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Abstract

Continuous integration and deployment (CI/CD) has revolu-
tionized software development and maintenance. Commercial
CI/CD platforms provide services for specifying and running
CI/CD actions. However, they present a security risk in
their own right, given their privileged access to secrets,
infrastructure, and ability to fetch and execute arbitrary code.

In this paper, we study the security of the newly popular
GitHub CI platform. We first identify four fundamental security
properties that must hold for any CI/CD system: Admittance
Control, Execution Control, Code Control, and Access to Se-
crets. We then examine if GitHub CI enforces these properties
in comparison with the other five popular CI/CD platforms. We
perform a comprehensive analysis of 447,238 workflows span-
ning 213,854 GitHub repositories. We made several disturbing
observations. Our analysis shows that 99.8% of workflows
are overprivileged and have read-write access (instead of read-
only) to the repository. In addition, 23.7% of workflows are
triggerable by a pull_request and use code from the underly-
ing repository. An attacker can exploit these workflows and
execute arbitrary code as part of the workflow. Due to the mod-
ular nature of workflows, we find that 99.7% of repositories in
our dataset execute some externally developed plugin, called
"Actions"1, for various purposes. We found that 97% of reposi-
tories execute at least one Action that does not originate with a
verified creator, and 18% of repositories in our dataset execute
at least one Action with missing security updates. These repre-
sent potential attack vectors that can be used to compromise
the execution of workflows, consequently leading to supply
chain attacks. This work highlights the systemic risks inherent
in CI/CD platforms like GitHub CI; we also present our own
Github action, GWChecker, which functions as an early warn-
ing system for bad practices that violate the identified security
properties.

1In the rest of the paper, we use "plugins" to refer to Actions in GitHub CI

1 Introduction

Continuous Integration and Delivery [41], commonly referred
to as CI/CD, are software development practices that involve
automating integration, testing, and delivery of software in
a consistent, regular and automated manner. CI/CD pipelines,
in addition to increasing efficiency, also reduce costs for
the organization [40]. Consequently, the adoption of CI/CD
pipelines is increasing rapidly [7, 38]. There exist several
CI/CD services (TravisCI [19], CircleCI [4], Gitlab CI [17],
and more) that enable developers to set up their CI/CD pipeline
quickly. Developers need to provide specific configuration
parameters about how the software is built and tested. Further-
more, developers use these CI/CD services to automatically
deploy the software to corresponding code repositories such
as Python Package Index (PIP) [15] or Debian repository [6].

The ease of CI/CD adoption, thanks to third-party services,
has its trade-offs. Now developers need to trust third-party
CI/CD services to secure the code, artifacts, and secrets from
supply-chain attacks [59]. These attacks could have devastative
effects, as demonstrated by the recent SolarWinds [18] attack.
It is essential to ensure that CI/CD pipelines are correctly
configured and do not have any security vulnerabilities.
Unfortunately, developers are known to misconfigure their
CI/CD pipelines [61,62]. The CI/CD infrastructure itself could
have security vulnerabilities [51] jeopardizing the security of
all the repositories using the corresponding infrastructure.

In late 2018, GitHub introduced a new CI/CD infrastruc-
ture called GitHub CI2, which enables developers to create
CI/CD pipelines called GitHub Workflows3, which enables
developers to define their pipelines by specifying a sequence of
steps in a YAML file. The workflows are tightly integrated with
the GitHub ecosystem and their execution can be controlled
through various events such as pull or push. The workflows
can also use Actions, which are modules written by other users

2GitHub’s CI/CD product is called GitHub Actions. However, to avoid any
confusion with actions (the external modules that can be used in workflows),
we use GitHub CI instead.

3In the rest of the paper we use "workflows" to refer to GitHub Workflows



and available as public repositories on GitHub. These Actions
are similar to libraries in software development and encompass
commonly used tasks such as building a cmake project (Sec-
tion 2.2). Furthermore, for each repository, GitHub provides
helpful free resources (compute and storage) [1] to run Work-
flows. In addition to the features mentioned above, there are
many other advantages of GitHub CI in comparison with
other CI/CD services [11]. Consequently, since its introduc-
tion, GitHub CI has gained tremendous popularity, and develop-
ers are rapidly moving their CI/CD pipelines to GitHub CI [45].

Even large, security-aware organizations such as NSA [50],
Bootstrap [60], Microsoft [48], and LLVM Project [46] have
also started using workflows for their CI/CD.

Given its popularity and adoption, it is crucial to ensure
that GitHub CI ecosystem is secure. The tight integration
between workflows and GitHub ecosystem, in addition to
enabling developers to streamline their CI/CD pipeline,
unfortunately, also introduces new attack vectors, especially
those related to supply chain attacks. For instance, an attacker
can create a pull request and make a misconfigured workflow
to perform a deployment based on the attacker’s code.
A more realistic example would be the recent backdoor
introducing commit [14] in PHP which might have triggered
a deployment workflow, thereby publishing the backdoored
interpreter to official repositories. We identified4 that you
can execute arbitrary code using that pull request trigger,
which was actively used to perform crypto-mining attacks.
Recently, GitHub fixed this issue [12]. Despite these growing
attacks, unfortunately, there is no work in understanding and
analyzing the security risks associated with GitHub CI.

In this paper, we perform the first thorough security analysis
of GitHub CI ecosystem and answer these research questions:

RQ1: What are the security properties (SPs) that need to
hold to have a secure CI/CD? (Section 3.1)

RQ2: How does GitHub CI compare to other public CI/CD
platforms according to SPs? (Sections 3.2 and 3.3)

RQ3: How does usage behavior of workflows affect GitHub
CI SPs? (Section 5)

In order to answer these questions, we started by understand-
ing the GitHub CI execution mechanisms and formulating
the required security properties and corresponding necessary
conditions. We further referred to the available documentation
and reverse-engineered the workflow execution environment.
Our analysis resulted in the identification of various attack
vectors and security flaws in GitHub workflow execution.
The details of the possible attack vectors are accompanied by
Proofs-of-Concept (PoC), demonstrating the feasibility and
impact of exploiting the attack vector.

Second, we perform a comprehensive evaluation of 447,238
GitHub Workflows spanning 213,854 repositories. We identi-
fied various exciting observations regarding workflows’ usages
and the developers’ common flaws in their workflow design.

4This was also simultaneously discovered by another researcher [13]

We observed that 96.7% of analyzed repositories depend on
third-party code i.e., third-party actions or docker containers,
where 38,315 of them depend on third-party actions with
at least one active security vulnerability. Furthermore, in
146,803 of workflows an attacker can execute arbitrary code
as part of the workflow by just raising a pull request. All our
findings have been reported and acknowledged by the GitHub
security team and repository owners of the workflows missing
a security property.

We conclude by suggesting various defense-in-depth
mechanisms to secure GitHub Workflows (Section 5).

This paper makes the following contributions:
• We identify the necessary security properties for CI/CD

platforms that must hold to protect infrastructure from
software supply chain attacks. (Section 3.1)

• Analysis of the five most popular CI/CD platforms against
the four identified security properties. (Section 3.3)

• In-depth analysis of security risks of GitHub CI. We build
an extended list of attack scenarios against repositories
that use untrustful or vulnerable third-party actions
hosted on Github (Section 3.3)

• Extensive analysis of public repositories that use GitHub
CI. We found that 18% of repositories in our dataset use
vulnerable third-party actions, and less than 2% of all
repositories follow the security guidelines provided by
Github regarding commit hash references (Section 5)

2 GitHub CI Overview

GitHub CI5 is a continuous integration (CI) and continuous
development (CD) framework built into GitHub that was intro-
duced in 2018. It can be enabled on a GitHub repository (private
or public) through Settings →Actions in the repository web-
page. GitHub CI enables developers to create Workflows. Each
workflow describes a set of tasks that needed to be performed as
part of its execution. Individual repositories may contain multi-
ple workflows configured to automate part of the development
process, e.g., greeting new collaborators, testing, or deploying.

2.1 Workflow Configuration Syntax
A GitHub Workflow is described in YAML format by creating
a file under the .github/workflows directory of the repository.
Below is an explanation of the workflow syntax used by the
sample workflow in Listing 1.
Execution Triggers: A workflow has one or more execution
triggers (on) that specify when or which events on the
repository should trigger the execution of the workflow. Our
example workflow (Listing 1) will be executed when either
a push or pull event occurs on the main branch and every day

5Github’s CI/CD product is called GitHub Actions. To avoid any confusion
with actions (the external modules of workflows), we use GitHub CI instead.
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Figure 1: GitHub workflow architecture. When workflow is
triggered by execution triggers, it will start the execution of one
or more jobs in separate VMs. Each job consists of steps that are
executed in the defined order. Steps can be a shell commands,
third-party actions, external programs, docker containers

at 5 am UTC as specified by the cron timestamp. Workflows
can also be triggered manually or through webhooks [9].
Jobs: Figure 1 shows the execution flow of a workflow,
which is a collection of one or more jobs (jobs) that run in
isolation on newly spawned virtual machines. Jobs can be
made explicitly dependent (needs) on other jobs, wherein
the dependent job(s) will be executed first before the current
job. The workflow in Listing 1 has two jobs: build and test.
The test job depends on build job, so the build job runs first.
Note that GitHub does not allow cyclic dependencies, and thus
any workflow having cyclic dependencies will not be executed.
Machine Configuration: Jobs need to specify the required
machine configuration (runs-on) on which the job can
be executed. In Listing 1, both jobs need to be run on
a ubuntu-latest machine. GitHub provides labels for
various well-maintained machine configurations [2], with the
latest software packages. The developers can also use the label
of a self-hosted machine with the custom configuration [3].
In this case, however, it is the responsibility of the repository
owners to maintain the self-hosted machines, including
installing the latest security patches to avoid security breaches.
Steps: Each job is a sequence of one or more steps (steps).
The steps of a job are executed sequentially in the order spec-
ified in the YAML file. For instance, in Listing 1, the build job
contains four steps and are executed in the order 1 , 2 , 3 ,
and, 4 . A step can be a sequence of run commands (e.g., 2 ,
and 5 ), where the provided commands (specified with tag
run ) will be executed using the default shell of the machine.
For instance, step 2 in Listing 1( i.e., sudo./build.sh) will
be executed as a shell command on ubuntu. Note that the de-
veloper needs to make sure that all the files (i.e., build.sh)
needed to execute the command are available in the system path.
In this case,build.sh is part of the repository, and it is checked
out using a GitHub action ( 1 ), we will explore this next.

name: MyWorkflow ← Workflow Name

on: ← Execution Triggers
# Workflow triggers on push
# and pull requests to the main branch
push:
branches: [ main ]

pull_request:
branches: [ main ]

# Also, workflow gets executed every day at 5 am UTC
schedule:
- cron: "0 5 * * *"

jobs: ← All Jobs in the Workflow

build: ← Job (Name: Build)

runs-on: ubuntu-latest ← Job's Machine configuration

steps: ← All Steps in the Job
# The following steps are executed sequentially

# Check out the current repository
# on default branch
- name: Checkout the repository 1
uses: actions/checkout@v2

# Execute the given command using shell
- name: Build Project 2
run: sudo ./build.sh

# Execute action defined in the current repository
- name: Local Action 3
uses: ../path/to/action@v2
with:
apikey: ${{secrets.API_KEY}} µ

# Perform static analysis of all source files
# in the repository using an action from
# its public GitHub URL.
- uses: microsoft/devskim-action@45bc8e9 4
with:
directory-to-scan: .
output-directory: scanneroutput

test: ← Job (Name: Test)

needs: build ← Dependent jobs
runs-on: ubuntu-latest

steps:
- name: Test Project 5
run: sudo ./test.sh

Listing 1: Example of the workflow configuration file. The
workflow contains two jobs (build, test), and uses two third-
party actions.

2.2 GitHub Actions

To support modularity and code reuse, GitHub CI workflow
can references externally defined modules, called actions, as
a step inside the job. Listing 1 shows examples of reference
to a GitHub Action (e.g., 1 , 3 and 4 ), with the field uses.
Actions encapsulate commonly used tasks such as building
a cmake project, deploying a Python package to PyPI repos-
itory, etc. For instance, the action actions/checkout@v2
( 1 ) in Listing 1 performs gitcheckout of the default branch
of the current repository into the current directory.

A developer can write custom actions in their workflow or
share the action with the GitHub community by making the

actions/checkout@v2


corresponding repository public. To publish an action to the
GitHub Marketplace, the developer only needs to set up 2FA
on their account. There is no reviewing process for the actions
published in the Marketplace. An action is created by creating
action.yml or action.yaml, a YAML file which defines the
inputs, outputs, and main entry point for the action. An action
encapsulates code that performs the specified task on the
given input and produces the desired output. For example,
the action microsoft/devskim-action performs static
analysis on all the source files in a given directory as shown
in Listing 1. An action can be written in any language or could
be a pre-built binary. However, GitHub provides additional
support for actions written in JavaScript or encapsulated using
Docker containers.

A step can use a local action (defined in the current reposi-
tory) or an external public action using the corresponding repos-
itory path. An action is specified as <path>@<reference>.
Here, <path> is a relative file path in case of local action or
URL relative to github.com in the case of external action.
<reference> is a commit reference, which can be a tag, a
branch name, or a commit hash. For instance, the steps 3

of Listing 1 use a local action with path ../path/to/action
relative to the location of the workflow file. Similarly, 2 use
an external action with path microsoft/devskim-action
(i.e., repository path github.com/microsoft/devskim-
action). Note, that in steps 1 and 3 the action is referenced
using a commit tag i.e., v2, whereas in step 4 , the action is
referenced using a commit hash (45bc8e9).
GitHub Secrets: An action can require an input that could be
a secret, such as an APIKEY or password for a PyPI repository.
To pass the sensitive information to individual steps without
revealing them in plain text, GitHub provides support
for Secrets [8, 16]. Repository owners can define secrets as
key-value pairs, where the key is the name for the secret and
should be unique for a repository and the value contains the
corresponding sensitive information. Workflows can use a
secret by using ${{secrets.<key>}}. During workflow
execution GitHub runner will replace ${{secrets.<key>}}
with the value of the <key> secret. In Listing 1, as indicated
by µ, API_KEY (a secret) is passed to the local action using
Github Secrets. It is expected that GitHub will only pass the
provided secret to the specified action.

3 GitHub CI Security Analysis

Figure 1 also has marked (with a devil icon) externally
controlled entities which are the points through which a
workflow execution could be affected by an external or ma-
licious user, who need not be the owner of the repository. For
instance, an attacker can trigger the execution of the workflow
in Listing 1 by creating a pull request. Similarly, if the action
microsoft/devskim-action has a vulnerability, then it can
be used to gain complete control of the workflow execution.
This is because, as mentioned before, each step runs with

admin privileges.
In this section, we (1) define generic security properties that

can be applied to any CI/CD pipeline, (2) compare differences
in features that are relevant to the security of pipeline between
GitHub CI and other CI/CD platforms (3) discuss how these
features affect the security properties of GitHub CI and other
CI/CD platforms.

3.1 Security Properties
A CI/CD infrastructure is primarily meant to perform continu-
ous integration tasks such as testing and/or deploying the tested
code. Consequently, CI/CD infrastructure should have at least
the following capabilities w.r.t to the underlying source code
repository i.e., ability to read the contents of the repository
and write to the deployments. These are, in fact, the only
capabilities that are needed for CI/CD infrastructure to be able
to achieve the "majority" of its goals. Because from a security
perspective, according to the principle of least privilege [54],
CI/CD infrastructure should not have write access to the
code repository i.e., it should not be able to perform any code
changes6. However, during the security analysis of GitHub CI
we observed that by default all workflows have write access
to the repository code (See Table 1) even though workflows is
triggered by less important events such as issue, comment etc,
which violates the principle of least privilege. In other words,
by default, any code running as part of the workflow in GitHub
CI has write access to the repository code.

Considering the least privilege principle we want to ensure
that only authorized users are able to perform the following
tasks in the context of CI/CD pipeline7:

• Admittance Control (AC): Only people with the right
permissions must be able to add, delete, or modify work-
flows to the repository. Otherwise, an attacker can
add a workflow to hijack the resources of the CI/CD
pipeline, delete/modify existing workflows to disrupt the
automation.

• Execution Control (EC): To configure events that trigger
the execution of workflows. Here, the intuition is that
a workflow could be performing writes or deployments.
The ability to change triggers for such deployment work-
flows could allow users to deploy from arbitrary and
untested commits resulting in unstable and potentially
buggy deployments.

• Code Control (CC): To control which code runs as part
of a workflow. For instance, code (binaries, scripts)
that runs in the CI/CD should not behave unpredictably
and be consistent from one run to another. After initial
configuration, the pipeline must be immutable and
perform the task with predictable results.

6May be with the exception of some files related to testing
7We define authorized users as the organization members, owners or

outside collaborators with write permission [27] to the repository

microsoft/devskim-action
github.com
microsoft/devskim-action
github.com/microsoft/devskim-action
github.com/microsoft/devskim-action
microsoft/devskim-action


• Access to Secrets (AS): To avoid misuse of secrets, it is
important to ensure that a secret can be accessed by only
those steps to which it is explicitly passed. We want to
ensure that these secrets are handled properly by using
when explicitly specified in a workflow.

We apply these security properties to other CI/CD platforms
as well, to compare them to GitHub CI in future sections.

3.2 GitHub CI vs Others: Features

The biggest difference of GitHub CI from other CI/CD
platforms is its wide permission of the pipeline (Table 1) and
plugin system that has higher privileges (Table 2).
Permissions. In GitHub CI, by default, all workflows have
write permissions to the entire repository as shown in Table 1.
Thus, any vulnerable or malicious code in a workflow can
directly affect the repository (including code). On the other
hand, Gitlab CI does not provide write permission to the
(internal) repository code for the pipeline by default. To be
able to write to the repository from a pipeline, developers must
configure the deployment keys for the repository, and pass the
key to the pipeline.

Permissions
CI/CD Platforms Code read Code write

TravisCI ○Ë èé

CircleCI ○Ë èé

Jenkins ○Ë ○é

Gitlab CI external ○Ë èé

Gitlab CI internal ○Ë +Ë

GitHub CI ○Ë ○é

Table 1: The table shows the default read-write permission
to the code by different CI/CD platforms. Open circle (+)
- means no. Filled circle (○) - means yes. Half circle (è) -
means lowest permission possible but are restricted by options
provided by external VCS. Note that Gitlab CI has two rows
for external projects and internal projects. The markingsé and
Ë on top of the circles indicate over-privileged and expected
privileges respectively.

Another interesting finding was that external CI/CD
platforms such as TravisCI, CircleCI, and Gitlab-CI follow the
principle of least privilege and request only the required per-
missions. For example for Bitbucket [57] and Gitlab [28] VCS
TravisCI [29] and CircleCI [26] request read-only permission
to the code. However, in the case of GitHub, external CI/CD
platforms can only request repo scoped token, which grants
full access to the private and public repositories of the user.
In other words, if someone is using external CI/CD platforms
with GitHub he/she is exposed to more security risk compared
to when CI/CD platform is used with other VCS providers.

Plugins
CI/CD Platforms First-party Third-party Mutable Review

TravisCI ○Ë èé +Ë +é

CircleCI ○Ë ○é +Ë +é

Jenkins +Ë ○é +Ë +é

Gitlab CI external ○Ë +Ë +Ë +é

Gitlab CI internal ○Ë +Ë +Ë +é

GitHub CI ○Ë ○é ○é +é

Table 2: Different CI/CD platforms plugin support. Here
mutable means referenced (installed) plugin can change
without changing its reference. Open circle (+) - means no.
Filled circle (○) - means yes. Half circle (è) - means the capa-
bility of plugins are limited by what is available by API. The
markings é and Ë on top of the circles indicate whether the
corresponding support is bad or good for security respectively.

Plugins. GitHub CI plugin system significantly differs from
other CI/CD platform’s plugin systems because of the ability
to include a plugin into the workflow by just referencing the
repository. CircleCI also provides the ability to reference
a plugin (called Orbs) using a repository. However, the
main difference between them is that plugins in CircleCI
are immutable after referencing, while GitHub CI plugin
references are highly mutable. We define a mutable plugin
as one that can change its behavior from one run to another.
Mutable plugins are a threat to the overall security of the
CI/CD pipeline since developers can not verify and pinpoint
the execution of the pipeline. Thus, making the results of the
CI/CD pipeline runs potentially unpredictable.
Referencing plugins. As described in Section 2, a workflow
can reference a plugin by using branch name, tag, or commit
hash. We consider tag and branch name to be dynamic
references because they can change over time i.e., developer
of the action repository can modify the tag to point to a
different commit. Thus, the action referenced by dynamic
references can potentially change the runtime behavior of the
corresponding workflow.

On the other hand, the commit hash is a static or immutable
reference as it does not change with time. Here, the action’s
code is fixed and remains the same over all the executions of
the workflow. However, during our security evaluation, we
found that under certain conditions, an adversary can change
the behavior of a commit hash referenced action (Section 5).

Even though GitHub CI advises everybody to use commit
hash to reference actions, we show in Section 5 that only a
handful of people follow the advice.

Despite the similarity of the concept of plugin for CircleCI,
and GitHub CI, CircleCI employs semantic versioning for
the plugin (called orbs) and makes sure that references to the
certain version (i.e., 1.2.3) of the plugin return exactly the
same code always, i.e., immutable. In CircleCI, developers
can publish volatile (mutable) plugins for easy development.



However, CircleCI automatically deletes the mutable reference
after 90 days. Other CI/CD platforms that support third-party
plugins are (1) limited to providing only functionality that can
be achieved with CI/CD platform API endpoint (TravisCI),
or (2) require server administrator privileges to modify the
plugins (Jenkins).

Gitlab CI only supports first-party plugins covering
almost all essential CI/CD pipeline functionality, including
deployment, testing, and maintenance. Their philosophy is
that developers must not trust third-party plugins for essential
functionalities. Gitlab CI does not provide the third-party
plugin system citing quality and security degradation [23].
Plugin Review. Unfortunately, as seen in Table 2, none of
the CI/CD platforms that support plugins have a review
mechanism in place to check the quality of the third-party
plugins. We believe having some level review process for the
plugins will significantly improve the quality and security of
the overall pipeline.

In summary, GitHub CI’s by default wide permission (write
to the code) combined with its plugin system warrants a
thorough analysis of the security properties of GitHub CI. In
addition to the mutability, third-party actions run with sudo
privileges in GitHub CI (as discussed in Section 2) making
the security analysis even more important.

3.3 GitHub CI vs Others: Security Properties
In this section, we analyze the necessary CI/CD security prop-
erties of GitHub CI in comparison with other platforms. Table 3
shows the summary of this comparison. We present a detailed
analysis of each security property in the following subsections.

3.3.1 Admittance Control

Here, we want to ensure that only authorized users should
be able to admit (add, delete, or modify) a workflow into the
repository.

Importance. Verifying who is introducing new work-
flows or modifying the existing ones is crucial in
securing pipelines. This is needed because, by admitting
new workflows into CI/CD pipeline malicious users
can exploit the pipeline to set up a botnet, perform
cryptomining or "eat up" resources of the organization.

In all of the tested CI/CD platforms, configuration files
reside together with the code in the VCS. Thus, only authorized
users can admit a new workflow into the pipeline through
access to the repository (C1).
Restriction on adding new workflows through CI/CD
runs (C2). However, since GitHub CI (and Jenkins) provides
write permission to the workflow by default, if the workflow
is compromised during the execution of the pipeline, e.g.,
through vulnerable and/or malicious third-party action, an
attacker can introduce a new workflow into the pipeline

using workflow’s wide permissions. We developed a proof-
of-concept action that introduces a new workflow to the
pipeline [20]. This is a classic example of the confused deputy
problem when unauthorized users elevate their privileges by
using an intermediate application with higher privilege.
Executing workflows from a PR after merging (C3). An-
other way of introducing a new workflow is through a pull
request (PR). We noticed that a pull request that adds a new
workflow could be executed as part of the repository before
the pull request is merged into the repository. Consequently,
users who can raise a pull request can run arbitrary work-
flows as part of the repository. To exploit this, an attacker first
forks the target repository into the attacker-controlled account.
Next, the attacker modifies the local repository by adding a
new workflow (say attackwf) with pull_request being one
of the execution triggers. The steps of attackwf execute ar-
bitrary code needed by the attacker. Finally, a pull request
will be raised from the local repository to the target reposi-
tory. This causes the attacker added workflow i.e., attackwf
to be executed as part of the target repository. This behavior is
available in GitHub CI, Gitlab CI, CircleCI, and Jenkins. Re-
cently, to prevent malicious usage of the feature from hijacking
the resources GitHub CI and Gitlab CI disables the execution
of newly created workflow if the request comes from a first-
time contributor. This was in response to crypto mining cam-
paigns [12] that were discovered by another researcher [13].
The summary of our analysis is shown in the first row of Table 3.

3.3.2 Execution Control

As mentioned in Section 2, we also want which events to
trigger a workflow execution to be controlled by authorized
(i.e., with write access) users.

Importance. This is required as the workflows can
be used for automated deployment, which should be
allowed only for users with write access.

Except for GitHub CI and Gitlab-CI, all other CI/CD
platforms do not store the trigger events in their configuration
files. This prevents modification of the configuration file
by contributors. Developers can change the triggers only by
using the dashboard of the corresponding platform (C4). Also,
except GitHub CI, all platforms have a limited number of
triggers, such as push and pull-request events. GitHub CI has
a plethora of events that can be used to trigger the workflow,
such as issue creation, comment, etc. We noticed that a
workflow executes with write permissions even if triggered
by a "low" important event such as a comment on an issue.
Restriction on modifying execution triggers through
CI/CD runs (C5). As explained in Section 2, triggers for
a workflow are specified in the corresponding YAML file using
on tag, which can only be modified by the users with write
access. However, similar to C2 (Section 3.3.1), as workflows



TravisCI CircleCI Jenkins Gitlab CI extrernal Gitlab CI internal Github CI

Admittance Control
(C1) Contributor can add workflow ○ ○ ○ ○ ○ ○
(C2) CI/CD run can NOT add new workflow ○ ○ + ○ ○ +w

(C3) Executes workflow from PR only after merge ○ è + ○ è èw

Execution Control (C4) Contributors can modify the triggers ○ ○ ○ ○ ○ ○
(C5) CI/CD run can NOT modify the triggers ○ ○ + ○ ○ +w

Code Control (C6) CI/CD run can NOT modify the code ○ ○ + ○ ○ +w

(C7) CI/CD run is deterministic based on config ○ ○ ○ ○ ○ +w

Access to Secrets
(C8) Masked ○ ○ è ○ ○ ○
(C9) Accessible only to explicitly authorized steps + + è ○ ○ +
(C10) Restricted from pull requests ○ è è ○ è èw

Table 3: Comparison of five different CI/CD platforms in four security properties (AC, EC, CC, AS). Open circle (+) - means
no. Filled circle (○) - means yes. Half circle (è) - means developers can configure the feature in config file or by using plugin.
The shades of red indicate conditions violating the security property in corresponding platforms. The marker W indicates whether
the condition is workflow or configuration dependent.

execute with write permissions, a malicious and/or vulnerable
action in a workflow can change the trigger of an workflow.

3.3.3 Code Control

As mentioned earlier, Code Control is a security property that
controls the code that runs as part of the CI/CD pipeline, such
as binaries, plugins, and other things.

Importance. Any code that runs as part of a workflow
must be trusted. Running untrusted code could have
devastating effects. For instance, an untrusted command
or action can tamper with the environment, e.g., by
changing the default registry used by package managers
such as npm, thereby affecting all the steps that install
packages from npm.

The plugin system of CI/CD platforms contributes most to
the CC security property.
Restriction on changing code through CI/CD runs (C6).
The plugins are part of the config (i.e., workflow) file of CI/CD
platforms. In platforms Jenkins and GitHub CI, CI/CD runs
with write permissions (Section 3.3.1). Hence, a malicious
and/or vulnerable action in a workflow can modify the code
executed as part of the workflow by changing the plugin name
or can introduce a new workflow with the required plugin.
Code control without modifying config (C7). As discussed
in Section 3.2 GitHub CI has the most controversial plugin
system. The third-party plugins in GitHub CI are mutable,
which makes the GitHub’s workflow runs unpredictable
compared to other platforms as shown in Table 3. Also, as
mentioned in Section 2, in GitHub CI every step executes with
admin privileges. Consequently, any code that runs as part of
a step has complete control of the underlying machine.

Given that these actions run with admin privileges, it is
important to ensure that the code within these actions can be
trusted. We consider the local actions to be trusted as they are
part of the current repository. However, the developers need
to be careful regarding the external actions.

Trusted vs. Untrusted action creators. As described
in Section 2.2, anyone can create an action by creating ac-
tion.yml file in their public repository. Some of the actions
creators (e.g., Microsoft, CheckMark) are verified, which
means GitHub trusts these creators, and we consider that
the actions developed by them as trusted. However, while
using the actions from unverified creators, it is better to use
static reference (i.e., commit hash) for the action as it restricts
the creator from changing the code. In summary, workflows
should always try to use actions from verified creators, and
actions from unverified creators should always be statically
referred. This is also what GitHub suggests in their official
documentation [16]. However, as we show in Section 5,
developers seldom practice this, making their workflows wide
open to be influenced by unverified developers.
Vulnerabilities in actions (C7). Finally, irrespective of
the type of creators, the actions themselves could have
security vulnerabilities making the workflow vulnerable and
consequently leading to supply-chain attacks. As we show
in Section 5, this is rampant, and many workflows are using
actions with known vulnerabilities.

3.3.4 Access to Secrets

As discussed before Access to Secrets security property is
about how CI/CD handles sensitive information.

Importance Developers may need to pass sensitive
information (e.g., API_KEY) to steps of a workflow to
perform certain authorized tasks such as deployment to a
PIP repository. As shown by the previous work [52, 64],
the sensitive information should not be hardcoded
in the repository files as everyone can read them. If
CI/CD pipeline mishandles the sensitive information and
malicious actor access the secrets, she can compromise
other systems as well, e.g., code registry.

Masking (C8). To ensure the safety of secrets, first, CI/CD
should ensure that secrets are never visible outside the
execution environment of the workflow or pipeline. One



common way where developers are known to leak sensitive
information is through logs. So, CI/CD platform should ensure
that the secrets are scrubbed or masked in the execution logs.
Except for Jenkins, all CI/CD platforms mask the secrets in the
build log by default. To mask the secrets in Jenkins, developers
need to install a third-party plugin, which complicates the
initial secure configuration of the Jenkins pipeline.
Available to only authorized steps (C9). Second, even
during the CI/CD pipeline execution, a secret should be
visible/accessible to only those steps or plugins requiring
the secret as specified in the workflow(or config) file. For
instance, in Listing 1, we want only the step 3 to access the
secret represented by ${{secrets.API_KEY}}. Only GitLab
implements this correctly by preventing access to secrets by
steps unless explicitly granted in the config file.

Unfortunately, in GitHub CI, we found that during
a workflow execution, all secrets specified in the workflow are
decrypted and placed in a file under folder /home/runner/_-
work. Consequently, all steps in a workflow can access
decrypted secrets even when they are not passed explicitly. For
instance, in Listing 1, all sets can access the secret represented
by ${{secrets.API_KEY}}. To better demonstrate this, we
developed a proof-of-concept action [20], which, when used in
a workflow will dump the decrypted content of all the secrets
mentioned in the workflow.
Hidden from pull requests (C10). Finally, access to secrets in
a pipeline should also be regulated by how the pipeline execu-
tion is triggered. Specifically, secrets should not be accessible
if the pipeline execution is triggered by no-privilege events, es-
pecially a pull request. A malicious user creates a pull request
by modifying a script in the repository referenced by a pipeline.
If the pull request triggers the pipeline, it will be using the
script in the pull request. If the pipeline has access to secrets,
the modified script can leak the secrets, e.g., to a remote server.

By default, none of the CI/CD platforms share the secrets
with the pipeline triggered by pull requests. However, you
can allow sharing the secrets with the pull-request pipeline
in the settings of the project for Gitlab CI, GitHub CI and
CircleCI. Furthermore, GitHub CI also shares the secrets
with pull requests by default if the pull request is internal,
meaning it was raised within the project and not from a
forked repository. Also, developers can pass the secrets to
all pull-requests in GitHub CI by configuring the workflow to
trigger on pull_request_target. We show how prevalent
is the usage of pull_request_target in Section 5.

3.3.5 Summary

Table 3 summarizes our analysis of the desired security proper-
ties in GitHub CI along with other CI/CD platforms. We focus
on GitHub CI, and as shown in Table 3, none of the security
properties always hold in GitHub CI. The red markings in
sub rows of security properties mark the conditions under
which the corresponding security property will be violated.

The conditions marked with w are workflow dependent, i.e.,
their violation depends on configuration and contents of
a workflow. For instance, the code execution property can be
violated if the workflow uses a vulnerable action. On the other
hand, the availability of secrets to all steps of a workflow is a
platform-wide condition. In the following sections, we present
a large-scale analysis of GitHub workflows and show that
most of the workflows violate at least one of the conditions.

4 Data Collection and Methodology

In this section, we present our methodology for collecting the
repositories’ names with GitHub Workflow and third-party
actions names.

Repositories with workflows. We use GHArchives to
collect the list of repositories that use workflows [35]. We
were unable to do a universal crawl using GitHub API because
of the recently imposed restrictions (Section 6). GHArchive
collects repository information by recording events, i.e.,
push, pull_request, and more, posted on GitHub’s events API
endpoint. However, it does not track workflow events and
cannot directly track repositories using GitHub CI. However,
we noticed that the same github_bot user is responsible for
all events resulting from GitHub CI workflows. Therefore,
we selected all repositories containing events created by
the github_bot user. We queried GHArchive for github_bot
generated events from 2019 to July 2021 and used these to
extract the names of the corresponding repositories using
GitHub CI. We acknowledge that this dataset does not contain
all the repositories that use GitHub CI. However, the dataset
includes a list of most interesting use cases where workflows
interact with the repository or Github APIs themselves.
Almost 40% of all repositories we collected had at least one
star, and 72.8% of all repositories were active in 2021.

After retrieving all repository names, we used GitHub’s
REST API to verify that these repositories are not forks of an
existing repository and contain at least one workflow under
.github/workflow directory (See Section 2). In total, we filtered
213,854 (65.5%) out of the initial 326,410 repository names
retrieved from GHArchive.

Next, we extracted all workflow YAML files from the
remaining repositories located under .github/workflows
directory (Section 2) using GitHub’s REST API [10]. We use
these workflow files to analyze GitHub CI’s usage patterns
further. To do that, we parse all the workflow files and store the
result as a JSON file in MongoDB. We will share our dataset
with the research community upon publication. We discuss
the analysis results of repositories’ workflows in Section 5.1.

Actions repositories. As mentioned in Section 3.2, GitHub
CI allows workflows to use third-party modules, called actions
(see uses keyword in Listing 1). We collected actions by
parsing the collected workflow files and filtering based on the
uses keyword. We ignore local actions, i.e.,, actions that are
part of the workflow repository itself.



In summary, we extract all the external actions used in these
workflows and clone their repositories to analyze them for
vulnerabilities (Section 5.2). We ended up with 11,438 unique
actions.

5 GitHub CI Measurement Results

This section presents the analysis results of collected
workflows and third-party actions used in these workflows.
We first present our comprehensive analysis of the workflow
files and their configuration. Our goal is to present the
common usage patterns of workflows and how these violate
the desired security conditions (Section 3.3) and result in
critical vulnerabilities [5]. Second, we perform a similar
comprehensive analysis of third-party actions’ (i.e., plugins)
to check whether workflows safely use them and whether the
actions themselves contain any security vulnerabilities.

5.1 Workflows Analysis

Overall we collected workflow files from 213K repositories,
which contain a total of 447K workflows, with an average of
2.2 workflows per repository.

5.1.1 Workflows Permissions

As discussed previously, workflows in GitHub CI by default
have wide permissions which grant write access to the reposi-
tory. Consequently, as discussed in Section 3.3, an attacker can
use a vulnerability in the workflow to modify the underlying
repository and violate the desired conditions, C2, C5 and, C6.
Developers can change the default permissions of a workflow
by adding the permissions field into the workflow YAML
file. However, only 0.2% of all workflows (900/447K) use
the permissions field to configure the permissions of the
workflows. Furthermore, even in these 900 workflows, only
62% of them set the permission to the desired read-only.

Recommendation: Following the least privilege principle
and restricting the default permission to read-only will protect
repository code from unauthorized changes.

5.1.2 Workflow Triggers

The workflows can be triggered in various ways as we
discussed in Section 2. Table 4 shows the most popular ways of
triggering (i.e., firing) workflows in the analyzed repositories.
Pull request and cryptomining. An interesting and rather
potentially dangerous way of triggering a workflow is by
creating the pull_request or pull_request_target
from a forked repository because the workflow will be
executed using the code in the forked repository. Furthermore,
workflows triggered by pull_request_target will have
access to all the configured secrets. An attacker can exploit this

Trigger events Repositories (%) Workflows (%)

push 179,503 (83.9%) 279,337 (62.5%)
pull_request 94,962 (44.4%) 146,803 (32.8%)
cron 51,544 (24.1%) 70,719 (15.8%)
manual 45,134 (21.1%) 83,616 (18.7%)
pull_request_target 7,485 (3.5%) 8,874 (1.9%)

Table 4: Number of repositories with at least one workflow
triggered on push, pull_request, pull_request_target,
manual, and cron events. Note that percentages do not sum up
to 100% because a repository can contain multiple workflows
with each of these configured to be triggered by multiple events.

by raising a pull request and consequently executing arbitrary
code in GitHub CI environment as part of the workflow.

Until recently [12] it was possible to create a new workflow
as part of a pull request which will automatically start running
even if the pull request was not merged or validated by any
means. An attacker used this feature to perform cryptomining
on GitHub CI resources by raising a pull request with
the workflow in Listing 2, which spawns a lot of runners
performing mining. Here, the attacker raises a pull request
containing the workflow in Listing 2.

Even though GitHub now disables the execution of new
workflows created by first-time contributors without the
manual approval from a repository owner with write access,
we believe it is still possible to perform cryptomining. For
example, attackers can gain the trust of the repository owners
by first raising a valid pull request and later submitting the
cryptomining code. Also, the attacker does not need to create
a new workflow to perform cryptomining. They can perform
cryptomining by updating the part of the codebase used in
workflow, e.g., unit test code. We found that 105K workflows
in 66K repositories use scripts that are part of the repository’s
codebase. In other words, 30.9% of all repositories contain
at least one workflow that uses scripts that are part of the code-
base. An attacker can use these workflows to execute arbitrary
code by raising a pull request with a modified repository where
the referenced scripts contain the target code. Note that these
numbers are lower bound numbers, and the real number of
workflows that use the repository codebase must be higher.

In addition to cryptomining, attackers can harm the
organization by continuously raising PR and finishing all the
GitHub CI resources available for free to the organization, i.e.,
performing DoS attacks.

Recommendation: Removing the ability to run newly
created workflows from PRs until they are merged into the
original repository will eliminate the possibility of using
workflow resources in a malicious context. This will improve
the Admittance Control security property.
Pull requests and self-hosted runners. As we describe in
Section 2, GitHub allows developers to run the workflows in
personal machines that do not belong to GitHub. However, this



1 name: Cryptomining workflow
2 on: [pull_request]
3 jobs:
4 build:
5 name: Fetch
6 runs-on: ubuntu-latest
7 container: ubuntu:20.10
8 strategy:
9 fail-fast: false

10 matrix:
11 runner: [0,1,2,3,4,5,6,7,8,9,10,...,19]
12 steps:
13 - run: ./obfuscated_cryptomining.sh

Listing 2: Example of cryptomining workflow that spawns
multiple runners on each pull_request

comes with security implications if the machines are not re-
turned to a clean state after the execution of the workflows [37].
Also, by executing workflows with Third-Party Actions
(TPAs) you risk your machine being fully compromised. Even
if workflow does not contain a TPA but allows it to be triggered
by pull_request event, anyone with pull requests permission
can compromise the self-hosted machine by introducing
malicious code into the codebase. Therefore, GitHub strongly
discourages the usage of self-hosted machines as runners
for public repositories, which contain workflows that can be
triggered by pull requests [16]. Despite this, we found cases
of 565 public repositories that run on self-hosted machines.
More than half (51.7%), or 292 out of 565 of these repositories
are triggered by a pull request event. Note that since GitHub
allows developers to define custom labels [36] to reference
a self-hosted machine, all the numbers mentioned earlier are
lower bound. In reality, the number of self-hosted runners
could be greater than the reported number.

Also, we looked into what kind of repositories are using
self-hosted machines to run workflows triggered by pull
requests. On average 292 repositories have 744 stars and
133 forks. Approximately 20% (53 out of 292) repositories
that run on self-hosted machines and are risking potentially
being compromised have more than 100 stars. One of these
repositories is kubernetes/minikube which has more than
20k stars and is popular among developers.

Key finding: There are at least 292 repositories that
contain at least one workflow executed in a self-hosted
machine that is triggered by a pull request event. This is
51.7% of all public repositories that run in a self-hosted
machine.

5.1.3 Workflows Secrets

Securely storing and passing secrets in workflows is critical.
As discussed in Section 2, GitHub has a mechanism to store
and pass secrets to the workflows.

Our dataset contains 245K cases where secrets are passed

using GitHub’s mechanism, i.e., ${secrets.foo} pattern.
Almost half (49.7%) of the repositories in our dataset pass
secrets at least once. Repository secrets were passed directly
to 4.5K external actions developed by third-parties. Among
these 4.5K actions, only 359 were created by a verified creator,
which accounts for less than 10% of all actions that have direct
access to secrets.

In addition to actions that have direct access to secrets,
some actions can have indirect access to them, i.e., without
developers passing secrets to the action. If secrets are
passed to the workflow, GitHub CI will create files under
/home/runner/worker/_temp directory that will contain all
the secrets passed to the job during the workflow execution.
Therefore, other TPAs that are part of the workflow jobs will
be able to access the secrets by reading the contents of the
directory. There are 5.7K actions with indirect access to the
secrets, against 4.5K actions that have direct access to the
secrets. Of these 5.7K actions with indirect access, only 53
are from verified creators. We disclosed the issue of indirect
secret access by TPAs to GitHub. They responded that this is
intentional behavior right now, and plan to restrict the access
in future releases of GitHub CI.

Key finding: Developers pass the secrets without
considering the TPAs’ origin, i.e., trustworthiness. More
TPAs can indirectly access the secrets.

Recommendation: To prevent unauthorized access to
secrets, GitHub should add the ability to pass the secrets only
during the execution of the step that requires it or disable read
access to the directory where actions store secrets.
Secrets passed as plain-text. As discussed in Section 2,
developers must use a pattern like ${secrets.FOO} to pass
secrets to workflows. We use this knowledge to our advantage
by querying our dataset for different usage patterns of secrets.
First, we find the repositories that pass secrets to workflows
and analyze which keys they use to pass secrets, e.g., if the
repository is passing the secret with the ${secrets.API_-
KEY} pattern, the key will be API_KEY. Second, from the list
of all keys, we deduce a reduced list of keywords most likely
to be associated with the secrets, e.g., token, password. We
use this list of keywords to detect the repositories passing the
secrets in plaintext. We do this by querying our database to
find when a repository passes some value to the external action
with a key that contains one of the keywords. The query result
returned 2,240 possible candidates for secret leaks. After
filtering out false positives, we have 333 possible leaks.

We raised the issue to the 333 repositories about possible
secret leaks. From all of the reports, only 11 confirmed acciden-
tal leakage of the secrets and fixed the issue. While most of the
issues were not answered, there are some interesting responses
from the repository’s maintainers regarding the intentional
leakage of the secrets. Specifically, the repositories that use
Chromatic, a tool to automate UI feedback gathering, are inten-
tionally leaking projectToken value. Chromatic documenta-



tion [24] explains that this is the only way to allow forked repos-
itories to run workflows with Chromatic. Further investigation
revealed that due to security reasons GitHub CI by default does
not share the secrets with workflows if a forked version of the
repository triggers the workflow. Thus, repositories that want
to allow forked repositories to execute workflows with secrets
must either pass the secret in plain text inside the workflow con-
figuration file or change the repository’s settings to allow pass-
ing the secrets to the forked version of the repository. However,
since updating the settings of the repository will pass all the
secrets to the forked repository, developers choose to pass only
a limited number of secrets in plain text in the workflow file.

Key finding: Some developers pass the secrets in plain
text to allow forked versions of the repository to run the
workflows.

Recommendation: Adding the ability to pass the only limited
number of secrets to the forked repository can improve security.

5.2 Actions analysis

Over-privileged and mutable TPAs contribute most to the
security risks of the Github CI workflows (Section 3). All
security properties (AC, EC, CC, AS) can be compromised
if the workflow depends on a vulnerable or malicious TPA.
For example, the wayou/turn-issues-to-posts-action
action, which is used to convert issues into posts, is vulnerable
to shell injection attacks [42]. Suppose any repository
depends on wayou/turn-issues-to-posts-action in its
workflows. In that case, an attacker can run any code inside
the CI/CD pipeline by just crafting the malicious issue. And
since the workflow by default gives the write permission to
the code even though the workflow is executed only on issue
events, an attacker can modify the code.
Actions’ statistics. As discussed in Section 4, we collected the
action names through the workflow files that use the keyword
uses to reference TPAs. The keyuseswere part of workflow
files 1,623,413 times in 99.7% of all repositories in our dataset.
From all 1.6M times when external actions were referenced,
0.75% were referencing local actions, actions that are part
of the repository. During further investigation, we noticed
that it is possible to directly reference the Docker image by
using the key uses. There are 6,082 (0.3%) out of 1.6M cases
when workflows are referencing the Docker image directly,
as such uses:docker://docker.io/hello-world.
Even though docker usage is only a tiny portion of overall
usage, we believe that this behavior will introduce significant
challenges in the future for the analysis of Github Actions.

The rest of the 1.6M references are indeed references to
1st-party actions in 62% and 3rd-party actions in 38% of
the cases. In general, 213,209 (99.7%) of repositories in our
dataset references at least one TPA. Overall there are 11,438
unique TPAs and 19,033 if we consider different versions.

Verified vs Unverified Actions. GitHub has a separate
category in the marketplace for actions created by verified
organizations, such as Azure, Docker, and Google, called
verified creators. As of 15th November 2021, GitHub had only
75 organizations as verified creators who published the actions
in the marketplace. In our dataset, only 335 out of 11,438
actions used by repositories are created by verified creators8.

During analysis, we found, that people more often reference
TPAs from non-verified creators than from verified creators,
which is counter-intuitive. From the top 20 actions that are
used as part of the workflow, if we ignore first-party actions
managed by GitHub, there is only one TPA maintained by
verified creators as opposed to nine from non-verified creators
(Appendix B).

Key finding: The majority of the TPAs used are from
non-verified creators. Verified creators maintain only 3%
of all used actions.

Recommendation: Adding some level of automated review
process for the TPAs can contribute to the defense in depth
against malicious TPAs.
Third-Party Actions’ References. Code Control property
emphasizes the importance of knowing what code runs as part
of the workflow (Section 3). One way of controlling what code
runs is to audit TPA’s code and make it immutable. Therefore,
it is important to know exactly how workflows are referencing
TPAs. For example, if referenced TPAs are mutable, it is
impossible to control the code they are running. As discussed
previously, there are three ways to reference the TPAs: (1) tag
name, (2) branch name, (3) commit hash.

GitHub documentation suggests using commit hash to
reference a TPA unless you trust the organization. Because
any other way of referencing a TPA, such as tags, and branch
names are mutable, which means actions code can be updated
anytime (e.g., injecting backdoor), if someone takes over the
repository and/or if the organization has malicious intent.
Therefore, we analyze how many of all TPA references follow
Github documentation recommendations. Unfortunately,
as you can see from Table 5 less than 1% of all TPAs are
referenced using their commit hash. Of all 213,209 (99.7%)
repositories that use TPAs, only 1.7% (i.e., 3,248 repositories)
use TPAs by referencing them with commit hashes. Even
worse, commit hash references do not guarantee immutability
of the TPAs’ code if the referenced action uses a mutable
reference to another dependency, e.g., other actions. We
developed a PoC [21] and reported the issue to GitHub.

Key finding: In general, developers do not reference
TPAs by using commit hash, despite security risks
associated with other ways of referencing actions.

8Note that the number is different from what is available in the marketplace
because not all actions of the verified creator might be published in the
marketplace



Reference types References (non-verified) Distribution in % (non-verified)

Tag name 474,166 (410,054) 78.8% (68.2%)
Branch name 120,633 (109,400) 20% (18.1%)
Commit hash 6,539 (5,687) 1% (0.9%)
Total 601,338 (525,141) 100% (88.2%)

Table 5: Distribution of different ways to reference all
3rd-party actions and specifically 3rd-party actions from
non-verified creators. Despite the recommendation by GitHub
to use commit hash references, only 0.1% of references use
commit hash. Note: these numbers are for 3rd-party actions
only, i.e., does not include 1st-party actions

Another interesting finding is that there are a significant
number of TPAs that are referenced by branch name (Table 5).
This behavior not only introduces security risks but also may
break the execution of the pipeline if maintainers of the actions
push code with bugs into the actions’ repository. For example,
at one point lowlighter/metric introduced an infinite loop into
the code that they fixed in 9b574376 commit.

The developers’ behavior of not referencing the actions
with commit hash shows that the developers tend to choose
convenience over security.

Recommendation: Introduction of semver versioning
scheme in TPAs references as in CircleCI Orbs [30] will lessen
the dependency on highly mutable references such as branch
names. Also, it will give the flexibility to update the actions
if a vulnerability is detected without manual effort, as in the
case of referencing using commit hash.
Actions Vulnerability Analysis. Since dependence on TPAs
may present some security risks (Section 3), it is important
to analyze the external actions for security vulnerabilities. For
example, if a repository uses a vulnerable action, malicious
actors can compromise the execution flow of the workflow
by posting comments on an issue [43, 44] or by controlling
git’s tag value [32]. We perform the vulnerability analysis of
actions by detecting the commit that potentially fixes some
security vulnerability.

There are existing tools that can detect automatically vulner-
able commit messages for large projects [65]. However, since
actions are relatively small projects with the majority of them
containing less than a hundred commits, we decided to use
a simple regex matching-based tool, git-vuln-finder [25],
which looks for security-related keywords in commit messages.
As a result, git-vuln-finder returns a list of potentially
vulnerability-fixing commits for each repository. After
running the tool on all 11K cloned actions’ repositories, the
tool returned 5.4K potentially vulnerability fixing commits.
After the manual verification step, we ended up with 659
actions, which accounts for 5% of all actions we cloned, that
have vulnerability-fixing commits in their commit logs.

We then construct the set of vulnerable tags, i.e., the set
of tags that points to the commit which comes before the
vulnerability-fixing commit. For example, for cake-build/cake-

Vulnerability severity Actions Repositories

High-severity 26 582
Medium-severity 56 28,870
Low-severity 577 10,922

Table 6: Vulnerable first and third parties actions and number
of repositories that reference vulnerable versions

action the tag v1.3.0 is pointing to a commit ada1055,
which comes before the vulnerable fixing commit 985efc8.
Therefore, we will add v1.3.0 to a set of vulnerable tags
for cake-build/cake-action action. We use this set to detect
workflows that use a vulnerable actions version.

Table 6 shows a number of repositories that are referencing
a vulnerable version of the action, i.e., action version that is
missing vulnerability fixing commits. A group of graduate
students who have experience in security categorized all
vulnerability fixing commits according to severity (high,
medium, low). From Table 6 one can see that majority of
vulnerability fixing commits were low severity fixes, such as
updating vulnerable npm dependencies.

Reference to one first-party action, actions/checkout
version v1 and prior contributes most to the number of
repositories that reference medium-severity in Table 6. All
versions prior to v2 are passing GitHub authorization token
into the command line in plaintext, which can lead to a leak
of GitHub’s token unintentionally.

The above results show that developers may depend on
vulnerable actions in their repositories’ workflows. This could
lead to several serious outcomes if not tackled on time, and
not come up with ways to inform developers about the security
risks of using outdated/vulnerable actions.

Key finding: 38,315 or 17.9% of all repositories use at
least one potentially vulnerable TPA in their workflows
due to not upgrading the version

Due to limitations discussed in Section 6 we tried to notify
only 582 repositories that are depending on the actions’
version with high-severity vulnerability from Table 6. Overall,
we successfully created issues for 542 repositories. We
could not create issues for 40 because of (1) rename or
removal of the repository; (2) issue creation is disabled; (3)
repository is archived, meaning it is read-only. For rest of
the repositories that depend on actions with medium and low
severity vulnerabilities, we notified the GitHub itself directly.
Recommendation: Using reduced privileges by default for all
actions can prevent attackers to use vulnerable actions as a
trampoline during the attack. For example, workflows that are
triggered only on events related to issues can have permissions
limited to only read/write access to issues.

https://github.com/lowlighter/metrics/commit/9b574376230687a8e9cb354fa27ad5f951778d9a
https://github.com/cake-build/cake-action
https://github.com/cake-build/cake-action
https://github.com/cake-build/cake-action/commit/985efc8c18dfef468322efd3e639cc14b699333d
https://github.com/cake-build/cake-action


6 Discussions & Limitations

Data Collection Limitations. There are two main limitations
in our data collection. The first limitation being our dataset
does not contain all repositories with workflows. As discussed
in Section 4, the dataset does not include any repositories
with workflows that do not update the repository using
workflow(s) or interact with GitHub’s APIs. Initially, we
tried to use "GitHub Activity Data" on BigQuery to collect
all the repository names that use GitHub CI. However, since
GitHub CI was introduced only in Fall 2018 and BigQuery’s
default dataset was not updated since 2017, we decided to
use GHArchive data stored in Google’s Big Query. There is
also GitHub’s REST API that can be used to crawl GitHub
for repository with workflows. However, GitHub’s REST API
contains a significant rate limitation that limits crawling to
5000 requests/hour, and for each query returns only the first
1000 results non-deterministically.9 In addition to this, GitHub
community standards (i.e., policy) forbids bad crawling
behavior. These limitations were reasons to select GHArchive
over GitHub’s APIs or anything that uses those APIs in the
backend, like Github advance search. Despite the limitations
mentioned above, our dataset contains the most exciting cases
when repositories use GitHub CI as we focus on cases where
actions modifying the repository is an expected side-effect.

The second limitation is that our data does not include all
third-party actions hosted in GitHub. However, we argue that
even though the dataset does not contain all third-party actions,
it contains actions that are used by other repositories in the
wild, i.e., which are of the most interest.
Actions’ Vulnerability Analysis Limitations. The actions
vulnerability analysis may not present accurate numbers
regarding the actions vulnerability because of the methodology
we employed. While we take measures to decrease the number
of false positives by performing manual analysis, we still
used basic regex matching of the commit message to detect
vulnerability-fixing commits in the action’s repository
(Section 4). However, we argue that it is not an easy task
to detect the vulnerability-fixing commits and, on its own,
requires separate research. Also, the goal of the actions’
vulnerability analysis was to raise awareness of the security
risks that come with referencing third-party actions and
providing them with broad permissions. Even if the third-party
actions are not malicious, they may be vulnerable, and, thus
they can be exploited by malicious actors.
Vulnerable Workflows Disclosure Limitation. We notified
only repositories that depend on vulnerable actions with
high severity because of GitHub’s strict policies regarding
automatic content creation. If the developer opens a lot of
issues automatically, GitHub will block the account and hide
all opened issues. Therefore, we decided to create issues
directly only for repositories that depend on actions’ version
with high-severity vulnerability and notify GitHub directly

9Querying for identical keyword can return different results

through the support system about all other issues.
Secret Analysis Limitations. Compared to previous works,
our analysis of leaked secrets has several limitations. The first
limitation is the scale. We analyze only leaks for 190K repos-
itories, while recent papers analyzed a significantly more num-
ber [47]. Another limitation is that we did not perform a longitu-
dinal study of the workflows. Thus, we may miss the old leaks
of the secrets. Third, we were looking at the leaks only in work-
flows. Therefore the numbers are lower than in other studies.

7 Related Work

CI/CD Analysis There has been a considerable amount
of research in analyzing CI/CD frameworks. Several
works [31, 39, 49, 53, 55, 58] looked into the DevSecOps
culture, trying to understand their challenges and trade-offs.
Gruhn et al. [37] are among the first to analyze public continu-
ous integration services and identify that isolation is important
in executing various tasks of a CI/CD pipeline. Later, Bass et
al. [22] looked into the security of Jenkins and proposed the
division of Jenkins into smaller parts for easy configuration.
Configuration Smells. Configuration smells or problems due
to improper configuration, especially in the context of CI/CD
pipelines, had been studied extensively [33, 34, 51, 52, 64]
and many works try to fix them automatically [61, 62]. Most
of these works focus on Travis CI, where the bad patterns
are identified manually [33, 34, 52] or through developer
surveys [51, 64]. Recently, Vassallo et al. [61] proposed a log
analysis technique that tries to identify configuration smells
through log analysis. Subsequently, they also proposed a tool
called CD-Linter [62] that automatically fixes the issues in
the YAML configuration file.

Unlike previous works, in this paper, we focus on GitHub
CI, by first systematically identifying required security
properties than trying to find the violations in the workflow
configuration file. Our work complements the existing work
by extending research to GitHub CI.
Secrets Leakage Detection. Detecting secret leakage in
public repositories has been well-studied [47, 56, 63]. Notable
recent work is from Meli et al. [47], they use entropy-based
techniques to find that over 100,000 repositories leak secrets
for a set of pre-defined APIs. In our work, we use a much
simpler technique based on keywords and independent of
APIs. Unlike the previous work, we found significantly fewer
leaked secrets as we focus only on workflow files, and most of
the developers were well aware of GitHub’s secret mechanism.
Identifying Security Fixes. There has been some
work [65, 66] in detecting security fixes from commit
messages, and most works are based on machine learning tech-
niques. These techniques depend on the availability of a large
dataset of commits fixing security bugs, which is hard to get,
especially for action repositories, as they are relatively new (< 2
years) and have fewer commits. In our work, to handle this, we
use git-vuln-finder, which doesn’t require a large dataset.



Finally, identifying security fixes is not the paper’s main con-
tribution, and any work that doesn’t depend on a large dataset
can be used to detect security fixes in action repositories.

8 Conclusion

This paper defined four security properties that must hold
to secure CI/CD platforms from supply-chain attacks. Then,
we compared the newly introduced GitHub CI with five
other public CI/CD platforms following security properties
defined earlier. Additionally, we investigated how developers
use workflows in GitHub CI and their effect on the security
properties. Based on the GitHub CI usage by developers, we
proposed recommendations on how to improve the security.

Also, we listed four security improvements that can
be implemented as part of GitHub CI to protect from
security weaknesses. As part of security improvements, we
implemented an automated tool called GWChecker which
developers can use to detect security weaknesses in their
workflow configuration and can also automatically notify
them by creating issues if security risks are detected.

We hope that our work will be the first of many kinds of
research on GitHub CI.
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A GWChecker

To assist in mitigating simple security mistakes in the YAML
configuration for CI/CD workflows, we developed a workflow
auditing GitHub action, GWChecker10. GWChecker audits
the workflow files by looking for plaintext secrets using
regular expressions [47], tags for versioning, non-verified

10https://kapravelos.com/projects/githubactions/
GWChecker/
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actions or actions not published on the marketplace, and
insecure triggers. In addition to this GWChecker enforces a
pre commit hook that ensures that the files committed are not
in ‘.github/workflow‘ To avoid having workflows that commit
other workflow-related files to the repository.

Listing 3 shows a configuration file that is triggered via
pull request on any branch, a plaintext AWS secret key, and
uses developer-controlled version tags. The output of the
workflow after GWChecker was added as the second step
(after github/checkout) is shown in Figure 2.

Figure 2: CI/CD log after adding GWChecker

name: Node.js CI
on:
push:
branches: '**'

pull_request:
branches: '**'

jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
node-version: [15.x]

steps:
- uses: actions/checkout@v2
- name: Use Node.js ${{ matrix.node-version }}
uses: actions/setup-node@v1
with:
node-version: ${{ matrix.node-version }}

- name: Push to AWS
run: node index.js wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Listing 3: Sample YAML file with plain-text secrets, broad
triggers, and actions versioned with tags.

B Additional Tables

In this appendix we list the additional tables that can provide
extra information, but not critical to the final results.

C Vulnerability Disclosure Details

To disclose the vulnerabilities we opted to open the issues to
repositories that depend on vulnerable version of the action

Action name Total VC

actions/checkout 499,840 Ë
actions/cache 104,563 Ë
actions/setup-node 97,236 Ë
actions/setup-python 76,906 Ë
actions/upload-artifact 75,476 Ë
actions/upload-release-asset 27,605 Ë
actions/download-artifact 26,979 Ë
actions/setup-java 26,630 Ë
actions/setup-go 23,183 Ë
actions/create-release 23,175 Ë
Janealter/branch-pr-comment 20,030 é
peaceiris/actions-gh-pages 19,051 é
JamesIves/github-pages-deploy-action 16,670 é
ad-m/github-push-action 15,452 é
actions-rs/toolchain 12,367 é
codecov/codecov-action 11,021 Ë
actions/github-script 10,667 Ë
JasonEtco/create-an-issue 10,376 é
r-lib/actions/setup-r 9,839 é

Table 7: Top 20 actions by number of how many times it
was used. Note that sometimes action can be used multiple
times inside the same workflow. Here VC column stands for
verified creator. If we do not account for first-party actions
maintained by GitHub (actions organization), there is only
one third-party action (codecov/codecov-action) maintained
by verified creator.

instead of sending an email to the repository owners. This is
because not all of the owners of the repositories decide to make
his/her email visible to public. Also, it is common process in-
side GitHub open source projects to open an issue to notify the
owners of the repository about vulnerability in the code base.

We also indicated our contact information in the issue, i.e.,
email address, for owners in case they want to contact with us.
This actually, helped us to detect one of false positives, when
maintainer of the third-party action himself contacted with us
through the email and said that even though previous version
does not contain CVE fixing commit, workflows that depend
on vulnerable version can not be exploited.
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