
Automatic Discovery of Emerging Browser Fingerprinting
Techniques

Junhua Su

jsu6@ncsu.edu

North Carolina State University

USA

Alexandros Kapravelos

akaprav@ncsu.edu

North Carolina State University

USA

ABSTRACT
With the progression of modern browsers, online tracking has

become the most concerning issue for preserving privacy on the

web. As major browser vendors plan to or already ban third-party

cookies, trackers have to shift towards browser fingerprinting by

incorporating novel browser APIs into their tracking arsenal. Un-

derstanding how new browser APIs are abused in browser finger-

printing techniques is a significant step toward ensuring protection

from online tracking.

In this paper, we propose a novel hybrid system, named BFAD,

that automatically identifies previously unknown browser finger-

printing APIs in the wild. The system combines dynamic and static

analysis to accurately reveal browser API usage and automatically

infer browser fingerprinting behavior. Based on the observation

that a browser fingerprint is constructed by pulling information

from multiple APIs, we leverage dynamic analysis and a locality-

based algorithm to discover all involved APIs and static analysis on

the dataflow of fingerprinting information to accurately associate

them together. Our system discovers 231 fingerprinting APIs in

Alexa top 10K domains, starting with only 35 commonly known

fingerprinting APIs and 17 data transmission APIs. Out of 231 APIs,

161 of them are not identified by state-of-the-art detection systems.

Since our approach is fully automated, we repeat our experiments

11 months later and discover 18 new fingerprinting APIs that were

not discovered in our previous experiment. We present with case

studies the fingerprinting ability of a total of 249 detected APIs.

CCS CONCEPTS
• Security and privacy→ Privacy protections.

KEYWORDS
Browser Fingerprinting, Web Measurement, Privacy, Program Anal-

ysis, Online Tracking

ACM Reference Format:
Junhua Su and Alexandros Kapravelos. 2023. Automatic Discovery of Emerg-

ing Browser Fingerprinting Techniques. In Proceedings of Proceedings of the
ACMWeb Conference 2023 (WWW ’23). ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3543507.3583333

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00

https://doi.org/10.1145/3543507.3583333

1 INTRODUCTION
Web users browse the web from a plethora of devices and browser

configurations. Although this makes the browsing experience more

personal, it also exposes to visited pages enough information about

the users’ preferences to distinguish them. Themonitor’s resolution,

the timezone, and even the GPU of the system (among several other

configurations) can be combined to provide enough entropy to

uniquely identify a browser. This stateless web tracking approach

is known as browser fingerprinting.
Traditionally, tracking on the web has been conducted via state-

ful tracking techniques (e.g. third-party cookies). After decades of

abuse, several modern browsers started taking measures to pro-

tect web users from stateful tracking by eliminating third-party

cookies [20, 22, 25], disrupting this way one of the most profitable

ecosystems in the world: web advertisements [26, 27]. Without

traditional web tracking available, a major shift to alternative tech-

niques is happening. Our work aims at disrupting the abuse of APIs

for browser fingerprinting by continuously discovering emerging

techniques and reporting them.

Since the discovery of browser fingerprinting, browser Applica-

tion Programming Interfaces (APIs) [9] have played a central role in

attack [38, 52, 56] and defense [29, 40, 51] mechanisms. Achieving

a better understanding of the browser fingerprinting process in

terms of APIs leads to building better tracking or anti-tracking tools.

However, when a new browser feature is released, we do not have

any system monitoring its abuse. State-of-the-art [30, 31, 49] in

measuring browser fingerprinting behaviors in the wild has limita-

tions: extra manual work is required to process the results that lack

standard documentation, which is necessary for understanding the

API. Besides, FingerprintAlert [30] does not work with JavaScript.

FP-Inspector [49] detects fingerprinting behavior in script-level,

and FP-RADAR [31] lacks dynamic analysis (§7.2).

In this paper, we develop an automated hybrid system based

on VisibleV8 (VV8) [50], an instrumented Chromium browser that

monitors the usage of browser APIs, and JStap [41], a static analysis

tool that generates a dataflow graph of a given JavaScript file, to

systematically discover browser APIs that are abused for browser

fingerprinting in the wild over time. We rely on the key observa-

tion that browser fingerprinting techniques are commonly used

together, which is shown by previous research [31, 36, 39, 49]. Based

on this observation, we conceive and implement a data-driven algo-

rithm that targets successively executed APIs around widely known

fingerprinting APIs. We call the characteristics that APIs with the

same purpose (e.g. fingerprinting) cluster together as locality.

The analysis required for our proposedmethods is infeasible with

the current web measurement tools. Therefore, we write a new VV8

post-processor that preserves the API execution sequence while the

https://doi.org/10.1145/3543507.3583333
https://doi.org/10.1145/3543507.3583333

WWW ’23, May 1–5, 2023, Austin, TX, USA Junhua Su and Alexandros Kapravelos

original post-processor destroys the sequence.We also conceive and

implement static dataflow analysis of browser fingerprinting, which

was not supported by JStap. To the best of our knowledge, we are

the first to use static dataflow analysis on browser fingerprinting.

Besides, we use a novel method based on character offset to combine

static and dynamic analysis for better browser API detection used

during browser fingerprinting.

As a result, our automated system discovers a total of 231 browser

APIs (3.1% of total Chromium APIs) that are involved in browser

fingerprinting by crawling the Alexa top 10k websites. We check

every API detected by our system to determine if they are actively

contributing to tracking or assisting the process. Out of the 231

fingerprinting APIs, 90 of them are direct and the remaining 141

are indirect. 11 months later, our system discovers 18 additional

fingerprinting APIs in a new crawling experiment following the

same procedure. This result indicates our system is able to monitor

fingerprinting API abuse in the wild over time.

Our automated system overcomes limitations of existing fin-

gerprinting behavior detection systems [30, 31, 49] and discovers

176 fingerprinting APIs that are not detected previously (§7.2). In

summary, our main contributions are:

• We propose a novel automated hybrid system that is built

based on VisibleV8 and JStap to identify previously-unknown

fingerprinting APIs in the wild. The system can detect the

abuse of newly developed APIs over time.

• We create an advanced locality-based algorithm in dynamic

analysis and combine it with a unique static dataflow analysis

to identify fingerprinting APIs.

• We detect a total of 249 fingerprinting APIs in two crawling

experiments, and 176 of which are not detected by the state-

of-the-art detection systems. We measure their usage in the

wild (§6.2) and evaluate their fingerprinting ability (§6.4).

2 BACKGROUND
2.1 Browser Fingerprinting
Browser fingerprinting is a powerful technique that leverages unique

browser characteristics and configurations to distinguish clients.

Instead of using stateful tracking, like cookies, browser fingerprint-

ing collects the discrepancies among clients’ hardware, OS, and

browser configuration to build a unique identifier for the user. To

achieve this, trackers need to collect information from multiple

sources in the browser by calling JavaScript APIs. All these small

differences can be combined into a unique identifier which can

replace stateful tracking in many tracking scenarios [11].

2.2 Browser APIs
Browser APIs are built inside the browser to help developers

achieve advanced operations like retrieving browser or computing

device information. Normally, standard documentation is published

by major vendors like Mozilla for demonstrating syntactical usage

and the concept of the browser API. WebIDL [18] is a collection of

browser APIs under Chromium standards. On the contrary, third-
party APIs are created by individuals or organizations. Although

third-party APIs also serve to help developers build applications

easier, their documentation is not published on the Web. Given a

third-party API, it is hard to understand the usage of the API.

In the context of the web, APIs are built on top of the

JavaScript language. Therefore, an API follows the format of Ob-
ject.function or Object.property. In this paper, we use the

word "interface" to refer to Object, "feature" to function or

property, and "API" to the whole expression.

Direct Fingerprinting API.We define a browser API as a di-

rect fingerprinting API if it returns more than one value when

executing it on different computing environments. For example,

Navigator.language returns the preferred language of a given

browser. A website can directly use the return value of this API to

distinguish between visiting browsers. We also restrict the return

value that does not represent time (e.g. Date.now).
Indirect Fingerprinting API. Since the discovery of high-level

fingerprinting techniques, direct fingerprinting APIs cannot cover

all APIs used for fingerprinting. For example, in Canvas finger-

printing, many APIs are called to draw a graph. Then, the tracker

uses a hash function on the graph to get a unique hash fingerprint.

Without APIs used for drawing, the fingerprint cannot be generated

but these APIs don’t satisfy the definition of direct fingerprinting

APIs. Therefore, we call them indirect fingerprinting API and we

define an indirect fingerprinting API as an API that helps to gen-

erate a fingerprint but its return value cannot be directly used for

fingerprinting. The union of direct and indirect fingerprinting APIs

is fingerprinting APIs that can be used to generate a fingerprint.

Fingerprinting script. For brevity, we use the term “finger-

printing script” to describe a JavaScript file that contains many

fingerprinting APIs. Determining the least amount of fingerprint-

ing APIs that are required in a JavaScript file to uniquely fingerprint

users is an open problem and out of scope for this work.

2.3 Program Analysis for Webpage Behavior
Static Analysis. Static analysis focuses on source code without

executing the code. One common medium is the Abstract Syn-

tax Tree (AST) which represents the syntactic usage of the given

source code in the tree structure. Esprima [48] is the de facto tool

to generate ASTs in research[41, 42, 61]. A Control Flow Graph

(CFG) represents the logical expression of the given source code by

demonstrating every possible execution state. A Dataflow Graph

(DFG) represents the propagation of variables or values in a graph

representation of a script.

Dynamic Analysis. Dynamic analysis is one type of analysis

that requires executing the code while it can record the function

usage or property access. In the context of JavaScript on the web,

there are two main ways to monitor the JavaScript API calls, in-

browser or in-band approach. In-band monitoring relies on the

characteristics of the JavaScript language. Taking an example of

the in-browser approach (e.g. VV8), Jueckstock et al.[50], modified

the V8 engine which parses JavaScript inside chromium to collect

native JavaScript function calls and property access.

Automatic Discovery of Emerging Browser Fingerprinting Techniques WWW ’23, May 1–5, 2023, Austin, TX, USA

3 CODE LOCALITY OF FINGERPRINTING
TECHNIQUES

3.1 Intuition
Trackers today use fingerprinting APIs in a single script to uniquely

identify users by executing them in a sequence and combining their

outcomes together to craft a unique identifier. Based on this ob-

servation, we conceive a novel algorithm, called locality calculator,

which allows our system to discover APIs used in proximity. Pre-

vious research [31, 36, 39, 49] shows that browser fingerprinting

techniques appear together in fingerprinting scripts and no browser

fingerprinting technique spans multiple files. However, APIs used

in proximity do not necessarily contribute to fingerprinting. We

take advantage of fingerprinting information in the dataflow graph

to remove potential false positives (§4).

In fact, we never observed a single fingerprinting technique span-

ning multiple files in any of our experiments. Our approach gener-

alizes and can be adapted in the future to accommodate multiple

scripts. If trackers in the future split their fingerprinting functional-

ity into multiple files, then we can stitch them back together based

on the order of execution in the JavaScript engine.

3.2 Fingerprinting APIs Seed
To pinpoint a neighborhood of fingerprinting activity, we can pre-

select a list of well-known fingerprinting APIs that trackers use

frequently (we call them seed), and locate their position in the

sequence of API execution. We can discover previously unknown

fingerprinting APIs by searching in the neighborhood of the seed

for adjacent executed APIs.

One of the main goals of our paper is for our system to monitor

the fingerprinting API abuse over time in the wild. Our design

accepts configurable API seed, so it can provide up-to-date detection

of related APIs and adapt to the evolution of stateless tracking

techniques. For example, to discover which Canvas APIs are abused

for fingerprinting in the wild, our system can be configured with

Canvas APIs as seed and report APIs closely executed that will

reveal all Canvas APIs abused in the wild. When fingerprinting

techniques evolve in the wild, our system can capture the evolution

by updating the seed. We envision browser vendors continuously

running our system to track the evolution of fingerprinting.

3.3 Data-driven Per-Script Range for Locality
The key question is, within what range an API is considered as

closely executed to the seed. We design the locality calculator to set

different ranges based on different APIs executed by each website.

If a large set of APIs is spotted from the seed and successively

executed, the locality calculator will automatically mark the range

larger and vice versa. The rationale is that if trackers use more

fingerprinting APIs from the seed, this script is more likely to be

fingerprinting users. Therefore, it is safer to expand the range of

the neighborhood (and vice versa).

4 DATAFLOW OF FINGERPRINTING
INFORMATION

Although fingerprinting APIs tend to cluster together, successively

executed APIs do not necessarily contribute to fingerprinting. We

leverage static dataflow analysis for fingerprinting to remove false

positives. At a high level, after the tracker collects identifiable

information from the victim’s browser, the tracker creates a unique

identifier for the user and sends it to the tracker’s database. This

creates a dataflow connecting pieces of information and ends with

storing or transmitting the data. This dataflow is critical since

browser fingerprinting is effective on a large number of users and

the aggregation of user data is done through this dataflow. We

label the part that stores or transmits data as fingerprinting sink
and static fingerprinting dataflow analysis as fingerprint analysis.
If the neighbor of the executed seed API does not contribute to

fingerprinting, there should be no dataflow linking between the

neighbor and a fingerprinting sink. Our fingerprint analysis can

remove false positives.

We design our dataflow analysis aiming to detect connections be-

tween fingerprinting APIs that collect user data and fingerprinting

sinks. These connections can be direct or indirect. A direct connec-

tion means that the return values of fingerprinting APIs are directly

fed to the sink. An indirect connection means that the return values

of fingerprinting APIs are processed (e.g. hashing or trimming)

before reaching a sink. Due to the complexity of crawled scripts, we

conduct the search exhaustively. In other words, dataflow analysis

checks if the connection holds no matter how many intermediate

steps are involved based on observations.

5 METHODOLOGY
Our framework, shown in Figure 1, consists of: (1) a crawler (§5.1),

(2) a data collection and processing pipeline (§5.2), (3) a data analy-

sis (§5.3) and produces a list of suspicious fingerprinting APIs (§6.1).

The framework starts by processing the Alexa top 10k [14] domains

into a VisibleV8 crawler. We develop a post-processor to extract

useful data in the VisibleV8 logs. Then, we apply our locality calcu-

lator to find APIs executed closely to known fingerprinting APIs.

After that, we annotate our logs with a dataflow graph produced

by JStap and conduct a fingerprint analysis to verify the results of

the locality calculator. Finally, our system produces a list of APIs

that are suspicious for fingerprinting.

5.1 Crawling
We conduct experiments in a virtual machine running x86-64

Ubuntu 18.04.4 LTS (Bionic Beaver) running on an 8-core 2.20GHz

Intel Xeon CPU. The crawler is built upon Puppeteer [13], a NodeJS-

based [10] web automation framework that supports Chromium

through Chrome DevTools Protocol [46]. We process the domain

list by first concatenating the “http://” string followed by a domain

from Alexa top 10k list [14] and using it as input to initiate our

crawler written in JavaScript. If HTTP is not supported, the crawler

will switch to an HTTPS connection. Then, we launch our instru-

mented Chromium (VisibleV8) with the default puppeteer option

in headless mode and under a research university network. The

crawler opens a browser tab and navigates to the concatenated URL.

The default time for the tab to navigate one domain is 15 seconds.

If there is ongoing data collection after 15 seconds, we allow an

extra 30 seconds for navigating.

WWW ’23, May 1–5, 2023, Austin, TX, USA Junhua Su and Alexandros Kapravelos

Figure 1: BFAD workflow consists of four main parts with: (1) Crawler (§5.1), (2) Data Collection and Processing Pipeline(§5.2),
(3) Data Analysis (§5.3), and (4) System Results (§6).

5.2 Data Collection and Processing
5.2.1 Dynamic Browser API Calls. VisibleV8 (VV8) is an open-

source instrumented version of Chromium that produces low-level

JavaScript behavior logs by visiting a webpage [50]. The logs con-

tain all executed APIs and their context: origin names of JavaScript

executed in the crawled domain, all executed JavaScript source code

(including dynamic code), and all browser APIs that were invoked

during crawling. VV8 also provides the location in the JavaScript

source code for each executed API which allows us to map a dy-

namically monitored API call back to its source code. Visiting a

domain, our system collects scripts through Chrome DevTools Pro-

tocol, specifically the debugger [47]. Meanwhile, we get the VV8

logs and use our post-processor on VV8 logs to generate a sequence

of executed APIs with their source code offsets (e.g. index location

in the script).

VisibleV8 modifications. VisibleV8 logs (one example can be

found here) include all executed browser APIs in their order of

execution but are too complicated to read or directly process. Thus,

a post-processor is required to extract useful information from the

logs. However, the original VisibleV8 post-processor only counts

the frequency of APIs and omits code locality. To enable the locality

calculator that depends on the code execution sequence, we create

a new VisibleV8 post-processor to capture this key relationship. We

make our modifications to VisibleV8 publicly available (§I), so that

other researchers can leverage code locality algorithms for web

measurements.

5.2.2 Static Dataflow Graph. We use a dataflow graph to remove

false positives by analyzing whether an API has a dataflow to a sink.

For our dataflow graph generation, we rely on JStap [41], which is

a tool used for generating a Program Dependency Graph (PDG) for

a given JS file and it is built on top of Esprima [48]. According to

their implementation, a PDG is a combination of an abstract syntax

tree (AST), control-flow graph (CFG), and dataflow graph (DFG).

In our system, we directly feed crawled JavaScript files to JStap to

generate their DFGs and concentrate on dataflow dependency.

JStapModifications.Althoughwe use JStap to generate dataflow
graphs, JStap has no support for browser fingerprinting. We expand

JStap by introducing dataflow analysis logic for fingerprinting de-

scribed in Section 4 including the dataflow sinks in Section 5.3.2. We

conceive an approach by using the source code location of executed

APIs (§5.3.4) to combine VisibleV8 and JStap. We can use finger-

print analysis to verify the results of dynamic analysis for fewer

false positives. All these modifications are necessary for detecting

closely executed fingerprinting APIs in the wild and no previous

research considered static fingerprint analysis.

5.3 Data Analysis
5.3.1 Seed Fingerprinting APIs. The locality calculator is a generic

algorithm that returns closely executed APIs with respect to given

APIs. To make the locality calculator aware of browser fingerprint-

ing, we leverage a list of APIs that are well-known to be abused for

browser fingerprinting. We refer to previous research [29, 39, 45,

52, 53, 57, 65] that includes well-known APIs which can assist in

browser fingerprinting. Based on previous research, we select 35

fingerprinting APIs.

Our seed list consists of three APIs from CanvasRendering-
Context2D, one from WebGLRenderingContext, three from We-
bGL2RenderingContext, five from four audio-related interfaces,

15 from Navigator, five from Screen, one from Window, and two

from Geolocation. We will call this list a "seed" list in the paper.

5.3.2 Dataflow Sink APIs. We summarize a total of 17 browser

APIs that can be treated as a sink. These APIs are either used

for data transmission (e.g. WebSocket.send) or data storage (e.g.
Window.localStorage). We also refer to previous research [42, 54,

62] on forming our sink APIs list. A full list of seed and sink APIs

is listed in Github page.

5.3.3 Locality Calculator. After crawling, collecting data, and pro-

cessing the data, we will get an array of executed APIs in sequence.

Then, we feed a sequence of executed APIs (with their offsets) to the

locality calculator. Assume this sequence contains a subsequence of

successively executed seed APIs and this subsequence has n APIs.

The number of executed APIs between a neighbor API and the

closest API in this subsequence is m. Our algorithm assigns this

neighbor API an integer weight equal to n minus m if n is larger

than m. Otherwise, our algorithm assigns zero. If the neighbor API

is close to more than one subsequence, repeat the previous assign-

ment to each subsequence and assign this neighbor API a sum of

weight from each subsequence. Then, we consider a neighbor API

with positive weight as a closely executed API and feed it (with its

https://drive.google.com/file/d/1OIra2qskqWVpgLYWWyG7cyL7fVctE1YP/view?usp=sharing
https://github.com/wspr-ncsu/BrowserFingerprintingAD

Automatic Discovery of Emerging Browser Fingerprinting Techniques WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 1: Crawling statistics on Alexa top 10k

Domain 8,446

Origin 11,709

Script 474,659

Total API Calls 753,998,537

Total API Calls without duplication 235,771

Browser API Calls 218,143,537

Browser API Calls without duplication 2,333

character offset) to fingerprint analysis. We list the pseudo-code in

Appendix 1.

5.3.4 Fingerprint Analysis. VV8 can monitor the execution of an

API and its location in the source code. Via string indexing, we

can identify the location of this executed API in the source code.

This location is called a character offset. In the DFG generated by

JStap, every node has a range. Indexing this range in the source

code can also identify the location of a node, which is equivalent

to an API in the source code. If we run a script with VV8 and JStap,

VV8 outputs character offsets of a list of executed APIs, and JStap

outputs character offsets of nodes that correspond to these APIs.

In this script, character offsets generated by JStap are the same as

character offsets generated by VV8. Therefore, having the list of

executed APIs and respective character offsets (the character offsets

in VV8 will not be changed when input to the locality calculator),

we can index them in the source code. We also use JStap to create

a DFG based on the same source code. In this DFG, a set of nodes

have the same character offsets. According to the same character

offsets, we can map out executed APIs in the nodes in DFG. With

this mechanism, we use fingerprint analysis to ensure the results of

the locality calculator connect to a sink for fingerprinting purposes.

The logic of fingerprint analysis is stated in Section 4.

6 RESULTS
6.1 Crawling Results
Following the approach described in the methodology section, we

introduce the basic statistics of the crawling process in the begin-

ning. The first crawling of Alexa top 10k was completed in October

2021. Table 1 represents the overall statistics of the collected data.

The left column states the types of crawled data and the right col-

umn states the quantity of each type. From top to down, the first

row shows how many domains are successfully crawled among

Alexa top 10k. There are many reasons that cause crawling to fail,

including domain name not resolved, SSL protocol error, and con-

nection refusal. We successfully crawl 8,446 websites. We observed

11,709 origins loading 474,659 scripts. This is 56 and 46 times the

number of domains and origins respectively and indicates the high

complexity of the web. The total number of observed function calls

is over 700M, out of which 200k were unique function calls exe-

cuted. We cross-check the function calls with the WebIDL file [18]

specification and isolate over 200M browser API calls. Almost 30%

of the function calls are browser APIs. As said previously, we focus

on browser APIs because they are supported by standard documen-

tation from major vendors. Removing duplicate calls on browser

API calls, 2,333 browser APIs are executed, which is 31.3% of all

Table 2: Composition of verified results

Fingerprinting APIs

Direct APIs 90

Indirect APIs 141

Assisting APIs

URL-related APIs 29

Sink APIs 33

(De)Obfuscation 4

browser APIs (7,447) that exist in the WebIDL specification. The to-

tal number of executed function calls (third-party API plus browser

API) is 100 times more than the number of executed browser APIs.

Overall, we discover 297 browser APIs participating in finger-

printing techniques: 231 fingerprinting APIs and 66 APIs that assist

the fingerprinting process, like obfuscation or additional sinks. The

composition of these APIs is listed in Table 2. The locality calculator

discovers 369 browser APIs and the fingerprint analysis verifies

that 323 out of 369 browser APIs have a dataflow that contains a

sink.

We analyze that 46 APIs do not have a dataflow to a sink and

discover that five of them are used for the DOM andHTML setup, 12

of them are sink APIs, 18 APIs are fingerprinting APIs, and the rest

cannot be used for fingerprinting. These 18 APIs are not included

final result (297 APIs) and our static system rejects these 18 APIs

that can be used for fingerprinting because 1) the source file takes

more than 5 minutes to generate DFG, 2) the source code contains

an unexpected token and DFG cannot be generated (esprima parse

error), and 3) someAPIs are used for the legit purpose in the crawled

case.

Results Verification. We verify that 297 out of 323 APIs are ei-

ther fingerprinting APIs or assisting APIs. In 26 false positives, two

APIs are from AbortControler and one is UnderlyingSource-
Base.type. We cannot find a connection between them and fin-

gerprinting. The rest of the false positives are the DOM or HTML-

related APIs. They are selected by our system because the webpage

is a mix of the DOM, HTML, and JavaScript. Discovering finger-

printing APIs in the wild by using proximity inevitably introduce

the usage of the DOM or HTML-related APIs. Verification details

are in Appendix B.

Fingerprinting APIs. In Table 2, we classify our results into

categories based on definitions in Section 2.2 with explicit steps

listed in Appendix B. 90 (39.0%) out of 231 fingerprinting APIs

are direct fingerprinting APIs. Direct fingerprinting APIs are not

the majority because they only demonstrate a fraction of simple

fingerprinting techniques. The majority of direct ones are related

to browser information. Graphic-related and performance-related

APIs are indirect as they require a relatively complicated setup.

Assisting APIs. Assisting APIs are used to transmit users’ in-

formation or obfuscate fingerprinting scripts but do not reveal more

entropy to trackers. In our analysis, we discovered additional sink

APIs. As stated in Section 4, sink APIs are essential for trackers,

and because new browser features can also act as sinks, we cannot

include all of them in our original sink list that we start with, but

our system can identify them. The number of sink APIs found by

our system is 33 in total. Another category is URL-related APIs.

This category includes interfaces like HTMLAnchorElement, Loca-
tion, and URL. They are critical for data transmission, especially to

WWW ’23, May 1–5, 2023, Austin, TX, USA Junhua Su and Alexandros Kapravelos

Table 3: Usage of newly discovered fingerprinting APIs

APIs 5 10 15 20 25 30 35

Scripts 10,224 5,402 2,826 1,387 738 444 257

Percent 81.6% 43.1% 22.6% 11.1% 5.6% 3.5% 2.1%

third-party trackers. When fingerprinting scripts are third-party,

trackers need to know the URL of the first-party domain that in-

cludes third-party scripts. Otherwise, the trackers do not know

what content the user is viewing and collected information be-

comes less valuable. After the trackers collect information, they

need to send data externally. For trackers who do not reveal the

source code, they obfuscate the source by using browser APIs like

TextEncoder.encode and window.atob. Our system also identi-

fies four APIs used for (de)obfuscation.

We share the full list of our verified results, 323 browser APIs,

in an Github page. For fingerprinting APIs, we also list the docu-

mentation from the browser vendor (e.g. Mozilla), a functionality

demonstration, andwhether they are deployed on our website along

with the API name. We hope this extensive list of fingerprinting

APIs will help other researchers and browser vendors.

6.2 Usage of Discovered Fingerprinting APIs
We conduct two experiments to show how these newly discovered

fingerprinting APIs are abused in the wild in terms of numerical

data. The first experiment is to measure how many scripts are

using specific numbers of newly discovered fingerprinting APIs.

12,531 scripts have executed at least one seed and one sink API.

In Table 3, there are 10,224 scripts (out of 12,531) that executed

more than five discovered APIs. When the threshold increases, the

number of scripts decreases which makes sense. We argue that

scripts which execute more newly discovered APIs are more likely

to be fingerprinting scripts. With the manual inspection of the top

50 scripts with themost numbers of newly discovered fingerprinting

APIs usage, we find all of them are fingerprinting scripts.

The second experiment measures the usage of newly discovered

fingerprinting APIs in fingerprinting scripts. Since our work does

not include finding fingerprinting scripts, we use fingerprinting

domains generated by FP-Inspector [24] and disconnect [37]. We

take the union of these two lists of fingerprinting domains and take

the intersection with our crawled domains. We find out there are

792 fingerprinting domains in our crawled data. Among them, the

average number of executed newly discovered fingerprinting APIs

is 11.5. Besides, we cross-compare them with two well-known fin-

gerprinting libraries and find out 22 APIs used in fingerprintjs2 [23]

and 18 APIs used in cross-browser fingerprinting [21].

6.3 System Usability Over Time
To demonstrate that our system can be reused over time to con-

tinuously monitor the abuse of fingerprinting APIs, we redid the

crawling on the same 10K domains in September 2022 (11-month

gap) and applied our system to this data set by following the same

procedure. As result, the locality calculator identifies 374 suspicious

APIs and fingerprint analysis confirms 304 APIs. Cross-checking

with the previous run, our system identifies 41 new APIs which

are not included in Table 2. After analyzing them, 18 of them are

fingerprinting APIs, 16 of them are sink APIs, and the rest 7 APIs

are the DOM-related. Among 18 fingerprinting APIs, 15 of them

are not detected by state-of-the-art detection systems. We list 18

fingerprinting APIs in Github page.

6.4 Evaluation of Discovered Fingerprinting
APIs

We evaluate fingerprinting capabilities of APIs (including APIs

found in the second crawling) not detected by state-of-the-art in

the following paragraphs. Due to limited space, we explain discov-

ered APIs under popular fingerprinting interfaces (e.g. Navigator,

Canvas, WebGL(2), and Performance) in Appendix C.

To better demonstrate the fingerprinting techniques abused in

the wild, we provide the scripts that execute detected fingerprinting

APIs. We verify that all of them are fingerprinting scripts and state-

of-the-art detection systems can not detect any of them except for

the ebay script. Furthermore, these fingerprinting scripts are widely

deployed to fingerprint a huge population of users. These scripts

are from Google ads service, Youtube, Microsoft, eBay, and other

popular domains which have a huge number of visits every day.

Beyond that, our system also discovers suspicious fingerprinting

scripts but we cannot manually analyze them due to obfuscation.

Window. The Window interface serves as a global object to

represent the browser window. Our system newly discovers 41

APIs from this interface. Among them, we notice that there are

pairs of Window features that return the same results, for example,

Window.clientInformation-Window.navigator andWindow.screenY-

Window.screenTop respectively. If the defense mechanism modifies

the return value from one feature but not another, it saves the

tracker’s time by making itself unique.

Another category is related to user interaction, EventHandler [6].
The mechanism of this type is to collect users’ activities during their

visiting period, like Window.ontouchstart for user’s interaction
with the touch surface. This category can be effectively used to

distinguish between bots and humans, and record users’ behavior

through a mouse, touch surface, or keyboard that provides ample

side-channel information.

The window object also contains APIs to return whether the sta-

tus bar or location bar of the browser is visible. Users can hide these

bars based on configuration options and trackers are taking advan-

tage of this. Real-world exploitation can be found from sardine with

another example in akamaized. Note that major browser vendors

have patched it to only return true for privacy concerns [19] while

our system catches fingerprinting scripts still abusing it after the

patch.

MutationObserver-related. MutationObserver and Muta-
tionRecord help keep track of changes made to the DOM and

our system newly discovers five APIs. The trackers can use Mu-
tationObserver to monitor the DOM. If users adopt defending

extension which is based on modifying the DOM tree, the trackers

know about it and users will become unique in this case. This tech-

nique is demonstrated by Vastel et al. [66] and we also observe its

abuses in the wild. Taking deeper inspection, we find Youtube and

Microsoft scripts incorporate MutationObserver APIs to collect

users’ behavior.

https://github.com/wspr-ncsu/BrowserFingerprintingAD
https://github.com/wspr-ncsu/BrowserFingerprintingAD
https://web.archive.org/web/20230211015825/https://src.ebay-us.com/F2nLp-m1uy65P4FU?32d1274bf0100384=PS9-YvklVtZaYplvOGCyqDFzSZP9u-dbUecpEYMag6kRXusMqbgd4s8n-_lL_ZobjO6k-kzuZMl6DQGYOdBBWCubNuaB1f-ONFR2nyZMSHQp3VsPGL5krkHHByEk1WkyXK6rsfsV_RI3d5Hbf0oykK0EHIl7yfn2afhReLXWNc7xlrk2NM1Wf1Jx7Pe9IuCkmrAy7DlZv50&jb=333724266a7b6f753d4e6b6e757a2e687b6d3f4c696c7578246871603f416a706f6d672532383735
https://web.archive.org/web/20221125043330/https://api.sardine.ai/assets/collector.1cd4d2e.js
https://web.archive.org/web/20230210223851/https://assets-momentum.akamaized.net/js/axss.js
https://web.archive.org/web/20230211021811/https://www.youtube.com/s/desktop/3aac24b5/jsbin/desktop_polymer_legacy_browsers.vflset/desktop_polymer_legacy_browsers.js
https://web.archive.org/web/20211115003442/https://e.clarity.ms/s/0.6.27/clarity.js

Automatic Discovery of Emerging Browser Fingerprinting Techniques WWW ’23, May 1–5, 2023, Austin, TX, USA

IntersectionObserver. Also, we are the first to observe abuses

of six APIs under IntersectionObserver in the wild and they

provide a way to measure what percentage of a given element

(e.g. video pop-ups) is visible to the user’s viewpoint. By using

this interface, trackers can know: 1) whether the content on the

web page appears on users’ screens, and 2) how long users stay

on a given element. Then, trackers can distinguish humans from

bots by calculating the viewing speed since bots have incredible

scrolling speed and precise staying time. For example, isInter-
secting tells whether the given element is inside the users’ screen,

and intersectionRatio tells the percentage of the given element

is inside the users’ screen. We find they are abused in cloudfront

and moatads fingerprinting scripts.

6.5 Case Studies
We demonstrate several discovered fingerprinting APIs in the fol-

lowing case studies. We analyze them based on their documentation

and code snippets (listed in the Appendix D) from crawled source

code. These APIs are closely executed by known fingerprinting

APIs, have a connection to sink, and are not discovered by state-

of-the-art. Due to limited space, we pack them with some portion

omitted, and the well-formatted version with more context is pro-

vided in the Github page.

History.length returns the number of the web page visited by a

given tab from a user. It is a good indicator for the website to know

if the user directly navigates the domain or visits the domain from

other domains. We observe that they are used by google ad service

conversion and async version scripts.

ServiceWorkerContainer.controller is designed to provide

users’ offline browsing experience and run in the background along

with other service worker APIs. We observe that abuse of this API

from a Russian news website and wikiland scripts. This API can be

abused for fingerprinting whether service work APIs are supported

or controlled with a given browser. Moreover, Performance timing

APIs can be applied to measure the start timing of workers.

MediaQueryList.matches can be used to monitor the CSS el-

ement with respect to a provided media query, like browser win-

dow size. In provided fingerprinting scripts, it is used to detect

whether a given browser is from a smartphone by checking the

screen size. Combining with MediaQueryList.addListener, the
change of media query can also be captured for fingerprinting

purposes. Our system detects taboola and cheqzone are using it.

PageTransitionEvent.persisted tells whether a webpage is

loaded from cache. Similar to History.length, it can show whether a

user visited a given webpage before. From Kugou and amazon aws

scripts, it is used with Window.addEventListener and pageshow
event for fingerprinting.

Permissions APIs ask users’ consent before enabling corre-

sponding functionalities (e.g. camera). In ebay and securedtouch

scripts, we find that tackers can iterate all permissions and collect

their states. Users with different permission settings are distin-

guished by this technique.

7 RELATEDWORK
7.1 Development of Browser Fingerprinting
In 2010, Eckersley [38] from the Electronic Frontier Foundation

collected 470,161 fingerprints by broadcasting on social media and

popular websites. He quantified “quirkiness” with an information

theory-based interpretation, entropy, and demonstrated that 18.1

bits of entropy help distinctively identify 286,777 browsers in the

best-case scenario.

Since then, the enrichment of browser features has prompted a

line of research on finding new attributes of browser fingerprint-

ing. For example, Mowery et al. [56] discovered a high entropy

method with WebGL [17] and HTML Canvas [7]. Cao et al. [34]
demonstrate the ability of cross-browser fingerprinting based on

Canvas and WebGL. Laperdrix et al. [52] explored the validity of

browser fingerprinting with 17 attributes and over 100,000 finger-

prints. Meanwhile, they proved how the fingerprinting technique

is applied to mobile phones. Das et al. [36] found four types of

smartphone sensors that contribute to the fingerprint. System font

list [43], browser extensions [64], evercookie [28], Battery API [58],

and the Audio API [39] are also marked as entropy source by corre-

sponding researchers.

7.2 Comparison with the state-of-the-art
To the best of our knowledge, Al-Fannah et al. [30], Bahrami et
al. [31], and Iqbal et al. [49] also discovered fingerprinting features

by crawling the web. We refer to them as state-of-the-art in this pa-

per and individually compare our work with them in the following.

FP-Inspector. Iqbal et al. [49] built a machine learning-based

fingerprinting script detector named FP-Inspector and they adopted

the functionality of OpenWPM [39] to crawl Alexa top 100k web-

sites. Their work focuses on detecting browser fingerprinting scripts

and not on the underlying browser APIs responsible for the prob-

lem. Studying browser fingerprinting at a granular API level leads

to a better understanding of fingerprinting techniques and allows

researchers directly modify these APIs to protect users.

They discovered 161 JavaScript keywords that executed much

more in fingerprinting scripts than non-fingerprinting ones. Unlike

JavaScript keywords, our system yields result in browser API. With

browser API, there is no need to spend the extra manual effort to

filter out keywords that do not have documentation or correspond

to multiple APIs. Cross-checking their results with the WebIDL file

and excluding interface keywords, 84 (52.1%) features are browser

APIs. This low standard feature percentage tells that almost half

of their results may be infeasible to analyze. Due to the choice of

measurement tool, their system can only measure the usage of a

pre-selected list of APIs that they know beforehand. On the other

hand, our system monitors every native JS API execution. Their

definition of fingerprinting considers Canvas, WebGL, font, and

Audio without considering other techniques (e.g. under Window

and Navigator). Our broader definition leads to a more comprehen-

sive fingerprinting behavior detection. The other two papers do

not have a clear definition of fingerprinting.

Among these 84 standard features, our system can detect 34

(40.4%) of them. For 50 features our system does not cover, 16 (32%)

features are executed no more than two times during our crawling

process. After inspection, the major reason why we have this low

https://web.archive.org/web/20230211015143/https://d291vdycu0ht11.cloudfront.net/nuxt/production/note.61c0c8bfca4b70747e42.js
https://z.moatads.com/hcodemediadfp639804993978/moatad.js
https://github.com/wspr-ncsu/BrowserFingerprintingAD
https://www.googleadservices.com/pagead/conversion.js
https://www.googleadservices.com/pagead/conversion.js
https://www.googleadservices.com/pagead/conversion_async.js
https://web.archive.org/web/20220831090535/https://static.ngs.ru/jtnews/dist/static/js/mcc.bundle.js?version=7
https://web.archive.org/web/20230211025209/https://wikiwand-19431.kxcdn.com/js/wikiwand.promotional.min.0a75874c.js
https://cdn.taboola.com/libtrc/impl.20211102-6-RELEASE.js
https://ob.cheqzone.com/clicktrue_invocation.js?id=13996
https://web.archive.org/web/20230211030029/https://staticssl.kugou.com/public/root/javascripts/jslib/common_9da4617bd7.js
https://client.rum.us-east-1.amazonaws.com/1.0.2/cwr.js
https://src.ebay-us.com/F2nLp-m1uy65P4FU?32d1274bf0100384=PS9-YvklVtZaYplvOGCyqDFzSZP9u-dbUecpEYMag6kRXusMqbgd4s8n-_lL_ZobjO6k-kzuZMl6DQGYOdBBWCubNuaB1f-ONFR2nyZMSHQp3VsPGL5krkHHByEk1WkyXK6rsfsV_RI3d5Hbf0oykK0EHIl7yfn2afhReLXWNc7xlrk2NM1Wf1Jx7Pe9IuCkmrAy7DlZv50&jb=333724266a7b6f753d4e6b6e757a2e687b6d3f4c696c7578246871603f416a706f6d672532383735
https://static.securedtouch.com/sdk/securedtouch-sdk-3.8.3w.js

WWW ’23, May 1–5, 2023, Austin, TX, USA Junhua Su and Alexandros Kapravelos

coverage is the insufficient amount of seed. Therefore, by adding

fingerprinting APIs discovered by our system to the seed (details

in Appendix E), the coverage is 81% while the remaining features

are barely executed during crawling.

FP-RADAR.With the concept of "guilt by association", Bahrami

et al. [31] built a system to detect fingerprinting features based

on 10-year longitudinal data they crawled from Alexa top 100k

websites. Although we have a similar assumption, we have distinct

interpretations of the assumption and system architectures. Their

system only contains static analysis while our hybrid system is

better at dealing with obfuscation and minification which hinder

static analysis. They took a machine-learning approach while we

rely on our new locality algorithm. Also, our system provides a

broader picture of browser fingerprinting by taking dataflow into

consideration when no previous research on fingerprinting uses

static dataflow analysis.

Their results are 313 features from a cluster that share the high-

est similarity with known fingerprinting scripts identified by FP-

Inspector. They publicized 50 APIs (out of 313) with manually la-

beled interfaces while the rest features are not publicized. Speaking

of the coverage, 33 (66%) discovered features out of 50 public ones

have corresponding browser APIs. Among 33 features, 11 are exe-

cuted no more than two times during crawling. Our system covers

17(51%) with original seed and 21(63.6%) with extended seed.

FingerprintAlert. Al-Fannah et al. [30], constructed a crawler

and collected transfer data (e.g. HTTP response message) to manu-

ally find fingerprinting attributes. However, they collected trans-

mitted data without involving JavaScript. Since transmitted data

is totally controlled by the sender, their method is also suffered

from code transformation techniques. It turns out that 65 out of 286

(22.7%) of their finding attributes correspond to browser APIs. This

low browser API ratio is due to a lack of JavaScript-level monitoring.

Moreover, there is no definite relationship between their collected

data and specific browser API. It makes their results provide little

information for further analysis. Our system, including our seed

and sink lists, covers 57 (87.7%) of them.

Summary. Our system has several advantages compared to the

state-of-the-art: 1) it supports long-time monitoring with customiz-

able API seeds, 2) produces results as browser APIs that do not

require manual filtering, 3) has a broader coverage of fingerprinting

techniques, 4) leverages static dataflow analysis, and 5) bypasses

code transformation techniques. Meanwhile, by adding fingerprint-

ing APIs to the seed, our system can cover the vast majority of

features discovered by state-of-the-art if we can observe ample API

calls. Removing APIs containing attributes in the state-of-the-art,

we discover a total of 161 out of 231 fingerprinting browser APIs

that have not been reported by state-of-the-art.

7.3 Program Analysis
Englehardt et al. [39] adopted OpenWPM on Alexa top one million

websites to monitor several fingerprinting patterns(e.g. AudioCon-

text [16], Canvas [7], Battery [2]). A wide list of research [32, 36, 49,

55, 60] either chose it or modified it as their tool due to its reliabil-

ity. In terms of the in-band approach, Snyder et al. [63], overwrite
JavaScript function calls and use Object.watch to measure usage

of function calls and property access respectively.

Due to the low computational cost, static analysis is often used

for malicious code detection with its inherent advantage of accessi-

bility. Fass et al. built JStap [41], a modular system that can generate

AST, CFG, and DFG. Canali et al. [33] utilized the features of HTML

and JavaScript code as a filter to efficiently reduce the number of

suspicious web pages, leaving only a few for costly dynamic and

manual analysis. Curtsinger et al. [35] used hierarchical features of

the JavaScript AST to identify malware with Bayesian classification.

Rieck et al. [59] proposed static and dynamic detection models as

an extension to a web proxy for the analysis of malicious patterns.

8 LIMITATIONS & DISCUSSION
Although many of the discovered APIs are known to the commu-

nity, these APIs are scattered in multiple reports and are often

discovered manually without knowing how they are abused in

the wild. Our system provides a novel systematic way of discover-

ing fingerprinting APIs abused in the wild collectively and can be

deployed continuously to discover new APIs, something that no

previous work can achieve. Our system discovers 24 fingerprint-

ing APIs that are not known to the community to the best of our

knowledge. Since our system focuses on fingerprinting behavior

detection in the wild, we select systems with a similar approach (i.e.

crawling-based) as state-of-the-art rather than the state-of-the-art

fingerprinting scripts (e.g. FingerprintJS) for a valid comparison.

Speaking of ways to evade our system, trackers can purposefully

distribute fingerprinting APIs execution, it is easy for our system

to capture it by count the number of executed fingerprinting APIs.

It is another advantage of API-level fingerprinting analysis since

trackers cannot fingerprinting without executing fingerprinting

APIs.

9 CONCLUSION
In this paper, we proposed a hybrid system named BFAD that

can identify previously unknown fingerprinting APIs by locating

known fingerprinting APIs in an executed sequence of APIs and

searching for their neighbors. By building on top of VisibleV8 and

JStap, BFAD employs a novel locality algorithm and a fingerprint

analysis. Combining them together with character offset, BFAD

discovers a total of 249 fingerprinting APIs starting from 35 fin-

gerprinting APIs and 17 sink APIs with two crawling experiments.

The second crawling that happens 11 months later gives us 18 new

fingerprinting APIs. Compared to state-of-the-art, our automated

system detect 176 (out of 249) fingerprinting APIs that are not de-

tected by state-of-the-art. We also evaluate fingerprinting ability of

these APIs and show how they are abused. We envision browser

vendors leveraging our system in order to evaluate the risks of

released browser features and monitor their abuse over time (i.e.

Privacy Budget [8]). We also make the crawled data and source

code available.

10 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive com-

ments and suggestions on how to improve this paper. We also thank

Lichen Fu for his help on this work. This work was supported by

the National Science Foundation (NSF) under grants CNS-2138138

and CNS-2047260.

https://doi.org/10.5281/zenodo.7630922
https://doi.org/10.5281/zenodo.7631602
https://doi.org/10.5281/zenodo.7631602

Automatic Discovery of Emerging Browser Fingerprinting Techniques WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] 2021. AmIUnique. https://amiunique.org. (2021).

[2] 2021. Battery Status API. https://www.w3.org/TR/battery-status/. (2021).

[3] 2021. BrowserLeaks - Web Browser Fingerprinting - Browsing Privacy. https:

//browserleaks.com. (2021).

[4] 2021. Device Info. https://www.deviceinfo.me/. (2021).

[5] 2021. Fingerprinting JSEcho. http://privacycheck.sec.lrz.de/active/fp_je/fp_js_

echo.html. (2021).

[6] 2021. GlobalEventHandlers. https://developer.mozilla.org/en-US/docs/Web/API/

GlobalEventHandlers. (2021).

[7] 2021. HTML Canvas 2D Context. https://www.w3.org/TR/2dcontext/. (2021).

[8] 2021. Introducing the Privacy Budget. https://www.youtube.com/watch?v=

0STgfjSA6T8&ab_channel=GoogleChromeDevelopers. (2021).

[9] 2021. JavaScript APIs. https://developer.mozilla.org/en-US/docs/Mozilla/Add-

ons/WebExtensions/API. (2021).

[10] 2021. node.js. https://nodejs.org/en/. (2021).

[11] 2021. Panopticlick. https://panopticlick.eff.org. (2021).

[12] 2021. Pixelscan. https://pixelscan.net/. (2021).

[13] 2021. Puppeteer. https://pptr.dev/. (2021).

[14] 2021. top-1m. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip. (2021).

[15] 2021. UNIQUEMACHINE. http://uniquemachine.org/. (2021).

[16] 2021. Web Audio API. https://www.w3.org/TR/webaudio/. (2021).

[17] 2021. WebGL: 2D and 3D graphics for the web. https://developer.mozilla.org/en-

US/docs/Web/API/WebGL_API. (2021).

[18] 2021. WebIDL. https://www.w3.org/TR/WebIDL-1/. (2021).

[19] 2022. BarProp.visible. https://developer.mozilla.org/en-US/docs/Web/API/

BarProp/visible. (2022).

[20] 2022. Building a more private web: A path towards making third party cookies

obsolete. https://blog.chromium.org/2020/01/building-more-private-web-path-

towards.html. (2022).

[21] 2022. cross_browser. https://github.com/Song-Li/cross_browser. (2022).

[22] 2022. Disable third-party cookies in Firefox to stop some types of tracking by

advertisers. https://support.mozilla.org/en-US/kb/disable-third-party-cookies?

redirect=no. (2022).

[23] 2022. fingerprintjs. https://github.com/fingerprintjs/fingerprintjs/tree/v2. (2022).

[24] 2022. FP-Inspector. https://github.com/uiowa-irl/FP-Inspector/blob/master/Data/

fingerprinting_domains.json. (2022).

[25] 2022. Full Third-Party Cookie Blocking and More. https://webkit.org/blog/10218/

full-third-party-cookie-blocking-and-more/. (2022).

[26] 2022. Internet Advertising Revenue Report: Full Year 2021. https://www.iab.com/

insights/internet-advertising-revenue-report-full-year-2021/. (2022).

[27] 2022. Online advertising revenue in the United States from 2000 to

2021. https://www.statista.com/statistics/183816/us-online-advertising-revenue-

since-2000/. (2022).

[28] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking

mechanisms in the wild. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[29] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank

Piessens, and Bart Preneel. 2013. FPDetective: Dusting theWeb for Fingerprinters.

In Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[30] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J Mitchell. 2018. Beyond

cookie monster amnesia: Real world persistent online tracking. In International
Conference on Information Security.

[31] Pouneh Nikkhah Bahrami, Umar Iqbal, and Zubair Shafiq. 2022. FP-Radar: Longi-

tudinal measurement and early detection of browser fingerprinting. Proceedings
on Privacy Enhancing Technologies (2022).

[32] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and Ben Stock.

2021. Reining in the Web’s Inconsistencies with Site Policy. In Proceedings of the
Symposium on Network and Distributed System Security (NDSS).

[33] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. 2011.

Prophiler: a fast filter for the large-scale detection of malicious web pages. In

Proceedings of the International World Wide Web Conference (WWW).
[34] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting via

OS and Hardware Level Features. In Proceedings of the Symposium on Network
and Distributed System Security (NDSS).

[35] Charlie Curtsinger, Benjamin Livshits, Benjamin G. Zorn, and Christian Seifert.

2011. ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection. In

Proceedings of the USENIX Security Symposium.

[36] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s

Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS).

[37] Disconnect. 2021. disconnect-tracking-protection. https://github.com/

disconnectme/disconnect-tracking-protection. (2021).

[38] Peter Eckersley. 2010. How unique is your web browser?. In International Sym-
posium on Privacy Enhancing Technologies Symposium.

[39] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-Million-

Site Measurement and Analysis. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS).

[40] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam. 2015.

FPGuard: Detection and Prevention of Browser Fingerprinting. In Data and
Applications Security and Privacy XXIX.

[41] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: A Static Pre-Filter for

Malicious JavaScript Detection. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC).

[42] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. 2021. Dou-

bleX: Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale.

In Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[43] David Fifield and Serge Egelman. 2015. Fingerprinting web users through font

metrics. In International Conference on Financial Cryptography and Data Security.
[44] Henrik Gemal. 2021. BrowserSpy.dk. http://browserspy.dk/. (2021).

[45] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in

the Crowd: An Analysis of the Effectiveness of Browser Fingerprinting at Large

Scale. In Proceedings of the 2018 World Wide Web Conference.
[46] Google Chrome. 2021. https://chromedevtools.github.io/devtools-protocol/.

(2021).

[47] Google Chrome. 2021. https://chromedevtools.github.io/devtools-protocol/tot/

Debugger/. (2021).

[48] Ariya Hidayat. 2021. ECMAScript parsing infrastructure for multipurpose analy-

sis. https://esprima.org/. (2021).

[49] U. Iqbal, S. Englehardt, and Z. Shafiq. 2021. Fingerprinting the Fingerprinters:

Learning to Detect Browser Fingerprinting Behaviors. In Proceedings of the IEEE
Symposium on Security and Privacy.

[50] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser

Monitoring of JavaScript in the Wild. In Proceedings of the ACM SIGCOMM
Internet Measurement Conference (IMC).

[51] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. 2017. FPRandom: Random-

izing core browser objects to break advanced device fingerprinting techniques.

In ESSoS 2017 - 9th International Symposium on Engineering Secure Software and
Systems.

[52] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the

Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints.

In Proceedings of the IEEE Symposium on Security and Privacy.
[53] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.

2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological

Study of Web Tracking from 1996 to 2016. In Proceedings of the USENIX Security
Symposium.

[54] Tianyi Li, Xiaofeng Zheng, Kaiwen Shen, and Xinhui Han. 2021. Poster: FPFlow:

Detect and Prevent Browser Fingerprinting with Dynamic Taint Analysis. In

Proceedings of the IEEE Symposium on Security and Privacy.
[55] Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, and Gang Wang. 2017. Measur-

ing the Insecurity of Mobile Deep Links of Android. In Proceedings of the USENIX
Security Symposium.

[56] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect: Fingerprinting Canvas

in HTML5. In Proceedings of W2SP 2012.
[57] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Chris Kruegel, Frank

Piessens, andGiovanni Vigna. 2013. CookielessMonster: Exploring the Ecosystem

of Web-based Device Fingerprinting. In Proceedings of the IEEE Symposium on
Security and Privacy.

[58] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The

Leaking Battery. In Data Privacy Management, and Security Assurance.
[59] Konrad Rieck, Tammo Krueger, and Andreas Dewald. 2010. Cujo: efficient detec-

tion and prevention of drive-by-download attacks. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC).

[60] Valentino Rizzo, Stefano Traverso, and Marco Mellia. 2020. Unveiling Web

Fingerprinting in the Wild Via Code Mining and Machine Learning. Proceedings
on Privacy Enhancing Technologies (2020).

[61] Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020. Hiding in

Plain Site: Detecting JavaScript Obfuscation through Concealed Browser API

Usage. In Proceedings of the ACM SIGCOMM Internet Measurement Conference
(IMC).

[62] Alexander Sjösten, Daniel Hedin, and Andrei Sabelfeld. 2021. Essentialfp: Expos-

ing the essence of browser fingerprinting. In 2021 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW).

[63] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser

Feature Usage on theModernWeb. In Proceedings of the 2016 Internet Measurement
Conference.

[64] Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Finger-

printability of Browser Extensions. In Proceedings of the IEEE Symposium on
Security and Privacy.

[65] Oleksii Starov and Nick Nikiforakis. 2018. PrivacyMeter: Designing and Devel-

oping a Privacy-Preserving Browser Extension. In Engineering Secure Software
and Systems.

https://amiunique.org
https://www.w3.org/TR/battery-status/
https://browserleaks.com
https://browserleaks.com
https://www.deviceinfo.me/
http://privacycheck.sec.lrz.de/active/fp_je/fp_js_echo.html
http://privacycheck.sec.lrz.de/active/fp_je/fp_js_echo.html
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers
https://www.w3.org/TR/2dcontext/
https://www.youtube.com/watch?v=0STgfjSA6T8&ab_channel=GoogleChromeDevelopers
https://www.youtube.com/watch?v=0STgfjSA6T8&ab_channel=GoogleChromeDevelopers
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API
https://nodejs.org/en/
https://panopticlick.eff.org
https://pixelscan.net/
https://pptr.dev/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://uniquemachine.org/
https://www.w3.org/TR/webaudio/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://www.w3.org/TR/WebIDL-1/
https://developer.mozilla.org/en-US/docs/Web/API/BarProp/visible
https://developer.mozilla.org/en-US/docs/Web/API/BarProp/visible
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://github.com/Song-Li/cross_browser
https://support.mozilla.org/en-US/kb/disable-third-party-cookies?redirect=no
https://support.mozilla.org/en-US/kb/disable-third-party-cookies?redirect=no
https://github.com/fingerprintjs/fingerprintjs/tree/v2
https://github.com/uiowa-irl/FP-Inspector/blob/master/Data/fingerprinting_domains.json
https://github.com/uiowa-irl/FP-Inspector/blob/master/Data/fingerprinting_domains.json
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://www.iab.com/insights/internet-advertising-revenue-report-full-year-2021/
https://www.iab.com/insights/internet-advertising-revenue-report-full-year-2021/
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
http://browserspy.dk/
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/tot/Debugger/
https://chromedevtools.github.io/devtools-protocol/tot/Debugger/
https://esprima.org/

WWW ’23, May 1–5, 2023, Austin, TX, USA Junhua Su and Alexandros Kapravelos

[66] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.

Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies. In

Proceedings of the USENIX Security Symposium.

A APPENDIX
B EXPLICIT STEPS ON FINGERPRINTING

APIS VERIFICATION
Generally, we first check if this API is demonstrated in fingerprint-

ing demonstration websites [1, 3–5, 11, 12, 15, 44] or previous re-

search. If this API is demonstrated before and satisfies our definition,

we mark it as a fingerprinting API. Based on the documentation,

we also implement this API on our website and test it with devices

controlled by us. If we can get users’ information by directly using

the return value of this API, we mark it as a direct fingerprinting

API. Otherwise, we mark it as an indirect fingerprinting API. If the

API doesn’t follow the above steps, we thoroughly review the JS

source code that executes the API. If the JS source file contains many

known fingerprinting APIs in the seed list and the API satisfies our

definition, we still mark it as a fingerprinting API.

C DISCOVERED FINGERPRINTING
INTERFACES

Navigator. Navigator interface contains information about the

browser. Because it’s easy to access and usually contains distin-

guishable browser information, it’s a profitable target for trackers.

Our system newly discovers 7 APIs under the Navigator interface.

Among the APIs our system identifies, there are two types of navi-

gator features: hardware and browser information. The hardware-

related features include Navigator.xr and Navigator.keyboard.
They help trackers know whether a VR device or keyboard is con-

nected to the visiting computer. Furthermore, trackers can gain

detailed information about the connected deceives if permission is

allowed.

For the rest, Navigator.userAgentData can be used to obtain

platform from the user agent, device type (e.g. mobile), and browser

information while navigator.appVersion provides similar infor-

mationwithmore details. Navigator.connection yields Network-
information object which reveals effective type of the connec-

tion(e.g. 2g, 3g, and 4g) and saveData option.

Canvas and WebGL. Graphic processing-based fingerprinting

originates from different image rendering pipelines provided by

different graphic cards and operating systems [34, 56].

State-of-the-art discovers features mostly from WebGL(2) and

misses Canvas-related APIs. Our system newly discovers 25 APIs

from Canvas, and 10 from WebGL(2). We find WebGLRendering-
Context.isEnabled can be used to test whether a given WebGL

capability is enabled. WebGL2 provides more APIs that tell its de-

fault settings than WebGL and it makes WebGL2 more attractive

for fingerprinting abuse.

Performance. Performance APIs are commonly used in fin-

gerprinting scripts. The most common way is to measure the ex-

ecution time for certain operations. On different devices, since

devices’ hardware are different, their computational power can be

distinguishable. In performance collected by our system, Perfor-
mance.measure can be abusive in this way.

for every API in APIs:
if isFP(API):

API.weight = 1
else:

API.weight = 0
for every API in APIs:

if API.weight == 1:
counter += 1

else:
dummy.weight = counter
delete previous APIs if their weights
is 1
counter = 0

for every dummy API:
left_itr, right_itr = dummy
left_weight, right_weight = dummy.weight-1
while left_weight != 0:

left_itr = left(left_itr)
left_itr.weight += left_weight
left_weight -= 1

while right_weight != 0:
right_itr = right(right_itr)
right_itr.weight += right_weight
right_weight -= 1

Sort every non-dummy APIs from high to low
return top x APIs

Listing 1: Locality Pseudocode

"addEventListener"in window&&window.addEventListener
("pageshow",function(t){t.persisted&&i()},!1)

Listing 2: PageTransitionEvent.persisted

isSmartPhone: (s = window.matchMedia && window.match
Media(" only screen and (min-device-width : 320px) a
nd (max-device-width : 480px)").matches || /(iPhone|
iPod)/g.test(navigator.userAgent), function() {retur
n s})

Listing 3: MediaQueryList.matches

Performance APIs provide timings for connection, response,

navigation, and content loading. Although FP-RADAR noticed this

type of abuse, they only label a small set of features due to their

system limitation. Our system addressed the limitation and newly

discovered 17 APIs in total. Besides time-related Performance API

cases, Performance.memory interface tells information about heap

memory, namely maximum JS heap size limit, total heap size, and

heap size currently being used. FingerprintingAlert observed data

related to these three APIs but provided no explanation.

D CASE STUDY SCRIPTS

Automatic Discovery of Emerging Browser Fingerprinting Techniques WWW ’23, May 1–5, 2023, Austin, TX, USA

I=a.screen;I&&(w.push(U("u_h",I.height)),w.push(U("u
_w",I.width)),w.push(U("u_ah",I.availHeight)),w.push
(U("u_aw",I.availWidth)),w.push(U("u_cd",I.colorDept
h)));a.history&&w.push(U("u_his",a.history.length))}
Z&&"function"==typeof Z.getTimezoneOffset&&w.push(U(
"u_tz",-Z.getTimezoneOffset()));b&&("function"==type
of b.javaEnabled&& w.push(U("u_java",b.javaEnabled()

Listing 4: History.length

{for(var e=["innerHeight","innerWidth","outerWidth",
"outerHeight","devicePixelRatio"],t={},r=0;r<e.lengt
h;r++){var n=e[r];t[n]=window[n]}return window.statu
sbar&&(t.statusbar_visible=window.statusbar.visible)
,t.length=window.length,t.modified=Object.getOwnProp
ertyNames(window.screen),JSON.stringify(t)}

Listing 5: Window.statusbar and BarProp.visible

a.deviceMemory:0,hardwareConcurrency:a.hardwareConcu
rrency?a.hardwareConcurrency:0,serviceWorkerStatus:"
serviceWorker"in a?a.serviceWorker.controller?"contr
olled":"supported":"unsupported"}:{}}......return{fe
tchTime:i-t.fetchStart,workerTime:t.workerStart>0?i-
t.workerStart:0,totalTime:i-t.requestStart,downloadT
ime:i-e,timeToFirstByte:e-t.requestStart,headerSize:
t.transferSize-t.encodedBodySize||0,dnsLookupTime:t.
domainLookupEnd-t.domainLookupStart}}

Listing 6: ServiceWorkerContainer.controller

if(t={},n=["accelerometer","accessibility-events","a
mbient-light-sensor","background-sync","camera","cli
pboard-read","clipboard-write","geolocation","gyrosc
ope","magnetometer","microphone"......],i=[],navigat
or.permissions)for(o in r=function(e){varr=n[e];i.pu
sh(navigator.permissions.query({name:r}).then(functi
on(e){t[r]=e.state}).

Listing 7: PermissionStatus.state and Permissions.query

E COMPARISONWITH FP-INSPECTOR
In 34(68%) features that are executed more than once during crawl-

ing, there are two major groups of features, WebGL(2) and Even-

tHandler under the Window interface. In our seed list, there are only

four WebGL(2) APIs and one API under the Window interface. They

are not enough to cover all fingerprinting patterns in the wild. Thus,

after adding fingerprinting APIs (under WebGL(2) and Window

interfaces) from the APIs discovered by our system to the seed, our

system can cover all 34 APIs.

navigator.mediaDevices.enumerateDevices().then(funct
ion(s){for(var v=0;v<s.length;++v){var p=s[v];"video
"===p.kind?p.kind="videoinput":"audio"===p.kind&&(p.
kind="audioinput"),p.deviceId?p.id||(p.id=p.deviceId
):p.deviceId=s.id,-1===c.indexOf(p)&&c.push(p)......

Listing 8: MediaDevices.enumerateDevices

F ROBUSTNESS OF THE SYSTEM
We did not observe any attack pattern during manual analysis. If

we observe attackers inject random API calls, we can filter them

out based on our dataflow analysis described in Section 4 and then

run the locality algorithm. Injecting API calls with dataflow connec-

tions raises significantly the bar for attackers. Assuming attackers

overcome it and inject one random API call (or any fixed number)

between each fingerprinting API call, we still can filter them out

from the sequence in the VV8 post-processor.

G BOT DETECTIONWITH FINGERPRINTING
As fingerprinting is used to uniquely identify online users, crawlers

(i.e. bots) are largely used to grab online information that can be

identified by fingerprinting techniques. There are two main ways

to identify crawlers, static features, and dynamic behavior. Win-
dow.frames and Window.clientInformation return abundant in-

formation which reveals specific sets of crawlers’ settings. On the

other hand, dynamic behavior often requires complicated analysis.

Some naive crawlers interact (e.g. move the mouse) in a humanly

impossible way or have no interaction. IntersectionObserver
can be specifically used for behavior analysis. However, as indi-

cated in Section 3.1, the accuracy of fingerprinting increases as

more information is collected. Detecting crawlers based on a large

list of fingerprinting APIs is more reliable than using a single API.

H ANALYSIS OF DISCOVERED
FINGERPRINTING APIS

As shown in Section 6.2, discovered fingerprinting APIs can be

used for fingerprinting script detection. Using these APIs is reliable

since they are executed and the collected information is stored

or transmitted by trackers. Each API returns different entropy. A

reasonable approach is to combine fingerprinting APIs with their

corresponding entropy. However, the crawling-based system is

not able to collect users’ fingerprints and calculate entropy. With

enough fingerprints, the entropy of each fingerprinting API and

an upper bound entropy that prevents users from being uniquely

identified can be calculated. Based on these calculations, runtime

fingerprinting detection and prevention are possible.

I AVAILABILITY
We make our source code, raw data, discovered APIs, fingerprint-

ing code snippets, and the fingerprinting demonstration website

publicly available.

https://bfadweb.github.io/bfadweb/
https://github.com/wspr-ncsu/BrowserFingerprintingAD

	Abstract
	1 Introduction
	2 Background
	2.1 Browser Fingerprinting
	2.2 Browser APIs
	2.3 Program Analysis for Webpage Behavior

	3 Code locality of Fingerprinting Techniques
	3.1 Intuition
	3.2 Fingerprinting APIs Seed
	3.3 Data-driven Per-Script Range for Locality

	4 Dataflow of Fingerprinting Information
	5 Methodology
	5.1 Crawling
	5.2 Data Collection and Processing
	5.3 Data Analysis

	6 Results
	6.1 Crawling Results
	6.2 Usage of Discovered Fingerprinting APIs
	6.3 System Usability Over Time
	6.4 Evaluation of Discovered Fingerprinting APIs
	6.5 Case Studies

	7 Related Work
	7.1 Development of Browser Fingerprinting
	7.2 Comparison with the state-of-the-art
	7.3 Program Analysis

	8 Limitations & Discussion
	9 Conclusion
	10 Acknowledgements
	References
	A Appendix
	B Explicit Steps on Fingerprinting APIs Verification
	C Discovered Fingerprinting Interfaces
	D Case Study Scripts
	E Comparison with FP-Inspector
	F Robustness of the System
	G Bot Detection with Fingerprinting
	H Analysis of Discovered Fingerprinting APIs
	I Availability

