il/
http://www.school.kotar.co.il/
https://www.payoneer.com/

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

measurement goals of this paper, our in-browser approach provided
coverage OpenWPM’s in-band instrumentation could not match
(Section 2). Merzdovnik et al. [36] measured the effectiveness of
tracker blocking tools like Ghostery and AdBlock Plus while visiting
over 100,000 sites within the Alexa top 200,000 domains. Their focus
was on identifying sources of 3rd-party tracking and measuring the
success or failure of blockers; ours is on fine-grained feature usage
attribution and analysis on a script-by-script basis.

Lauinger et al. [30] surveyed 133,000 top sites and discovered
widespread use of outdated or vulnerable JS libraries using a browser
automation system like ours but without instrumenting or logging
API usage. Snyder’s measurement [49] of JS browser API usage on
top web sites found approximately 50% of the available features
completely unused of the Alexa top 10K at the time of measurement.
A follow-up work [50] explored the degree to which potentially dan-
gerous or undesirable JS browser API features could be disabled to
reduce the browser’s attack surface without disrupting the user’s
web browsing experience.

7 CONCLUSION

We have made the case for choosing out-of-band over in-band JS
instrumentation when measuring the web for security and privacy
concerns. We also presented VisibleV8, a custom variant of Chrome
for measuring native JS/browser features used on the web. VV8
is modern, stealthy, and fast enough for both interactive use and
web-scale automation. Our implementation is a small, highly main-
tainable patch easily ported to new browser versions. The resulting
instrumentation, hidden inside the JS engine itself, is transparent
to the visited pages, performs as well or better than in-band equiva-
lents, and provides fine-grained feature tracking by source script and
security origin. With VV8 we have observed JS code loaded directly
or by frames on 29% of the Alexa top 50k sites actively testing for
common automated browser frameworks. As many web measure-
ments rely on such tools, this result marks a concerning development
for security and privacy research on the web. VisibleV8 has proven
itself a transparent, efficient, and effective observation platform. We
hope its public release contributes to the development of more next-
generation web instrumentation and measurement tools for security
and privacy research.

8 AVAILABILITY

The VisibleV8 patches to Chromium, along with tools and docu-
mentation, are publicly available at:

https://kapravelos.com/projects/vv8

9 ACKNOWLEDGEMENTS

We would like to thank our shepherd Dave Levin and the anonymous
reviewers for their insightful comments and feedback. This work
was supported by the Office of Naval Research (ONR) under grant
N00014-17-1-2541, by DARPA under agreement number FA8750-19-
C-0003, and by the National Science Foundation (NSF) under grant
CNS-1703375.

REFERENCES

[1] 2014. Understanding web pages better. https://webmasters.googleblog.com/2014/
05/understanding-web-pages-better.html. (2014). Accessed: 2019-8-19.

[2]

—_
=

—_—r—
o)

(1]

[12]

(13]

(14

[15

[16]

=
=

[18

(19]

[20]

[21

[22

)
&

[24

[25

[26

[27

[29]

Jordan Jueckstock and Alexandros Kapravelos

2016. javascript - Can a website detect when you are using selenium with
chromedriver? https://stackoverflow.com/a/41220267. (2016). Accessed:
2018-11-15.

2017. Bug 1424176. https://bugzilla.mozilla.org/show_bug.cgi?id=1424176. (2017).
Accessed: 2018-11-15.

2017. Issue 793217. https://bugs.chromium.org/p/chromium/issues/detail?id=
793217.(2017). Accessed: 2018-11-15.

2018. marmelab/gremlins.js: Monkey testing library for web apps and Node.js.
https://github.com/marmelab/gremlins.js. (2018). Accessed: 2018-11-15.

2018. The State of the Octoverse: top programming languages of 2018. https://
github.blog/2018-11-15- state- of-the-octoverse-top- programming-languages/.
(2018). Accessed: 2019-5-8.

2018. WebIDL Level 1. https://www.w3.0rg/TR/WebIDL-1/. (2018). Accessed:
2018-11-15.

2019. BrowserBench.org. https://browserbench.org/. (2019). Accessed: 2019-1-25.
2019. Dromaeo. http://dromaeo.com/?recommended. (2019). Accessed: 2019-1-25.
2019. Phantom]S - Scriptable Headless Browser. http://phantomjs.org/. (2019).
Accessed: 2019-2-1.

2019. Selenium - Web Browser Automation. https://docs.seleniumhgq.org/. (2019).
Accessed: 2019-2-1.

2019. The RedMonk Programming Language Rankings: January 2019.
https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/. (2019).
Accessed: 2019-5-8.

Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Giirses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: Dusting the Web for Fingerprinters.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: Complete Client-Side Sandboxing of Third-Party
JavaScript without Browser Modifications. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC). ACM.

James P Anderson. 1972. Computer Security Technology Planning Study. Volume
2. Technical Report. Anderson (James P) and Co Fort Washington PA.

Marc Andreessen. 2011. Why Software is Eating the World. https:
/Iwww.wsj.com/articles/SB10001424053111903480904576512250915629460.
(2011). Accessed: 2018-04-20.

Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. 2017. Deterministic
Browser. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS).

Yinzhi Cao, Zhichun Li, Vaibhav Rastogi, Yan Chen, and Xitao Wen. 2012.
Virtual Browser: A Virtualized Browser to Sandbox Third-party JavaScripts with
Enhanced Security. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (ASIACCS °12). ACM.

Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In Proceedings of the ACM Conference on Com-
puterand Communications Security (CCS). https://doi.org/10.1145/3243734.3243823
Andrey Chudnov and David A Naumann. 2015. Inlined information flow
monitoring for javascript. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS). ACM.

Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The
Web’s Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS). https://doi.org/10.1145/3243734.3243860

Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS). ACM. https://doi.org/10.1145/2976749.2978313
Ulfar Erlingsson. 2003. The Inlined Reference Monitor Approach to Security Policy
Enforcement. Technical Report. Cornell University.

Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu,
Jean-Michel Picod, and Elie Bursztein. 2016. Cloak of Visibility: Detecting When
Machines Browse A Different Web. In Proceedings of the IEEE Symposium on
Security and Privacy.

Gregoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2012.
PUBCRAWL: Protecting Users and Businesses from CRAWLers. In Proceedings
of the USENIX Security Symposium.

Simon Holm Jensen, Peter A. Jonsson, and Anders Moller. 2012. Remedying the
Eval That Men Do. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA 2012). ACM. https://doi.org/10.1145/2338965.2336758
Alexandros Kapravelos, Chris Grier, Neha Chachra, Chris Kruegel, Giovanni
Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in Browser
Extensions. In Proceedings of the USENIX Security Symposium. USENIX.
Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Chris Kruegel, and
Giovanni Vigna. 2013. Revolver: An Automated Approach to the Detection of
Evasive Web-based Malware. In Proceedings of the USENLX Security Symposium.
Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. 2012.
Rozzle: De-Cloaking Internet Malware. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE.

https://kapravelos.com/projects/vv8
https://webmasters.googleblog.com/2014/05/understanding-web-pages-better.html
https://webmasters.googleblog.com/2014/05/understanding-web-pages-better.html
https://stackoverflow.com/a/41220267
https://bugzilla.mozilla.org/show_bug.cgi?id=1424176
https://bugs.chromium.org/p/chromium/issues/detail?id=793217
https://bugs.chromium.org/p/chromium/issues/detail?id=793217
https://github.com/marmelab/gremlins.js
https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://www.w3.org/TR/WebIDL-1/
https://browserbench.org/
http://dromaeo.com/?recommended
http://phantomjs.org/
https://docs.seleniumhq.org/
https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2338965.2336758

VisibleV8: In-browser Monitoring
of JavaScript in the Wild

[30]

[31

[32

[33]

[34]

[35]

[36]

[37]

[38

[39]

[40

[41]

[42]

[43]

[44]

[45

[46]

[47

[48]

[49

o
A

[51]

[52]

[53]

Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS).

Sebastian Lekies, Krzysztof Kotowicz, Samuel Grof3, Eduardo A. Vela Nava, and
Martin Johns. 2017. Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting
Mitigations via Script Gadgets. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS). https://doi.org/10.1145/3133956.3134091
Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows
Later: Large-scale Detection of DOM-based XSS. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS). ACM.
https://doi.org/10.1145/2508859.2516703

Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci. 2018. JSgraph:
Enabling Reconstruction of Web Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions. In NDSS.

Z.1i,S. Alrwais, X. Wang, and E. Alowaisheq. 2014. Hunting the Red Fox Online:
Understanding and Detection of Mass Redirect-Script Injections. In Proceedings
of the IEEE Symposium on Security and Privacy.

J. R. Mayer and J. C. Mitchell. 2012. Third-Party Web Tracking: Policy and
Technology. In Proceedings of the IEEE Symposium on Security and Privacy.
Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block Me If You Can:
A Large-Scale Study of Tracker-Blocking Tools. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE.

Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for JavaScript in the browser. In
Proceedings of the IEEE Symposium on Security and Privacy.

Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. 2017. Dial One for
Scam: A Large-Scale Analysis of Technical Support Scams. In Proceedings of the
Symposium on Network and Distributed System Security (NDSS).

Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting information in JavaScript implementations. In Proceedings of W2SP.
Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, and Edgar Weippl. 2013. Fast and Reliable Browser Identification
with JavaScript Engine Fingerprinting. In Proceedings of W2SP.

Christopher Neasbitt, Bo Li, Roberto Perdisci, Long Lu, Kapil Singh, and Kang
Li. 2015. WebCapsule: Towards a Lightweight Forensic Engine for Web Browsers.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS). ACM. https://doi.org/10.1145/2810103.2813656

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
ou Are What You Include: Large-scale Evaluation of Remote JavaScript Inclusions.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

Phu H. Phung, David Sands, and Andrey Chudnov. 2009. Lightweight Self-
protecting JavaScript. In Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security (ASIACCS °09). ACM.
https://doi.org/10.1145/1533057.1533067

Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The eval
that men do. ECOOP 2011-Object-Oriented Programming (2011).

Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
Defending Against Third-Party Tracking on the Web. In Proceedings of the USENIX
Symposium on Networked Systems Design & Implementation.

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A Symbolic Execution Framework for JavaScript. In
Proceedings of the IEEE Symposium on Security and Privacy. IEEE.

Michael Schwarz, Moritz Lipp, and Daniel Gruss. 2018. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. In Proceedings of the Symposium on
Network and Distributed System Security (NDSS).

K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. 2010. On the Incoherencies in
Web Browser Access Control Policies. In Proceedings of the IEEE Symposium on
Security and Privacy.

Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser
Feature Usage on the Modern Web. In Proceedings of the 2016 ACM on Internet
Measurement Conference. ACM.

Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most Websites Don’t Need
to Vibrate: A Cost-Benefit Approach to Improving Browser Security. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS).

Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Martin Johns.
2015. From Facepalm to Brain Bender: Exploring Client-Side Cross-Site Scripting.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS). ACM. https://doi.org/10.1145/2810103.2813625

Jeff Terrace, Stephen R Beard, and Naga Praveen Kumar Katta. 2012. JavaScript
in JavaScript (js.js): Sandboxing Third-Party Scripts. In Proceedings of the 3rd
USENIX Conference on Web Application Development. USENIX.

Minh Tran, Xinshu Dong, Zhenkai Liang, and Xuxian Jiang. 2012. Tracking
the trackers: Fast and scalable dynamic analysis of web content for privacy
violations. In International Conference on Applied Cryptography and Network

[54

]

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

Security. Springer.
Antoine Vastel. 2019. Fingerprint-Scanner. https://github.com/antoinevastel/
fpscanner/. (2019). Accessed: 2019-2-1.

[55] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.

Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies.
In Proceedings of the USENIX Security Symposium.

[56] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2013. JStill: Mostly Static Detection of

Obfuscated Malicious JavaScript Code. In Proceedings of the third ACM conference
on Data and application security and privacy. ACM.

https://doi.org/10.1145/3133956.3134091
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2810103.2813656
https://doi.org/10.1145/1533057.1533067
https://doi.org/10.1145/2810103.2813625
https://github.com/antoinevastel/fpscanner/
https://github.com/antoinevastel/fpscanner/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Trends and Trade-offs
	2.2 Fundamental Criteria
	2.3 The Case Against In-Band JS Instrumentation
	2.4 Summary

	3 System Architecture
	3.1 Chromium/V8 Internals
	3.2 VisibleV8 Implementation
	3.3 Performance
	3.4 Maintenance & Limitations
	3.5 Collection System

	4 Data Collection
	4.1 Methodology
	4.2 Data Post-Processing
	4.3 Results

	5 Bot Detection Artifacts
	5.1 Artifact Discovery Methodology
	5.2 Artifact Analysis Results
	5.3 Case Studies

	6 Related Work
	7 Conclusion
	8 Availability
	9 Acknowledgements
	References

